Fluorescence Imaging Characterization of the Separation Process in a Monolithic Microfluidic Free-Flow Electrophoresis Device Fabricated Using Low-Temperature Co-Fired Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Experimental Setup
2.2. Materials and Apparatus for the Construction of the Ceramic Microfluidic Device
3. Results and Discussion
3.1. Design and Fabrication of the Microfluidic Free Flow Electrophoresis Device
3.2. Free-Flow Electrophoresis Separation
3.3. Spatial-Temporal Characterization of pH during the Separation Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barrolier, J.; Watzke, E.; Gibian, H. Einfache Apparatur Für Die Trägerfreie Präparative Durchlauf-Elektrophorese. Naturforschung 1958, 13, 754–755. [Google Scholar] [CrossRef]
- Hannig, K. Die Traegerfreie Kontinuierliche Elektrophorese Und Ihre Anwendung. Fresenius J. Anal. Chem. 1960, 181, 244–254. [Google Scholar] [CrossRef]
- Hannig, K. New Aspects in Preparative and Analytical Continuous Free-Flow Cell Electrophoresis. Electrophoresis 1982, 3, 235–243. [Google Scholar] [CrossRef]
- Krivánková, L.; Bocek, P.; Křivánková, L.; Boček, P. Continuous Free-Flow Electrophoresis. Electrophoresis 1998, 19, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.; Critchley, K.; Lilly, G.D.; Shim, B.; Kotov, N.A. Free Flow Electrophoresis for the Separation of CdTe Nanoparticles. J. Mater. Chem. 2009, 19, 1390. [Google Scholar] [CrossRef]
- Kohlheyer, D.; Eijkel, J.C.T.; van den Berg, A.; Schasfoort, R.B.M. Miniaturizing Free-Flow Electrophoresis—A Critical Review. Electrophoresis 2008, 29, 977–993. [Google Scholar] [CrossRef]
- Turgeon, R.T.; Bowser, M.T. Micro Free-Flow Electrophoresis: Theory and Applications. Anal. Bioanal. Chem. 2009, 394, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Novo, P.; Janasek, D. Current Advances and Challenges in Microfluidic Free-Flow Electrophoresis—A Critical Review. Anal. Chim. Acta 2017, 991, 9–29. [Google Scholar] [CrossRef]
- Johnson, A.C.; Bowser, M.T. Micro Free Flow Electrophoresis. Lab Chip 2017, 18, 27–40. [Google Scholar] [CrossRef]
- De Jesus, D.P.; Bianes, L.; do Lago, C.L. Microchip Free-Flow Electrophoresis on Glass Substrate Using Laser-Printing Toner as Structural Material. Electrophoresis 2006, 27, 4935–4942. [Google Scholar] [CrossRef]
- Kohlheyer, D.; Besselink, G.A.J.; Schlautmann, S.; Schasfoort, R.B.M. Free-Flow Zone Electrophoresis and Isoelectric Focusing Using a Microfabricated Glass Device with Ion Permeable Membranes. Lab Chip 2006, 6, 374. [Google Scholar] [CrossRef]
- Kohlheyer, D.; Eijkel, J.C.T.; Schlautmann, S. Berg Microfluidic High-Resolution Free-Flow Isoelectric Focusing. Anal. Chem. 2007, 79, 8190–8198. [Google Scholar] [CrossRef]
- Cheng, L.-J.J.; Chang, H.-C.C. Switchable PH Actuators and 3D Integrated Salt Bridges as New Strategies for Reconfigurable Microfluidic Free-Flow Electrophoretic Separation. Lab Chip 2014, 14, 979–987. [Google Scholar] [CrossRef]
