PowderMEMS—A Generic Microfabrication Technology for Integrated Three-Dimensional Functional Microstructures
Abstract
:1. Introduction
2. The PowderMEMS Process
2.1. General Description of the Process and Its Features
2.2. Implementation of the PowderMEMS Process at Fraunhofer ISIT
- That all processes are automated, and allow for a sufficient throughput for mass production;
- That the processes are reproducible, with low variation across individual substrates, as well as from substrate to substrate;
- That non-destructive and fast characterization and process control methods are available at the substrate level;
- That the substrates can be appropriately conditioned to allow for post-processing in a common BEOL-compatible cleanroom environment after embedding the 3D microstructures.
2.3. Process Control
3. Morphology of the PowderMEMS Microstructures
4. Applications
4.1. Magnetic Applications
4.1.1. Integrated Permanent Magnets
4.1.2. Energy Harvesting
4.1.3. Inductors
4.2. Optical Applications
4.3. Thermal Applications
4.3.1. Cooling of MEMSs
4.3.2. Thermal Insulation
4.4. Porous Solid Phases for Microfluidic Applications
4.5. Sensors
4.5.1. Flow Sensors
4.5.2. Gas Sensors
4.5.3. Electrochemistry and Biosensors
5. Conclusions and Outlook
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Laermer, F.; Urban, A. Challenges, developments and applications of silicon deep reactive ion etching. Microelectron. Eng. 2003, 67–68, 349–355. [Google Scholar] [CrossRef]
- LIDE Technology. Available online: https://www.vitrion.com/en/lide-technology/ (accessed on 23 March 2021).
- Gower, M.C. Laser micromachining for manufacturing MEMS devices. In Proceedings of the Micromachining and Microfabrication, San Francisco, CA, USA, 1 October 2001; pp. 53–59. [Google Scholar]
- Patil, D.R.; Annapureddy, V.; Kaarthik, J.; Thakre, A.; Akedo, J.; Ryu, J. Piezoelectric Thick Film Deposition via Powder/Granule Spray in Vacuum: A Review. Actuators 2020, 9, 59. [Google Scholar] [CrossRef]
- Chikuba, Y.; Oryoshi, M.; Yamashita, A.; Nakano, M.; Yanai, T.; Fukunaga, H. Nd-Fe-B film magnets with the thickness above 100 μm deposited on Si substrates. In Proceedings of the 2015 IEEE Magnetics Conference (INTERMAG), Beijing, China, 11–15 May 2015; p. 1. [Google Scholar]
- Li, J.; Ren, W.; Wang, C.; Liu, M.; Fan, G. Micro-patterning of PZT thick film by lift-off using ZnO as a sacrificial layer. Ceram. Int. 2015, 41, 7325–7328. [Google Scholar] [CrossRef]
- Jiang, Y.; Masaoka, S.; Uehara, M.; Fujita, T.; Higuchi, K.; Maenaka, K. Micro-structuring of thick NdFeB films using high-power plasma etching for magnetic MEMS application. J. Micromechanics Microengineering 2011, 21, 45011. [Google Scholar] [CrossRef]
- Kim, J.J.K.; Al Thuwaini, H.; Almuslem, M. Photolithography of SU-8 microtowers for a 100-turn, 3-D toroidal microinductor. Micro Nano Syst. Lett. 2018, 6, 14. [Google Scholar] [CrossRef]
- Kumar, S.; Bhushan, P.; Pandey, M.; Bhattacharya, S. Additive manufacturing as an emerging technology for fabrication of microelectromechanical systems (MEMS). J. Micromanufacturing 2019, 2, 175–197. [Google Scholar] [CrossRef]
- Theis, M.; Bill, T.; Knoll, H.; Starke, P.; Saumer, M. Electrochemical Deposition of CoP and CoNiP as Hard Magnetic Scales in a Position Measurement System. Metals 2022, 12, 235. [Google Scholar] [CrossRef]
