Computational Valuation of Darcy Ternary-Hybrid Nanofluid Flow across an Extending Cylinder with Induction Effects
Abstract
:1. Introduction
Governing Equations
2. Solution Procedures
3. Results and Discussion
3.1. Velocity Profile
3.2. Magnetic Induction
3.3. Temperature Profile
3.4. Concentration Profile
4. Conclusions
- The velocity profile reduces with the effect of magnetic term, Darcy Forchhemier term Fr, inverse magnetic Prandtl number, and nanoparticles volume fraction, and enhances with the effect of curvature constant.
- The induced magnetic field augments with the variation of curvature constant and inverse magnetic Prandtl number, while reducing with the volume fraction of nanoparticles and magnetic term.
- The energy profile boosts with the positive variation of magnetic term and curvature constant.
- The variation in inverse magnetic Prandtl number and heat source increases the temperature of the ternary nanofluid.
- The chemical reaction coefficient positively affects the mass transfer, because their effect encourages fluid particles to move fast, while the consequences of curvature constant and Schmidt number Sc declines the mass transfer profile.
- The variation of ternary hybrid NPs significantly boosts the thermophysical features of the base fluid.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Choi, K.S.; Huang, Y.; Li, H.X. Flow control over a circular cylinder using virtual moving surface boundary layer control. Exp. Fluids 2019, 60, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, K.; Wulandana, R. 2D Flow Past a Confined Circular Cylinder with Sinusoidal Ridges. In Proceedings of the 2019 COMSOL Conference in Boston, Boston, MA, USA, 2–4 October 2019. [Google Scholar]
- Salahuddin, T.; Bashir, A.M.; Khan, M.; Xia, W.F. Multiple shaped nano-particles influence on thermal conductivity of fluid flow between inflexible and sinusoidal walls. Case Stud. Therm. Eng. 2021, 25, 100930. [Google Scholar] [CrossRef]
- Wu, B.; Li, S.; Zhang, L.; Li, K. Experimental determination of the two-dimensional aerodynamic admittances of a 5: 1 rectangular cylinder in streamwise sinusoidal flows. J. Wind Eng. Ind. Aerodyn. 2021, 210, 104525. [Google Scholar] [CrossRef]
- Bilal, M.; Saeed, A.; Selim, M.M.; Gul, T.; Ali, I.; Kumam, P. Comparative numerical analysis of Maxwell’s time-dependent thermo-diffusive flow through a stretching cylinder. Case Stud. Therm. Eng. 2021, 27, 101301. [Google Scholar] [CrossRef]
- Seo, Y.M.; Luo, K.; Ha, M.Y.; Park, Y.G. Direct numerical simulation and artificial neural network modeling of heat transfer characteristics on natural convection with a sinusoidal cylinder in a long rectangular enclosure. Int. J. Heat Mass Transf. 2020, 152, 119564. [Google Scholar] [CrossRef]
- Bilal, M.; Khan, I.; Gul, T.; Tassaddiq, A.; Alghamdi, W.; Mukhtar, S.; Kumam, P. Darcy-forchheimer hybrid nano fluid flow with mixed convection past an inclined cylinder. CMC-Comput. Mater. Contin. 2021, 66, 2025–2039. [Google Scholar] [CrossRef]
- Khan, W.A.; Khan, Z.H.; Haq, R.U. Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux. Eur. Phys. J. Plus 2015, 13, 86. [Google Scholar] [CrossRef]