- Benz, C.; Boomhoff, M.; Appun, J.; Schneider, C.; Belder, D. Chip-Based Free-Flow Electrophoresis with Integrated Nanospray Mass-Spectrometry. Angew. Chem. Int. Ed. 2015, 54, 2766–2770. [Google Scholar] [CrossRef]
- Podszun, S.; Vulto, P.; Heinz, H.; Hakenberg, S.; Hermann, C.; Hankemeier, T.; Urban, G. a Enrichment of Viable Bacteria in a Micro-Volume by Free-Flow Electrophoresis. Lab Chip 2012, 12, 451–457. [Google Scholar] [CrossRef]
- Janasek, D.; Schilling, M.; Manz, A.; Franzke, J. Electrostatic Induction of the Electric Field into Free-Flow Electrophoresis Devices. Lab Chip 2006, 6, 710–713. [Google Scholar] [CrossRef]
- Kohlheyer, D.; Eijkel, J.C.T.; Schlautmann, S.; Van Den Berg, A.; Schasfoort, R.B.M. Bubble-Free Operation of a Microfluidic Free-Flow Electrophoresis Chip with Integrated Pt Electrodes. Anal. Chem. 2008, 80, 4111–4118. [Google Scholar] [CrossRef]
- Saar, K.L.; Zhang, Y.; Muller, T.; Challa, C.P.; Devenish, S.; Andrew, L.; Knowles, T.P.J. On Chip Label Free Protein Analysis with Downstream Electrodes for Direct Removal of Electrolysis Products. Lab Chip 2017, 18, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Novo, P.; Dell’Aica, M.; Jender, M.; Höving, S.; Zahedi, R.P.; Janasek, D. Integration of Polycarbonate Membranes in Microfluidic Free-Flow Electrophoresis. Analyst 2017, 142, 4228–4239. [Google Scholar] [CrossRef]
- Song, Y.A.; Chan, M.; Cello, C.; Tannenbaum, S.R.; Wishnok, J.S.; Han, J. Free-Flow Zone Electrophoresis of Peptides and Proteins in PDMS Microchip for Narrow Pi Range Sample Prefractionation Coupled with Mass Spectrometry. Anal. Chem. 2010, 82, 2317–2325. [Google Scholar] [CrossRef] [Green Version]
- Raymond, D.E.; Manz, A.; Wldmer, H.M. Continuous Sample Pretreatment Using a Free-Flow Electrophoresis Device Integrated onto a Silicon Chip. Anal. Chem. 1994, 66, 2858–2865. [Google Scholar] [CrossRef]
- Kobayashi, H.; Shimamura, K.; Akaida, T.; Sakano, K.; Tajima, N.; Funazaki, J.; Suzuki, H.; Shinohara, E. Free-Flow Electrophoresis in a Microfabricated Chamber with a Micromodule Fraction Separator. Continuous Separation of Proteins. J. Chromatogr. A 2003, 990, 169–178. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.-X.; Janasek, D.; Manz, A. Sub-Second Isoelectric Focusing in Free Flow Using a Microfluidic Device. Lab Chip 2003, 3, 224–227. [Google Scholar] [CrossRef]
- Fonslow, B.R.; Bowser, M.T. Free-Flow Electrophoresis on an Anodic Bonded Glass Microchip. Anal. Chem. 2005, 77, 5706–5710. [Google Scholar] [CrossRef]
- Fonslow, B.R.; Bowser, M.T. Optimizing Band Width and Resolution in Micro-Free Flow Electrophoresis. Anal. Chem. 2006, 78, 8236–8244. [Google Scholar] [CrossRef]
- Köhler, S.; Weilbeer, C.; Howitz, S.; Becker, H.; Beushausen, V.; Belder, D. PDMS Free-Flow Electrophoresis Chips with Integrated Partitioning Bars for Bubble Segregation. Lab Chip 2011, 11, 309–314. [Google Scholar] [CrossRef]
- Couceiro, P.; Alonso-Chamarro, J. Microfabrication of Monolithic Microfluidic Platforms Using Low Temperature Co-Fired Ceramics Suitable for Fluorescence Imaging. Anal. Chem. 2017, 89, 9147–9153. [Google Scholar] [CrossRef]
