Silicon Carbide Technology for Advanced Human Healthcare Applications
Abstract
:1. Introduction
2. Biological Performance of SiC
2.1. In Vitro Performance
2.2. In Vivo Performance
3. SiC Biosensors
3.1. Surface Functionalization
3.1.1. SiC Functionalization to Enhance Cell Viability
3.1.2. SiC Surface Functionalization to Detect Myoglobin
3.2. SiC Glucose Biosensor
4. SiC Nanotechnology
4.1. Nanowires and Nanoparticles
4.2. Photodynamic Therapy (PDT) to Treat Deep-Tissue Cancer Using SiC Nanowires
4.3. Near-Infrared Photo-Immune Therapy (NIR-PIT) Using SiC Nanostructures
4.4. Room-Temperature DNA Assays Using a-SiC-Coated Si Nanowires
5. SiC Implants
5.1. Bone Scaffolds
5.2. Dental and Orthopedic Implants
5.3. SiC Neural Implants
6. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Saddow, S.E. (Ed.) Silicon Carbide Technology for Advanced Human Healthcare Applications; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-323-90609-8. [Google Scholar]
- Saddow, S.E. Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Saddow, S.E. Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Coletti, C.; Jaroszeski, M.; Pallaoro, A.; Hoff, A.; Iannotta, S.; Saddow, S. Biocompatibility and wettability of crystalline SiC and Si surfaces. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; pp. 5849–5852. [Google Scholar] [CrossRef]
- Thewes, R.; Paulus, C.; Schienle, M.; Hofmann, F.; Frey, A.; Brederlow, R.; Schindler-Bauer, P.; Augustyniak, M.; Atzesberger, M.; Holzapfl, B.; et al. Integrated circuits for the biology-to-silicon interface [biotechnology]. In Proceedings of the 30th European Solid-State Circuits Conference, Leuven, Belgium, 23 September 2004. [Google Scholar]
- Rizzo, J.F., III; Wyatt, J.; Kelly, S.; Shire, D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Investig. Ophtalmol. Vis. Sci. 2003, 44, 5362–5369. [Google Scholar] [CrossRef] [Green Version]
- Humayun, M.S.; Weiland, J.D.; Fujii, G.Y.; Greenberg, R.; Williamson, R.; Little, J.; Mech, B.; Cimmarusti, V.; Van Boemel, G.; Dagnelie, G.; et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis. Res. 2003, 43, 2537–2581. [Google Scholar] [CrossRef] [Green Version]
- Oliveros, A.; Guiseppi-Elie, A.; Saddow, S.E. Silicon carbide: A versatile material for biosensor applications. Biomed. Microdev. 2013, 15, 353–368. [Google Scholar] [CrossRef]
- Miyamoto, S.; Akiyama, S.K.; Yamada, K.M. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 1995, 267, 883–885. [Google Scholar] [CrossRef]
- Juliano, R.; Haskill, S.; Carolina, N. Mini-review signal transduction from the extracellular matrix. Cell 1993, 120, 577. [Google Scholar] [CrossRef]
- Chaffey, N. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. Molecular biology of the cell. 4th edn. Ann. Bot. 2003, 91, 401. [Google Scholar] [CrossRef]
- Richards, R. The effect of surface roughness on fibroblast adhesion in vitro. Injury 1996, 27, SC38–SC43. [Google Scholar] [CrossRef]
- Levitan, I.C.; Kaczmarek, L.K. Adhesion Molecules and Paxon Pathfinding. Neuron: Cell and Molecular Biology; Oxford University Press: Oxford, UK, 2002; p. 435. [Google Scholar]
- Goodman, C. Mechanisms and molecules that control growth cone guidance. Ann. Rev. Neurosci. 1996, 19, 341. [Google Scholar] [CrossRef]
- Underwood, P.; Steele, J.G.; Dalton, B. Effects of polystyrene surface chemistry on the biological activity of solid phase fibronectin and vitronectin, analysed with monoclonal antibodies. J. Cell Sci. 1993, 104, 793. [Google Scholar] [CrossRef]