- Kim, B.-H.; Kim, J.-B.; Kim, J.-H. A Highly Manufacturable Large Area Array MEMS Probe Card Using Electroplating and Flipchip Bonding. IEEE Trans. Ind. Electron. 2008, 56, 1079–1085. [Google Scholar] [CrossRef]
- Suikkola, J.; Björninen, T.; Mosallaei, M.; Kankkunen, T.; Iso-Ketola, P.; Ukkonen, L.; Vanhala, J.; Mäntysalo, M. Screen-Printing Fabrication and Characterization of Stretchable Electronics. Sci. Rep. 2016, 6, 25784. [Google Scholar] [CrossRef]
- Pallapa, M.; Yeow, J.T.W. A review of the hybrid techniques for the fabrication of hard magnetic microactuators based on bonded magnetic powders. Smart Mater. Struct. 2014, 24, 25007. [Google Scholar] [CrossRef]
- Fang, X.; Wu, R.; Peng, L.; Sin, J.K.O. A Novel Silicon-Embedded Toroidal Power Inductor With Magnetic Core. IEEE Electron Device Lett. 2013, 34, 292–294. [Google Scholar] [CrossRef]
- Bellaredj, M.L.F.; Mueller, S.; Davis, A.K.; Mano, Y.; Kohl, P.A.; Swaminathan, M. Fabrication, characterization and comparison of composite magnetic materials for high efficiency integrated voltage regulators with embedded magnetic core micro-inductors. J. Phys. D: Appl. Phys. 2017, 50, 455001. [Google Scholar] [CrossRef] [Green Version]
- Agarwala, M.; Bourell, D.; Beaman, J.; Marcus, H.; Barlow, J. Direct selective laser sintering of metals. Rapid Prototyp. J. 1995, 1, 26–36. [Google Scholar] [CrossRef]
- Clare, A.T.; Chalker, P.R.; Davies, S.; Sutcliffe, C.J.; Tsopanos, S. Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int. J. Mech. Mater. Des. 2007, 4, 181–187. [Google Scholar] [CrossRef]
- He, C.W.; Zhu, H.H.; Hu, P.P. Fabrication of Cu Heat Sink on Silicon Substrate Using Direct Laser Sintering. Mater. Sci. Forum 2014, 789, 431–435. [Google Scholar] [CrossRef]
- Lisec, T.; Reimer, T.; Knez, M.; Chemnitz, S.; Schulz-Walsemann, A.V.; Kulkarni, A. A Novel Fabrication Technique for MEMS Based on Agglomeration of Powder by ALD. J. Microelectromechanical Syst. 2017, 26, 1093–1098. [Google Scholar] [CrossRef]
- Bodduluri, M.T.; Lisec, T.; Blohm, L.; Lofink, F.; Wagner, B. High-performance integrated hard magnets for MEMS applications. In Proceedings of the MikroSystemTechnik Kongress, Berlin, Germany, 28–30 October 2019. [Google Scholar]
- Kostmann, C.; Lisec, T.; Bodduluri, M.T.; Andersen, O. Automated Filling of Dry Micron-Sized Particles into Micro Mold Pattern within Planar Substrates for the Fabrication of Powder-Based 3D Microstructures. Micromachines 2021, 12, 1176. [Google Scholar] [CrossRef]
- Chemnitz, S.; Reimer, T.; Lisec, T. Herstellung neuartiger Mikrostrukturen für MEMS-Anwendungen durch Pulververfestigung mittels ALD. In Proceedings of the MikroSystemTechnik Kongress, München, Germany, 23–25 October 2017. [Google Scholar]
- Behrmann, O.; Lisec, T.; Piechotta, G.; Gojdka, B. A microfluidic porous solid phase suitable for mass production. MikroSystemTechnik Kongr. 2021, 2021, 446–449. [Google Scholar]
- Cremers, V.; Puurunen, R.L.; Dendooven, J. Conformality in atomic layer deposition: Current status overview of analysis and modelling. Appl. Phys. Rev. 2019, 6, 021302. [Google Scholar] [CrossRef] [Green Version]
- Lisec, T.; Bodduluri, M.T.; Schulz-Walsemann, A.-V.; Blohm, L.; Pieper, I.; Gu-Stoppel, S.; Niekiel, F.; Lofink, F.; Wagner, B. Integrated High Power Micro Magnets for MEMS Sensors and Actuators. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 1768–1771. [Google Scholar]
