Design and Analysis of a Microgripper with Three-Stage Amplification Mechanism for Micromanipulation
Abstract
:1. Introduction
2. Mechanism Design of the Microgripper
3. Modeling and Characteristics Analysis
3.1. Amplification Ratio of the Microgripper
3.2. The Natural Frequency of the Microgripper
4. Finite Element Analysis
5. Experimental Tests
5.1. Open-Loop Test
5.2. Close-Loop Tests
5.3. Grasping Ability Test
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Castillo, J.; Dimaki, M.; Svendsen, W.E. Manipulation of biological samples using micro and nano techniques. Integr. Biol. 2009, 1, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Liu, X.Y.; Zhang, Y.; Sun, Y. MicroNewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 3100–3105. [Google Scholar]
- Wang, D.H.; Yang, Q.; Dong, H.M. A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing. IEEE/ASME Trans. Mechatron. 2013, 18, 138–147. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, M.G.; Kim, B.; Sun, Y. A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: A numerical and experimental study. Smart Mater. Struct. 2005, 14, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Komati, B.; Clevy, C.; Luttz, P. High Bandwidth Microgripper WITH Integrated Force Sensors and Position Estimation for the Grasp of Multistiffness Microcomponents. IEEE/ASME Trans. Mechatron. 2016, 21, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.C.; Onaizah, O.; Middleton, K.; You, L.D.; Diller, E. Reliable grasping of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place. IEEE Robot. Autom. Lett. 2017, 2, 835–840. [Google Scholar] [CrossRef]
- Chronis, N.; Lee, L.P. Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J. Microelectromech. Syst. 2005, 14, 857–862. [Google Scholar] [CrossRef]
- Fard-Vatan, H.M.; Hamedi, M. Design, analysis and fabrication of a novel hybrid electrothermal microgripper in microassembly cell. Microelectron. Eng. 2020, 23, 111374. [Google Scholar] [CrossRef]
- Velosa-Moncada, L.; Aguilera-Cortes, L.; Gonzalez-Palacios, M.; Raskin, J.; Herrera-May, A. Design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for biomedical applications. Sensors 2018, 18, 1664. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Chen, L.G.; Sun, L.N.; Li, X.X. Design and fabrication of a four-arm-structure MEMS gripper. IEEE Trans. Ind. Electron. 2009, 56, 996–1003. [Google Scholar] [CrossRef]
- Ruiz, D.; Sigmund, O. Optimal design of robust piezoelectric microgrippers undergoing large displacements. Struct. Multidiscip. Optim. 2018, 57, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.J.; Shi, B.C.; Huo, Z.C.; Tian, Y.L.; Zhang, D.W. Control and dynamic releasing method of a piezoelectric actuated microgripper. Precis. Eng. 2021, 68, 1–9. [Google Scholar] [CrossRef]
- Wang, F.J.; Shi, B.C.; Tian, Y.L.; Huo, Z.C.; Zhang, D.W. Design of a novel dual-axis micromanipulator with an asymmetric compliant structure. IEEE/ASME Trans. Mechatron. 2019, 24, 656–665. [Google Scholar] [CrossRef]
- Shi, Q.; Yu, Z.Q.; Wang, H.P.; Sun, T.; Huang, Q.; Fukuda, T. Development of a Highly Compact Microgripper Capable of Online Calibration for Multisized Microobject Manipulation. IEEE Trans. Nanotechnol. 2018, 17, 657–661. [Google Scholar] [CrossRef]
- Sun, X.T.; Chen, W.H.; Tian, Y.L.; Fatikow, S.; Zhou, R.; Zhang, J.B. A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation. Rev. Sci. Instrum. 2013, 84, 085002. [Google Scholar] [CrossRef]
- Wang, F.J.; Liang, C.M.; Tian, Y.L.; Zhao, X.Y.; Zhang, D.W. Design of a piezoelectric-actuated microgripper with a three-stage flexure-based amplification. IEEE/ASME Trans. Mechatron. 2015, 20, 2205–2213. [Google Scholar] [CrossRef]
- Chen, X.D.; Deng, Z.L.; Hu, S.Y.; Gao, J.H.; Gao, X.J. Design of a flexible piezoelectric microgripper based on combined amplification principles. Nanotechnol. Precis. Eng. 2019, 2, 138–143. [Google Scholar] [CrossRef]
- Zubir, M.N.M.; Shirinzadeh, B. Development of a high precision flexure-based microgripper. Precis. Eng. 2009, 33, 362–370. [Google Scholar] [CrossRef]