- Sarma, R.; Shukla, A.K.; Gaikwad, H.S.; Mondal, P.K.; Wongwises, S. Effect of conjugate heat transfer on the thermo-electro-hydrodynamics of nanofluids: Entropy optimization analysis. J. Therm. Anal. Calorim. 2020, 147, 599–614. [Google Scholar] [CrossRef]
- Chai, Q.; Wang, Y.Q. Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion. Eng. Struct. 2022, 252, 113718. [Google Scholar] [CrossRef]
- Waqas, H.; Imran, M.; Muhammad, T.; Sait, S.M.; Ellahi, R. Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk. J. Therm. Anal. Calorim. 2021, 145, 2. [Google Scholar] [CrossRef]
- Rodríguez-González, V.; Terashima, C.; Fujishima, A. Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 49–67. [Google Scholar] [CrossRef]
- Chu, Y.M.; Khan, U.; Zaib, A.; Shah, S.H.A.M. Numerical and computer simulations of cross-flow in the streamwise direction through a moving surface comprising the significant impacts of viscous dissipation and magnetic fields: Stability analysis and dual solutions. Math. Probl. Eng. 2020, 2020, 8542396. [Google Scholar] [CrossRef]
- Chu, Y.M.; Nazir, U.; Sohail, M.; Selim, M.M.; Lee, J.R. Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 2021, 5, 119. [Google Scholar] [CrossRef]
- Ahmadian, A.; Bilal, M.; Khan, M.A.; Asjad, M.I. Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk. Sci. Rep. 2020, 10, 18776. [Google Scholar] [CrossRef]
- Bilal, M.; Gul, T.; Alsubie, A.; Ali, I. Axisymmetric hybrid nanofluid flow with heat and mass transfer amongst the two gyrating plates. ZAMM-J. Appl. Math. Mech. /Z. Für Angew. Math. Und Mech. 2021, 101, e202000146. [Google Scholar] [CrossRef]
- Ramesh, G.K.; Madhukesh, J.K.; Prasannakumara, B.C.; Shehzad, S.A.; Abbasi, F.M. Thermodynamics Examination of Fe3O4-CoFe2O4/Water+ EG Nanofluid in a Heated Plate: Crosswise and Stream-wise Aspects. Arab. J. Sci. Eng. 2021, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.P.; Qahiti, R.; Jafaryar, M.; Alazwari, M.A.; Abu-Hamdeh, N.H.; Selim, M.M. Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J. Pet. Sci. Eng. 2022, 208, 109734. [Google Scholar] [CrossRef]
- Arif, M.; Kumam, P.; Kumam, W.; Mostafa, Z. Heat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluids with applications: A fractional model. Case Stud. Therm. Eng. 2022, 31, 101837. [Google Scholar] [CrossRef]
- Sahoo, R.R. Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid. J. Therm. Anal. Calorim. 2021, 146, 827–839. [Google Scholar] [CrossRef]
- Fattahi, A.; Karimi, N. Numerical simulation of the effects of superhydrophobic coating in an oval cross-sectional solar collector with a wavy absorber filled with water-based Al2O3-ZnO-Fe3O4 ternary hybrid nanofluid. Sustain. Energy Technol. Assess. 2022, 50, 101881. [Google Scholar] [CrossRef]
- Chen, S.B.; Jahanshahi, H.; Abba, O.A.; Solís-Pérez, J.E.; Bekiros, S.; Gómez-Aguilar, J.F.; Yousefpour, A.; Chu, Y.M. The effect of market confidence on a financial system from the perspective of fractional calculus: Numerical investigation and circuit realization. Chaos Solitons Fractals 2020, 140, 110223. [Google Scholar] [CrossRef]