- McClary, K.B.; Ugarova, T.; Grainger, D.W. Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. J. Biomed. Mater. Res. 2000, 50, 428–439. [Google Scholar] [CrossRef]
- Mrksich, M.; Whitesides, G.M. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 55–78. [Google Scholar] [CrossRef]
- Stenger, D.; Pike, C.; Hickman, J.; Cotman, C. Surface determinants of neuronal survival and growth on self-assembled monolayers in culture. Brain Res. 1993, 630, 136–147. [Google Scholar] [CrossRef]
- Oliveros Villalba, A. Myoglobin Detection on SiC: Immunosensor Development for Myocardial Infarction. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, January 2013. [Google Scholar]
- Afroz, S.; Thomas, S.W.; Mumcu, G.; Saddow, S.E. Implantable SiC based RF antenna biosensor for continuous glucose monitoring. Sensors 2013, 2013, 1–4. [Google Scholar]
- Araujo Cespedes, F. RF Sensing System for Continuous Blood Glucose Monitoring. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, November 2017. [Google Scholar]
- Sahu, T.; Ghosh, B.; Pradhan, S.K.; Ganguly, T. Diverse role of silicon carbide in the domain of nanomaterials. Int. J. Electrochem. 2012, 2012, 271285. [Google Scholar] [CrossRef] [Green Version]
- Linkov, I.; Bates, M.E.; Canis, L.J.; Seager, T.P.; Keisler, J.M. A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nat. Nanotechnol. 2011, 6, 784–787. [Google Scholar] [CrossRef]
- Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Cancer 2005, 5, 161–171. [Google Scholar] [CrossRef]
- Doane, T.L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885–2911. [Google Scholar] [CrossRef]
- Fabbri, F.; Rossi, F.; Melucci, M.; Manet, I.; Attolini, G.; Favaretto, L.; Zambianchi, M.; Salviati, G. Optical properties of hybrid T3Pyr/SiO2/3C-SiC nanowires. Nanoscale Res. Lett. 2012, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.; Fabbri, F.; Tallarida, M.; Schmeisser, D.; Modreanu, M.; Attolini, G.; Salviati, G. Structural and luminescence properties of HfO2 nanocrystals grown by atomic layer deposition on SiC/SiO2 core/shell nanowires. Scr. Mater. 2013, 69, 744–747. [Google Scholar] [CrossRef]
- Corbalan, J.J.; Medina, C.; Jacoby, A.; Malinski, T.; Radomski, M.W. Amorphous silica nanoparticles aggregate human platelets: Potential implications for vascular homeostasis. Int. J. Nanomed. 2012, 7, 631. [Google Scholar]
- Steuer, H.; Krastev, R.; Lembert, N. Metallic oxide nanoparticles stimulate blood coagulation independent of their surface charge. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 897–902. [Google Scholar] [CrossRef]
- Rossi, F.; Bedogni, E.; Bigi, F.; Rimoldi, T.; Cristofolini, L.; Pinelli, S.; Alinovi, R.; Negri, M.; Dhanabalan, S.; Attolini, G. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy. Sci. Rep. 2015, 5, 7606. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotech. 2006, 6, 1159–1166. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Wang, S.; Joly, A.L. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl. Phys. Lett. 2008, 92, 43901. [Google Scholar] [CrossRef]
- Fabbri, F.; Rossi, F.; Lagonegro, P.; Negri, M.; Ponraj, J.S.; Bosi, M.; Attolini, G.; Salviati, G. 3C-SiC nanowires luminescence enhancement by coating with a conformal oxides layer. J. Phys. D Appl. Phys. 2014, 47, 394006. [Google Scholar] [CrossRef]
- Photodynamic Therapy. Available online: https://en.wikipedia.org/wiki/Photodynamic_therapy (accessed on 20 January 2022).