- Qian, J.W.; Yan, P.; Liu, P.B. Position/force modeling and analysis of a piezo-driven compliant micro-gripper considering the dynamic impacts of gripping objects. Smart Mater. Struct. 2009, 30, 075036. [Google Scholar] [CrossRef]
- Noveanu, S.; Lates, D.; Fusaru, L.; Rusu, C. A new compliant microgripper and study for flexure hinges shapes. In Proceedings of the 13th International Conference Interdisciplinarity in Engineering, Targu Mures, Romania, 3–4 October 2019; Volume 46, pp. 517–524. [Google Scholar]
- Liang, C.M.; Wang, F.J.; Tian, Y.L.; Zhang, D.W. Design of a Novel Asymmetrical Piezoelectric Actuated Microgripper for Micromanipulation. In Proceedings of the 2016 6th IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (IEEE 3M-NANO), Chongqing, China, 18–22 July 2016; pp. 318–322. [Google Scholar]
- Liu, Y.L.; Zhang, Y.L.; Xu, Q.S. Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams. IEEE/ASME Trans. Mechatron. 2017, 22, 476–486. [Google Scholar] [CrossRef]
- Das, T.K.; Ahirinzadeh, B.; Ghafarian, M.; Al-Jodah, A. Design, analysis, and experimental investigation of a single-stage and low parasitic motion piezoelectric actuated microgripper. Smart Mater. Struct. 2020, 29, 045028. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.H.; Kwak, Y.K. Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism. Rev. Sci. Instrum. 2003, 74, 2918–2924. [Google Scholar] [CrossRef]
- Kim, J.J.; Choi, Y.M.; Ahn, D.; Hywang, B.; Gweon, D.G. A millimeter-range flexure-based nano-positioning stage using a self-guided displacement amplification mechanism. Mech. Mach. Theory 2012, 50, 109–120. [Google Scholar] [CrossRef]
- Howell, L.L. Compliant Mechanisms; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Zhu, Z.W.; Zhou, X.Q.; Liu, Z.W.; Wang, R.Q.; Zhu, L. Development of a piezoelectrically actuated two-degree-of-freedom fast tool servo with decoupled motions for micro-nanomachining. Precis. Eng. 2014, 38, 809–820. [Google Scholar] [CrossRef]
- Wang, F.J.; Shi, B.C.; Huo, Z.C.; Tian, Y.L.; Zhang, D.W. Design and Control of a Spatial Micromanipulator Inspired by Deployable Structure. Trans. Ind. Electron. 2022, 69, 971–979. [Google Scholar] [CrossRef]
- Tang, H.; Li, Y.M. Design, Analysis, and Test of a Novel 2-DOF Nanopositioning System Driven by Dual Mode. IEEE Trans. Robot. 2013, 29, 650–662. [Google Scholar] [CrossRef]
Types of the Microgripper | Advantages | Drawbacks |
---|---|---|
Electrothermal microgripper | Compact structure, large displacement and force | high operation temperature, nonlinear movement and low sensitivity |
Electrostatic microgripper | Compact structure | Small grasping force |
PZT-actuated microgripper | high force output to weight ratio, fast response and zero backlash | hysteresis nonlinearity |
Literature | Number of Movable Fingers | Amplification Ratio | Stroke (μm) | Number of PZT Actuators |
---|---|---|---|---|
[15] | 2 | 15.5 | 134 | 1 |
[17] | 2 | 23.2 | 500 | 1 |
[18] | 2 | 2.85 | 100 | 1 |
[19] | 2 | 18.75 | 110 | 1 |
[22] | 1 | - | 220 | 1 |
This work | 1/2 | 20.82 | 236.68 | 2 |
Parameter | Density | Modulus of Elasticity | Yield Strength | Poisson’s Ratio |
---|---|---|---|---|
Value | 2.81 × 103 kg/m3 | 71.7 GPa | 503 MPa | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Wu, Y.; Jin, S.; Liu, D.; Chi, B. Design and Analysis of a Microgripper with Three-Stage Amplification Mechanism for Micromanipulation. Micromachines 2022, 13, 366. https://doi.org/10.3390/mi13030366
Hong Y, Wu Y, Jin S, Liu D, Chi B. Design and Analysis of a Microgripper with Three-Stage Amplification Mechanism for Micromanipulation. Micromachines. 2022; 13(3):366. https://doi.org/10.3390/mi13030366
Chicago/Turabian StyleHong, Yuan, Yimin Wu, Shichao Jin, Dayong Liu, and Baihong Chi. 2022. "Design and Analysis of a Microgripper with Three-Stage Amplification Mechanism for Micromanipulation" Micromachines 13, no. 3: 366. https://doi.org/10.3390/mi13030366
APA StyleHong, Y., Wu, Y., Jin, S., Liu, D., & Chi, B. (2022). Design and Analysis of a Microgripper with Three-Stage Amplification Mechanism for Micromanipulation. Micromachines, 13(3), 366. https://doi.org/10.3390/mi13030366