- Goldbach, M.; Axthelm, H.; Keusgen, M. LTCC-Based Microchips for the Electrochemical Detection of Phenolic Compounds. Sens. Actuators B Chem. 2006, 120, 346–351. [Google Scholar] [CrossRef]
- Llopis, X.; Ibáñez-García, N.; Alegret, S.; Alonso, J. Pesticide Determination by Enzymatic Inhibition and Amperometric Detection in a Low-Temperature Cofired Ceramics Microsystem. Anal. Chem. 2007, 79, 3662–3666. [Google Scholar] [CrossRef]
- Groß, G.A.; Thelemann, T.; Schneider, S.; Boskovic, D.; Köhler, J.M. Fabrication and Fluidic Characterization of Static Micromixers Made of Low Temperature Cofired Ceramic (LTCC). Chem. Eng. Sci. 2008, 63, 2773–2784. [Google Scholar] [CrossRef]
- Ibáñez-García, N.; Alonso, J.; Martínez-Cisneros, C.S.; Valdés, F. Green-Tape Ceramics. New Technological Approach for Integrating Electronics and Fluidics in Microsystems. TrAC Trends Anal. Chem. 2008, 27, 24–33. [Google Scholar] [CrossRef]
- Ibáñez-García, N.; Puyol, M.; Azevedo, C.M.; Martínez-Cisneros, C.S.; Villuendas, F.; Gongora-Rubio, M.R.; Seabra, A.C.; Alonso, J. Vortex Configuration Flow Cell Based on Low-Temperature Cofired Ceramics As a Compact Chemiluminescence Microsystem. Anal. Chem. 2008, 80, 5320–5324. [Google Scholar] [CrossRef] [PubMed]
- Fercher, G.; Smetana, W.; Vellekoop, M.J. Microchip Electrophoresis in Low-Temperature Co-Fired Ceramics Technology with Contactless Conductivity Measurement. Electrophoresis 2009, 30, 2516–2522. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cisneros, C.S.; Da Rocha, Z.; Ferreira, M.; Valdés, F.; Seabra, A.; Góngora-Rubio, M.; Alonso-Chamarro, J. A Monolithic Continuous-Flow Microanalyzer with Amperometric Detection Based on the Green Tape Technology. Anal. Chem. 2009, 81, 7448–7453. [Google Scholar] [CrossRef] [Green Version]
- Baeza, M.; López, C.; Alonso, J.; López-Santín, J.; Álvaro, G. Ceramic Microsystem Incorporating a Microreactor with Immobilized Biocatalyst for Enzymatic Spectrophotometric Assays. Anal. Chem. 2010, 82, 1006–1011. [Google Scholar] [CrossRef]
- Fakunle, E.S.; Fritsch, I. Low-Temperature Co-Fired Ceramic Microchannels with Individually Addressable Screen-Printed Gold Electrodes on Four Walls for Self-Contained Electrochemical Immunoassays. Anal. Bioanal. Chem. 2010, 398, 2605–2615. [Google Scholar] [CrossRef]
- Fercher, G.; Haller, A.; Smetana, W.; Vellekoop, M.J. Ceramic Capillary Electrophoresis Chip for the Measurement of Inorganic Ions in Water Samples. Analyst 2010, 135, 965–970. [Google Scholar] [CrossRef]
- Gómez-de Pedro, S.; Puyol, M.; Alonso-Chamarro, J. Continuous Flow Synthesis of Nanoparticles Using Ceramic Microfluidic Devices. Nanotechnology 2010, 21, 415603. [Google Scholar] [CrossRef]
- Malecha, K.; Pijanowska, D.G.; Golonka, L.J.; Kurek, P. Low Temperature Co-Fired Ceramic (LTCC)-Based Biosensor for Continuous Glucose Monitoring. Sens. Actuators B Chem. 2011, 155, 923–929. [Google Scholar] [CrossRef]