- Lofink, F.; Tolstrup, V.; Lisec, T.; Reimer, T.; Piorra, A.; Meyners, D.; Quandt, E.; Wagner, B. Magnetically driven energy-harvester with monolithically integrated high-energy-density magnets. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems, Kaohsiung, Taiwan, 18–22 June 2017. [Google Scholar]
- Jackson, N.; Pedrosa, F.J.; Bollero, A.; Mathewson, A.; Olszewski, O.Z. Integration of Thick-Film Permanent Magnets for MEMS Applications. J. Microelectromechanical Syst. 2016, 25, 716–724. [Google Scholar] [CrossRef]
- Cook-Chennault, K.A.; Thambi, N.; Sastry, A.M. Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 2008, 17, 43001. [Google Scholar] [CrossRef] [Green Version]
- Gojdka, B.; Dankwort, T.; Nowak, M.A.; Bodduluri, M.T.; Ahmed, M.; Grunzig, S.; Lofink, F. Magnetically Excited Piezoelectric Energy Harvester for Micropower Supply and Wakeup Applications. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–25 June 2021; pp. 455–458. [Google Scholar]
- Niekiel, F.; Su, J.; Bodduluri, M.T.; Lisec, T.; Blohm, L.; Pieper, I.; Wagner, B.; Lofink, F. Highly sensitive MEMS magnetic field sensors with integrated powder-based permanent magnets. Sens. Actuators A: Phys. 2019, 297, 111560. [Google Scholar] [CrossRef]
- Paesler, M.; Lisec, T.; Kapels, H. Novel Integrated BEOL Compatible Inductances for Power Converter Applications. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 2647–2652. [Google Scholar]
- Steudel, F.; Lisec, T.; Nolte, P.W.; Hofmann, U.; Wantoch, T.; Lofink, F.; Schweizer, S. Pixelated phosphors for high-resolution and high-contrast white light sources. Opt. Express 2018, 26, 26134–26144. [Google Scholar] [CrossRef]
- Peng, Y.; Mou, Y.; Wang, H.; Zhuo, Y.; Li, H.; Chen, M.; Luo, X. Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting. J. Eur. Ceram. Soc. 2018, 38, 5525–5532. [Google Scholar] [CrossRef]
- Chen, C.-C.; Huang, P.-C.; Hwang, H.-Y. Enhanced forced convective cooling of heat sources by metal-foam porous layers. Int. J. Heat Mass Transf. 2013, 58, 356–373. [Google Scholar] [CrossRef]
- Zimmermann, S.; Brunschwiler, T.; Burg, B.R.; Zuercher, J.; Hong, G.; Poulikakos, D.; Baum, M.; Hofmann, C. Characterization of particle beds in percolating thermal underfills based on centrifugation. 2014 Int. 3d Syst. Integr. Conf. (3dic) 2014, 122014, 1–7. [Google Scholar] [CrossRef]
- Huetter, E.S.; Koemle, N.I.; Kargl, G.; Kaufmann, E. Determination of the effective thermal conductivity of granular materials under varying pressure conditions. J. Geophys. Res. Earth Surf. 2008, 113, 113. [Google Scholar] [CrossRef] [Green Version]
- Rohr, T.; Yu, C.; Davey, M.H.; Svec, F.; Fréchet, J.M.J. Porous polymer monoliths: Simple and efficient mixers prepared by direct polymerization in the channels of microfluidic chips. Electrophor. 2001, 22, 3959–3967. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, A.; Perumal, J.; Kim, N.-P. Facile Fabrication of Monolithic 3D Porous Silica Microstructures and a Microfluidic System Embedded with the Microstructure. Adv. Funct. Mater. 2010, 20, 1473–1479. [Google Scholar] [CrossRef]