- Chu, Y.M.; Shah, N.A.; Agarwal, P.; Chung, J.D. Analysis of fractional multi-dimensional Navier–Stokes equation. Adv. Differ. Equ. 2021, 2021, 91. [Google Scholar] [CrossRef]
- Abd El Salam, M.A.; Ramadan, M.A.; Nassar, M.A.; Agarwal, P.; Chu, Y.M. Matrix computational collocation approach based on rational Chebyshev functions for nonlinear differential equations. Adv. Differ. Equ. 2021, 2021, 331. [Google Scholar] [CrossRef]
- Qiang, X.; Mahboob, A.; Chu, Y.M. Numerical Approximation of Fractional-Order Volterra Integrodifferential Equation. J. Funct. Spaces 2020, 2020, 8875792. [Google Scholar] [CrossRef]
- Hayat, T.; Noreen, S. Peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field. Comptes Rendus Mécanique 2010, 338, 518–528. [Google Scholar] [CrossRef]
- Raju, M.C.; Varma, S.V.K.; Seshaiah, B. Heat transfer effects on a viscous dissipative fluid flow past a vertical plate in the presence of induced magnetic field. Ain Shams Eng. J. 2015, 6, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Hashim, H.M.; Chu, Y.M. Numerical simulation for heat and mass transport analysis for magnetic-nanofluids flow through stretchable convergent/divergent channels. Int. J. Mod. Phys. B 2021, 35, 2150198. [Google Scholar] [CrossRef]
- Asjad, M.I.; Ali, R.; Iqbal, A.; Muhammad, T.; Chu, Y.M. Application of water based drilling clay-nanoparticles in heat transfer of fractional Maxwell fluid over an infinite flat surface. Sci. Rep. 2021, 11, 24. [Google Scholar] [CrossRef]
- Ikram, M.D.; Imran, M.A.; Chu, Y.M.; Akgül, A. MHD flow of a Newtonian fluid in symmetric channel with ABC fractional model containing hybrid nanoparticles. Comb. Chem. High Throughput Screen. 2021. [Google Scholar] [CrossRef]
- Bin Mizan, M.R.; Ferdows, M.; Shamshuddin, M.D.; Bég, O.A.; Salawu, S.O.; Kadir, A. Computation of ferromagnetic/nonmagnetic nanofluid flow over a stretching cylinder with induction and curvature effects. Heat Transfer. 2021, 50, 5240–5266. [Google Scholar] [CrossRef]
- Wang, F.; Nazir, U.; Sohail, M.; El-Zahar, E.R.; Park, C.; Thounthong, P. A Galerkin strategy for tri-hybridized mixture in ethylene glycol comprising variable diffusion and thermal conductivity using non-Fourier’s theory. Nanotechnol. Rev. 2022, 11, 834–845. [Google Scholar] [CrossRef]
- Acharya, N.; Maity, S.; Kundu, P.K. Framing the hydrothermal features of magnetized TiO2–CoFe2O4 water-based steady hybrid nanofluid flow over a radiative revolving disk. Multidiscip. Modeling Mater. Struct. 2019. [Google Scholar] [CrossRef]
- Shuaib, M.; Shah, R.A.; Durrani, I.; Bilal, M. Electrokinetic viscous rotating disk flow of Poisson-Nernst-Planck equation for ion transport. J. Mol. Liq. 2020, 313, 113412. [Google Scholar] [CrossRef]
- Shuaib, M.; Shah, R.A.; Bilal, M. Von-Karman rotating flow in variable magnetic field with variable physical properties. Adv. Mech. Eng. 2021, 13, 16878140219. [Google Scholar] [CrossRef]
- Ullah, Z.; Ullah, I.; Zaman, G.; Sun, T.C. A numerical approach to interpret melting and activation energy phenomenon on the magnetized transient flow of Prandtl–Eyring fluid with the application of Cattaneo–Christov theory. Waves Random Complex Media 2022, 1–21. [Google Scholar] [CrossRef]