- Saddow, S.E. Enabling NIR-PIT Therapy to Treat Deep-Tissue Cancer. Available online: https://grantome.com/grant/NIH/R21-CA223969-01A1 (accessed on 2 February 2022).
- Beke, D.; Nardi, M.V.; Bortel, G.; Timpel, M.; Czigány, Z.; Pasquali, L.; Chiappini, A.; Bais, G.; Rudolf, M.; Zalka, D.; et al. Enhancement of X-ray-excited red luminescence of chromium-doped zinc gallate via ultrasmall silicon carbide nanocrystals. Chem. Mater. 2021, 33, 2457–2465. [Google Scholar] [CrossRef]
- Zhou, W.; Dai, X.; Fu, T.M.; Xie, C.; Liu, J.; Lieber, C.M. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 2014, 14, 1614–1619. [Google Scholar] [CrossRef] [Green Version]
- Bange, R.; Bano, E.; Rapenne, L.; Labau, S.; Pelissier, B.; Legallais, M.; Salem, B.; Stambouli, V. Chemical stability of Si-SiC nanostructures under physiological conditions. Mater. Sci. Forum 2017, 897, 638–641. [Google Scholar] [CrossRef]
- Bange, R.; Bano, E.; Rapenne, L.; Stambouli, V. Superior long term stability of SiC nanowires over Si nanowires under physiological conditions. Mater. Res. Express 2018, 6, 15013. [Google Scholar] [CrossRef]
- Saddow, S.E.; Frewin, C.L.; Reyes, M.; Register, J.; Nezafati, M.; Thomas, S. 3C-SiC on Si: A bio- and hemo-compatible material for advanced nano-bio devices. ECS Trans. 2014, 61, 101–111. [Google Scholar] [CrossRef]
- Ollivier, M.; Latu-Romain, L.; Salem, B.; Fradetal, L.; Brouzet, V.; Choi, J.-H.; Bano, E. Integration of SiC-1D nanostructures into nano-field effect transistors. Mater. Sci. Semicond. Process. 2014, 29, 218–222. [Google Scholar] [CrossRef]
- Bange, R.; Bano, E.; Rapenne, L.; Mantoux, A.; Saddow, S.E.; Stambouli, V. Development of SOI FETs based on core-shell Si/SiC nanowires for sensing in liquid environments. Mater. Sci. Forum 2019, 963, 701–706. [Google Scholar] [CrossRef]
- Bange, R. Réalisation et Optimisation de Biocapteurs à Base de Nanostructures SiC Pour la Détection Électrique d’ADN. Micro et Nanotechnologies/Microélectronique. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2019. ⟨NNT: 2019GREAT007⟩. [Google Scholar]
- Hench, L.L. Biomaterials: A forecast for the future. Biomaterials 1998, 19, 1419–1423. [Google Scholar] [CrossRef]
- Itoh, S.; Nakamura, S.; Nakamura, M.; Shinomiya, K.; Yamashita, K. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by Electrical Polarization. Biomaterials 2006, 27, 5572–5579. [Google Scholar] [CrossRef]
- Wen, C.; Xu, W.; Hu, W.; Hodgson, P. Hydroxyapatite/titania sol–gel coatings on titanium–zirconium alloy for biomedical applications. Acta Biomaterialia 2007, 3, 403–410. [Google Scholar] [CrossRef]
- Fares, C.; Hsu, S.-M.; Xian, M.; Xia, X.; Ren, F.; Mecholsky, J.J., Jr.; Gonzaga, L.; Esquivel-Upshaw, J. Demonstration of a SiC protective coating for titanium implants. Materials 2020, 13, 3321. [Google Scholar] [CrossRef]
- Afonso Camargo, S.E.; Mohiuddeen, A.S.; Fares, C.; Partain, J.L.; Carey, P.H., IV; Ren, F.; Hsu, S.-M.; Clark, A.E.; Esquivel-Upshaw, J.F. Anti-bacterial properties and biocompatibility of novel SiC coating for dental ceramic. J. Funct. Biomater. 2020, 11, 33. [Google Scholar] [CrossRef]