- Boom, R.; Sol, C.J.; Salimans, M.M.; Jansen, C.L.; Dillen, P.M.W.-V.; van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 1990, 28, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Castrataro, P.; Lee, C.-C.; Quake, S.R. Solvent resistant microfluidic DNA synthesizer. Lab Chip 2007, 7, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Krivec, M.; Žagar, K.; Suhadolnik, L.; Čeh, M.; Dražić, G. Highly Efficient TiO2-Based Microreactor for Photocatalytic Applications. ACS Appl. Mater. Interfaces 2013, 5, 9088–9094. [Google Scholar] [CrossRef] [PubMed]
- Meng, X. An overview of molecular layer deposition for organic and organic–inorganic hybrid materials: Mechanisms, growth characteristics, and promising applications. J. Mater. Chem. A 2017, 5, 18326–18378. [Google Scholar] [CrossRef]
- Gardner, E.L.W.; Vincent, T.A.; Jones, R.G.; Gardner, J.W.; Coull, J.; De Luca, A.; Udrea, F. MEMS Thermal Flow Sensors— An Accuracy Investigation. IEEE Sens. J. 2019, 19, 2991–2998. [Google Scholar] [CrossRef]
- Dao, T.D.; Ishii, S.; Doan, A.T.; Wada, Y.; Ohi, A.; Nabatame, T.; Nagao, T. An On-Chip Quad-Wavelength Pyroelectric Sensor for Spectroscopic Infrared Sensing. Adv. Sci. 2019, 6, 1900579. [Google Scholar] [CrossRef] [Green Version]
- Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Warkiani, M.E.; Asadnia, M. Design and applications of MEMS flow sensors: A review. Sens. Actuators A: Phys. 2019, 295, 483–502. [Google Scholar] [CrossRef]
- Asri, M.I.A.; Hasan, N.; Fuaad, M.R.A.; Yunos, Y.M.; Ali, M.S.M. MEMS Gas Sensors: A Review. IEEE Sens. J. 2021, 21, 18381–18397. [Google Scholar] [CrossRef]
- Xu, F.; Ho, H.-P. Light-Activated Metal Oxide Gas Sensors: A Review. Micromachines 2017, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Vonderschmidt, S.; Müller, J. A fluidic bridge based MEMS paramagnetic oxygen sensor. Sens. Actuators B: Chem. 2013, 188, 22–30. [Google Scholar] [CrossRef]
- Dean, R.N.; Surgnier, S.; Pack, J.; Sanders, N.; Reiner, P.; Long, C.W.; Fenner, R.; Fenner, W.P. Porous Ceramic Packaging for a MEMS Humidity Sensor Requiring Environmental Access. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 428–435. [Google Scholar] [CrossRef]
- Ma, Y.; Kaczynski, J.; Ranacher, C.; Roshanghias, A.; Zauner, M.; Abasahl, B. Nano-porous aluminum oxide membrane as filtration interface for optical gas sensor packaging. Microelectron. Eng. 2018, 198, 29–34. [Google Scholar] [CrossRef]
- Tabata, M.; Miyahara, Y. From new materials to advanced biomedical applications of solid-state biosensor: A review. Sens. Actuators B: Chem. 2021, 352, 131033. [Google Scholar] [CrossRef]
- Mäkelä, M.; Hatanpää, T.; Mizohata, K.; Räisänen, J.; Ritala, M.; Leskelä, M. Thermal Atomic Layer Deposition of Continuous and Highly Conducting Gold Thin Films. Chem. Mater. 2017, 29, 6130–6136. [Google Scholar] [CrossRef]
- Cha, C.; Li, C.M.; Yang, H.; Liu, P. Powder microelectrodes. J. Electroanal. Chem. 1994, 368, 47–54. [Google Scholar] [CrossRef]
- Cachet-Vivier, C.; Vivier, V.; Cha, C.; Nedelec, J.-Y.; Yu, L. Electrochemistry of powder material studied by means of the cavity microelectrode (CME). Electrochim. Acta 2001, 47, 181–189. [Google Scholar] [CrossRef]
- Armbrecht, L.; Dincer, C.; Kling, A.; Horak, J.; Kieninger, J.; Urban, G. Self-assembled magnetic bead chains for sensitivity enhancement of microfluidic electrochemical biosensor platforms. Lab Chip 2015, 15, 4314–4321. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.-S.; Lee, S.W.; Han, K.-C.; Kim, S.K.; Yang, E.K.; Park, J.H.; Ju, B.-K.; Kang, J.Y.; Kim, T.S. Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip. Biosens. Bioelectron. 2007, 22, 2261–2267. [Google Scholar] [CrossRef]