- Ullah, I.; Hayat, T.; Alsaedi, A. Optimization of entropy production in flow of hybrid nanomaterials through Darcy–Forchheimer porous space. J. Therm. Anal. Calorim. 2021, 1–10. [Google Scholar] [CrossRef]
Base Fluid and Nanoparticles | |||||
---|---|---|---|---|---|
Pure water H2O | 997.1 | 0.613 | 4179 | 0.05 | 21 |
Titanium dioxide TiO2 | 4250 | 8.9538 | 686.2 | 0.9 | |
Cobalt ferrite CoFe2O4 | 4907 | 3.7 | 700 | - | |
Magnesium oxide MgO | 3560 | 45 | 955 | 1.26 |
PCM | bvp4c | PCM | bvp4c | |||
---|---|---|---|---|---|---|
0.1 | 0.0575533 | 0.0574437 | 0.0684540 | 0.0684441 | ||
0.3 | 0.0455121 | 0.0454040 | 0.0566133 | 0.0566033 | ||
0.5 | 0.0465850 | 0.0464745 | 0.0569863 | 0.0569762 | ||
0.7 | 0.0392105 | 0.0391005 | 0.0471417 | 0.0571333 | ||
0.0 | 0.0665586 | 0.0464478 | 0.0754565 | 0.0554466 | ||
0.2 | 0.0675762 | 0.0474654 | 0.0775971 | 0.0575864 | ||
0.4 | 0.0679960 | 0.0478863 | 0.05789975 | 0.0589856 | ||
0.6 | 0.01 | 0.0774418 | 0.0573431 | 0.0883470 | 0.0683360 | |
0.02 | 0.0784230 | 0.0583222 | 0.0893281 | 0.0693170 | ||
0.03 | 0.0791322 | 0.0590315 | 0.0813152 | 0.0713051 | ||
0.04 | 0.0822417 | 0.0623409 | 0.0943329 | 0.0843227 |
PCM | bvp4c | PCM | bvp4c | ||
---|---|---|---|---|---|
Kr | |||||
0.3 | 0.0532438 | 0.0532227 | 0.0742420 | 0.0742210 | |
0.6 | 0.0529432 | 0.0529211 | 0.0739436 | 0.0739224 | |
0.9 | 0.0515954 | 0.0515741 | 0.0714945 | 0.0714733 | |
1.2 | 0.4930352 | 0.4930161 | 0.6910340 | 0.6910131 | |
0.01 | 0.1627703 | 0.1627510 | 0.2677735 | 0.2677624 | |
0.02 | 0.1638823 | 0.1638631 | 0.2728854 | 0.2728641 | |
0.03 | 0.5687541 | 0.5687341 | 0.7774604 | 0.7774412 | |
0.04 | 0.6026629 | 0.6026616 | 0.8906814 | 0.8906603 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, K.A.M.; Ahmed, A.E.-S.; Ould Sidi, M.; Ahammad, N.A.; Mohamed, A.; El-Shorbagy, M.A.; Bilal, M.; Marzouki, R. Computational Valuation of Darcy Ternary-Hybrid Nanofluid Flow across an Extending Cylinder with Induction Effects. Micromachines 2022, 13, 588. https://doi.org/10.3390/mi13040588
Alharbi KAM, Ahmed AE-S, Ould Sidi M, Ahammad NA, Mohamed A, El-Shorbagy MA, Bilal M, Marzouki R. Computational Valuation of Darcy Ternary-Hybrid Nanofluid Flow across an Extending Cylinder with Induction Effects. Micromachines. 2022; 13(4):588. https://doi.org/10.3390/mi13040588
Chicago/Turabian StyleAlharbi, Khalid Abdulkhaliq M., Ahmed El-Sayed Ahmed, Maawiya Ould Sidi, Nandalur Ameer Ahammad, Abdullah Mohamed, Mohammed A. El-Shorbagy, Muhammad Bilal, and Riadh Marzouki. 2022. "Computational Valuation of Darcy Ternary-Hybrid Nanofluid Flow across an Extending Cylinder with Induction Effects" Micromachines 13, no. 4: 588. https://doi.org/10.3390/mi13040588
APA StyleAlharbi, K. A. M., Ahmed, A. E.-S., Ould Sidi, M., Ahammad, N. A., Mohamed, A., El-Shorbagy, M. A., Bilal, M., & Marzouki, R. (2022). Computational Valuation of Darcy Ternary-Hybrid Nanofluid Flow across an Extending Cylinder with Induction Effects. Micromachines, 13(4), 588. https://doi.org/10.3390/mi13040588