- Maynard, E.M.; Nordhausen, C.T.; Normann, R.A. The Utah intracortical electrode array: A recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 1997, 102, 228–239. [Google Scholar] [CrossRef]
- Bernardin, E.K. Demonstration of Monolithic-Silicon Carbide (SiC) Neural Devices. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, November 2018. [Google Scholar]
- Bernardin, E.K.; Frewin, C.L.; Everly, R.; Ul Hassan, J.; Saddow, S.E. Demonstration of a robust all-silicon-carbide intracortical neural interface. Micromachines 2018, 9, 412. [Google Scholar] [CrossRef] [Green Version]
- Beygi, M.; Bentley, J.T.; Frewin, C.L.; Kuliasha, C.A.; Takshi, A.; Bernardin, E.K.; La Via, F.; Saddow, S.E. Fabrication of a monolithic implantable neural interface from cubic silicon carbide. Micromachines 2019, 10, 430. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Frewin, C.L.; Tanjil, M.R.-E.; Everly, R.; Bieber, J.; Kumar, A.; Wang, M.C.; Saddow, S.E. A flexible a-SiC-based neural interface utilizing pyrolyzed-photoresist film (C) active sites. Micromachines 2021, 12, 821. [Google Scholar] [CrossRef]
- Beygi, M.; Dominguez-Viqueira, W.; Feng, C.; Mumcu, G.; Frewin, C.L.; La Via, F.; Saddow, S.E. Silicon carbide and MRI: Towards developing an MRI safe neural interface. Micromachines 2021, 12, 126. [Google Scholar] [CrossRef]
- Gerwig, R.; Fuchsberger, K.; Schroeppel, B.; Link, G.S.; Heusel, G.; Kraushaar, U.; Schuhmann, W.; Stett, A.; Stelzle, M. PEDOT-CNT composite microelectrodes for recording and electrostimulation applications: Fabrication, morphology, and electrical properties. Front. Neuroeng. 2012, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Vitale, F.; Summerson, S.R.; Aazhang, B.; Kemere, C.; Pasquali, M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 2015, 9, 4465–4474. [Google Scholar] [CrossRef]
- Wilks, S.J.; Richardson-Burn, S.M.; Hendricks, J.L.; Martin, D.; Otto, K.J. Poly (3,4-ethylene dioxythiophene) (PEDOT) as a micro-neural interface material for electrostimulation. Front. Neuroeng. 2009, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Frewin, C.L.; Esrafilzadeh, D.; Yu, C.; Wang, C.; Pancrazio, J.J.; Romero-Ortega, M.; Jalili, R.; Wallace, G. High-performance graphene-fiber-based neural recording microelec-trodes. Adv. Mater. 2019, 31, 1805867. [Google Scholar] [CrossRef]
- Fortune Business Insights. Available online: https://www.fortunebusinessinsights.com/industry-reports/medical-devices-market-100085 (accessed on 2 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saddow, S.E. Silicon Carbide Technology for Advanced Human Healthcare Applications. Micromachines 2022, 13, 346. https://doi.org/10.3390/mi13030346
Saddow SE. Silicon Carbide Technology for Advanced Human Healthcare Applications. Micromachines. 2022; 13(3):346. https://doi.org/10.3390/mi13030346
Chicago/Turabian StyleSaddow, Stephen E. 2022. "Silicon Carbide Technology for Advanced Human Healthcare Applications" Micromachines 13, no. 3: 346. https://doi.org/10.3390/mi13030346
APA StyleSaddow, S. E. (2022). Silicon Carbide Technology for Advanced Human Healthcare Applications. Micromachines, 13(3), 346. https://doi.org/10.3390/mi13030346