- Yang, Y.-N.; Lin, H.-I.; Wang, J.-H.; Shiesh, S.-C.; Lee, G.-B. An integrated microfluidic system for C-reactive protein measurement. Biosens. Bioelectron. 2009, 24, 3091–3096. [Google Scholar] [CrossRef]
Application | Powder | Powder Property of Interest | ALD Layer | ALD Layer Property of Interest | |
---|---|---|---|---|---|
Magnetic | Integrated permanent magnets | NdFeB, Fe, ferrites | Al2O3 | ||
Energy harvesting | Hard/soft ferromagnetism | Mechanical | |||
Inductors | |||||
Optical | Light conversion | Phosphor | Fluorescence | Al2O3 | Mechanical/optical transparency |
Thermal | Cooling of MEMS | Si | High thermal conductivity | Al2O3 | Mechanical |
Thermal insulation | Pyrogenic SiO2 | Low thermal conductivity | Al2O3/SiO2 | Mechanical | |
Fluidic | Filter | Mechanical | |||
Mixer | Si/SiO2/Si3N4 | Mechanical | Al2O3/SiO2 | ||
Solid support | Adsorption of (bio)molecules | ||||
Sensors | Flow sensors | Pyrogenic SiO2 | Low thermal conductivity | Al2O3/SiO2 | Mechanical |
Gas sensors | Si/Metal | Electrical conductivity | TiO2 | Catalysis | |
Electrochemistry/biosensors | Si/metal/glassy carbon | Electrical conductivity | Metal | Electrical conductivity/adsorption of (bio)molecules |
No. | Granted Patents and Publications | Short Description of the Patent Family |
---|---|---|
1 | EP2670880B1 US9221217B2 JP6141197B2 | Fabrication of porous 3D microstructures, basic method |
2 | EP3234968B1 US20170278605A1 | Utilization of magnetic 3D microstructures for actuators and inductors |
3 | CN107980010B US2018029002A1 | Application of the large inner surface of porous 3D microstructures |
4 | US10647915B2 | Miniaturized luminescence converter based on porous 3D microstructures |
5 | EP3284714B1 CN107761069B US2018051308A1 | Partial agglomeration, movable parts in a closed cavity utilizing porous 3D microstructures |
6 | DE102016215616B4 US10854223B2 | Magnetic scale based on porous 3D microstructures |
7 | US11137364B2 | Thermal isolation based on porous 3D microstructures |
8 | WO2020128018A1 | Force transfer based on magnetic interaction of porous 3D microstructures |
9 | DE10201901744B4 US2020178000A1 | Magnetically boosted MEMS loudspeaker |
10 | DE102019210177B4 US20210082611A1 | Micromagnet arrays with opposite magnetization |
11 | WO21028345A3 | Magnetic position detection for MEMS based on porous 3D microstructures |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisec, T.; Behrmann, O.; Gojdka, B. PowderMEMS—A Generic Microfabrication Technology for Integrated Three-Dimensional Functional Microstructures. Micromachines 2022, 13, 398. https://doi.org/10.3390/mi13030398
Lisec T, Behrmann O, Gojdka B. PowderMEMS—A Generic Microfabrication Technology for Integrated Three-Dimensional Functional Microstructures. Micromachines. 2022; 13(3):398. https://doi.org/10.3390/mi13030398
Chicago/Turabian StyleLisec, Thomas, Ole Behrmann, and Björn Gojdka. 2022. "PowderMEMS—A Generic Microfabrication Technology for Integrated Three-Dimensional Functional Microstructures" Micromachines 13, no. 3: 398. https://doi.org/10.3390/mi13030398
APA StyleLisec, T., Behrmann, O., & Gojdka, B. (2022). PowderMEMS—A Generic Microfabrication Technology for Integrated Three-Dimensional Functional Microstructures. Micromachines, 13(3), 398. https://doi.org/10.3390/mi13030398