High Temperature Magnetic Cores Based on PowderMEMS Technique for Integrated Inductors with Active Cooling
Abstract
:1. Introduction
2. Fabrication Process
3. Simulation Model
3.1. Electromagnetic Study
3.2. Thermal Study
Active Cooling
4. Characterization
4.1. Vibrating Sample Magnetometer Test Setup
Temperature Stable Core
4.2. Impedance Analyzer Test Setup
5. DC/DC Converter with Micro-Inductor
Active Cooling
6. Measurement Results
6.1. Core and Inductor
6.1.1. VSM Temperature Measurements
6.1.2. Impedance Analyzer Inductor
6.2. DC/DC Converter with Micro-Inductor
DC/DC Converter with Active Air-Cooled Micro-Inductor
7. Discussion
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Wang, N.; Hannon, J.; Foley, R.; McCarthy, K.; O’Donnell, T.; Rodgers, K.; Waldron, F.; Mathúna, C.Ó. Integrated Magnetics on Silicon for Power Supply in Package (PSiP) and Power Supply on Chip (PwrSoC). In Proceedings of the 3rd Electronics System Integration Technology Conference ESTC, Berlin, Germany, 13–16 September 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, N.; Barry, J.; Hannon, J.; Kulkarni, S.; Foley, R.; McCarthy, K.; Rodgers, K.; Waldron, F.; Barry, M.; Casey, D.; et al. High Frequency DC-DC Converter with Co-Packaged Planar Inductor and Power IC. In Proceedings of the 2013 IEEE 63rd Electronic Components and Technology Conference, Las Vegas, NV, USA, 28–31 May 2013; pp. 1946–1952. [Google Scholar] [CrossRef]
- Meere, R.; O’Donnell, T.; Bergveld, H.J.; Wang, N.; O’Mathuna, S.C. Analysis of Microinductor Performance in a 20-100 MHz DC/DC Converter. IEEE Trans. Power Electron. 2009, 24, 2212–2218. [Google Scholar] [CrossRef] [Green Version]
- Dinulovic, D.; Shousha, M.; Haug, M.; Gerfer, A.; Wens, M.; Thone, J. On-Chip High Performance Magnetics for Point-of-Load High-Frequency DC-DC Converters. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 3097–3100. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Ngo, K.D.T.; Xie, H. A Novel Integrated Power Inductor in Silicon Substrate for Ultra-Compact Power Supplies. In Proceedings of the 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 21–25 February 2010; pp. 2036–2041. [Google Scholar] [CrossRef]
- Wang, N.; O’Donnell, T.; Meere, R.; Rhen, F.M.F.; Roy, S.; O’Mathuna, S.C. Thin-Film-Integrated Power Inductor on Si and Its Performance in an 8-MHz Buck Converter. IEEE Trans. Magn. 2008, 44, 4096–4099. [Google Scholar] [CrossRef] [Green Version]
- Morrow, P.R.; Park, C.; Koertzen, H.W.; DiBene, J.T. Design and Fabrication of On-Chip Coupled Inductors Integrated With Magnetic Material for Voltage Regulators. IEEE Trans. Magn. 2011, 47, 1678–1686. [Google Scholar] [CrossRef]
- Schurmann, U.; Gerber, A.; Kulkarni, A.; Hettstedt, F.; Zaporojtchenko, V.; Knochel, R.; Faupel, F.; Quandt, E. Fabrication of Toroidal Microinductors for RF Applications. IEEE Trans. Magn. 2009, 45, 4770–4772. [Google Scholar] [CrossRef]
- Li, J.; Ngo, K.; Lu, G.; Xie, H. Wafer-Level Fabrication of High-Power-Density MEMS Passives Based on Silicon Molding Technique. In Proceedings of the 2012 7th International Conference on Integrated Power Electronics Systems, CIPS 2012, Nuremberg, Germany, 6–8 March 2012. [Google Scholar]
- Paesler, M.; Lisec, T.; Kapels, H. Novel Back-End-of-Line Compatible Method for Integration of Inductances with Magnetic Core on Silicon. In Proceedings of the 11th International Conference on Integrated Power Electronics Systems, CIPS 2020, Berlin, Germany, 24–26 March 2020. [Google Scholar]
- Lisec, T.; Reimer, T.; Knez, M.; Chemnitz, S.; Schulz-Walsemann, A.V.; Kulkarni, A. A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD. J. Microelectromech. Syst. 2017, 26, 1093–1098. [Google Scholar] [CrossRef]
- Paesler, M.; Lisec, T.; Kapels, H. Novel Integrated BEOL Compatible Inductances for Power Converter Applications. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 2647–2652. [Google Scholar] [CrossRef]
- Lisec, T.; Behrmann, O.; Gojdka, B. PowderMEMS—A Generic Microfabrication Technique for Integrated Three-Dimensional Functional Microstructures. Micromachines 2022, 13, 235. [Google Scholar]
- Macini, P.; Mesini, E.; Viola, R. Laboratory Measurements of Non-Darcy Flow Coefficients in Natural and Artificial Unconsolidated Porous Media. J. Pet. Sci. Eng. 2011, 77, 365–374. [Google Scholar] [CrossRef]
- Hardware Reference Manual 7400 Series VSM System; Lake Shore Cryotronics, Inc.: Westerville, OH, USA, 2014; Available online: https://www.lakeshore.com/docs/default-source/software/manuals/vsm-manual/7400_v2-5.pdf?sfvrsn=b753a92e_2 (accessed on 28 January 2022).
Inductor Ref1 | Inductor Ref2 | Inductor Ref3 | |
---|---|---|---|
Core | ferrite | ceramic/ferrite | ceramic |
DCR | 390 | 150 | 220 |
Imax | |||
Tmax | 85 | 85 | 125 |
Size [mm] | 3.2 × 1.6 × 1.8 | 1.8 × 1.17 × 1.12 | 2.6 × 2.1 × 1.9 |
Variable | Parameter | Value |
---|---|---|
Input voltage | 5–12 V | |
D | Duty cycle | 0.514 |
R | Load resistance | 50 |
Switching frequency | 25 | |
L | Inductor | 154 |
Resistance of inductor at 25 | ||
Output voltage | 9.6–22.8 V | |
Output power | 1.9–10.7 W |
Measure | ISIT Sample | Inductor Ref1 | Inductor Ref2 |
---|---|---|---|
[] | 2.04 | 4.87 | 0.48 |
[A/m] | |||
[A/m] | |||
[T] | 2.02 | 0.65 | 0.42 |
6.1 | 7.0 | 8.4 |
[V] | ||||||||
---|---|---|---|---|---|---|---|---|
5.0 | 0.47 | 2.35 | 9.6 | 0.20 | 1.93 | 82.0 | 41 | 45 |
9.0 | 0.84 | 7.56 | 17.5 | 0.35 | 6.13 | 81.0 | 81 | 79 |
10.0 | 0.91 | 9.10 | 19.1 | 0.39 | 7.45 | 81.9 | 84 | 91 |
12.0 | 1.08 | 12.96 | 22.8 | 0.47 | 10.72 | 82.7 | 109 | 122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paesler, M.; Lisec, T.; Kapels, H. High Temperature Magnetic Cores Based on PowderMEMS Technique for Integrated Inductors with Active Cooling. Micromachines 2022, 13, 347. https://doi.org/10.3390/mi13030347
Paesler M, Lisec T, Kapels H. High Temperature Magnetic Cores Based on PowderMEMS Technique for Integrated Inductors with Active Cooling. Micromachines. 2022; 13(3):347. https://doi.org/10.3390/mi13030347
Chicago/Turabian StylePaesler, Malte, Thomas Lisec, and Holger Kapels. 2022. "High Temperature Magnetic Cores Based on PowderMEMS Technique for Integrated Inductors with Active Cooling" Micromachines 13, no. 3: 347. https://doi.org/10.3390/mi13030347
APA StylePaesler, M., Lisec, T., & Kapels, H. (2022). High Temperature Magnetic Cores Based on PowderMEMS Technique for Integrated Inductors with Active Cooling. Micromachines, 13(3), 347. https://doi.org/10.3390/mi13030347