- Da Rocha, Z.M.; Martinez-Cisneros, C.S.; Seabra, A.C.; Valdés, F.; Gongora-Rubio, M.R.; Alonso-Chamarro, J. Compact and Autonomous Multiwavelength Microanalyzer for In-Line and in Situ Colorimetric Determinations. Lab Chip 2012, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Gómez-de Pedro, S.; Martínez-Cisneros, C.S.; Puyol, M.; Alonso-Chamarro, J. Microreactor with Integrated Temperature Control for the Synthesis of CdSe Nanocrystals. Lab Chip 2012, 12, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Pedro, S.G.; Puyol, M.; Izquierdo, D.; Salinas, I.; de la Fuente, J.M.; Alonso-Chamarro, J. A Ceramic Microreactor for the Synthesis of Water Soluble CdS and CdS/ZnS Nanocrystals with on-Line Optical Characterization. Nanoscale 2012, 4, 1328. [Google Scholar] [CrossRef]
- Jiang, B.; Haber, J.; Renken, A.; Muralt, P.; Kiwi-Minsker, L.; Maeder, T. Fine Structuration of Low-Temperature Co-Fired Ceramic (LTCC) Microreactors. Lab Chip 2015, 15, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Maeder, T.; Santis-Alvarez, A.J.; Poulikakos, D.; Muralt, P. A Lowerature Co-Fired Ceramic Micro-Reactor System for High-Efficiency on-Site Hydrogen Production. J. Power Sources 2015, 273, 1202–1217. [Google Scholar] [CrossRef] [Green Version]
- Couceiro, P.; Gómez-de Pedro, S.; Alonso-Chamarro, J. All-Ceramic Analytical Microsystems with Monolithically Integrated Optical Detection Microflow Cells. Microfluid. Nanofluid. 2015, 18, 649–656. [Google Scholar] [CrossRef]
- Afonso, J.L.; Clifton, M.J. Optimization of Protein Separation by Continuous-Flow Electrophoresis: Influence of the Operating Conditions and the Chamber Thickness. Electrophoresis 1999, 20, 2801–2809. [Google Scholar] [CrossRef]
- Milanova, D.; Chambers, R.D.; Bahga, S.S.; Santiago, J.G. Electrophoretic Mobility Measurements of Fluorescent Dyes Using On-Chip Capillary Electrophoresis. Electrophoresis 2011, 32, 3286–3294. [Google Scholar] [CrossRef]
- Sjöback, R.; Nygren, J.; Kubista, M. Absorption and Fluorescence Properties of Fluorescein. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, L7–L21. [Google Scholar] [CrossRef]
- Zhi, H.; Wang, J.; Wang, S.; Wei, Y. Fluorescent Properties of Hymecromone and Fluorimetric Analysis of Hymecromone in Compound Dantong Capsule. J. Spectrosc. 2013, 2013, 147128. [Google Scholar] [CrossRef]
- Graber, M.; DiLillo, D.; Friedman, B.; Pastoriza-Munoz, E. Characteristics of Fluoroprobes. Anal. Biochem. 1986, 156, 202–212. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couceiro, P.; Alonso-Chamarro, J. Fluorescence Imaging Characterization of the Separation Process in a Monolithic Microfluidic Free-Flow Electrophoresis Device Fabricated Using Low-Temperature Co-Fired Ceramics. Micromachines 2022, 13, 1023. https://doi.org/10.3390/mi13071023
Couceiro P, Alonso-Chamarro J. Fluorescence Imaging Characterization of the Separation Process in a Monolithic Microfluidic Free-Flow Electrophoresis Device Fabricated Using Low-Temperature Co-Fired Ceramics. Micromachines. 2022; 13(7):1023. https://doi.org/10.3390/mi13071023
Chicago/Turabian StyleCouceiro, Pedro, and Julián Alonso-Chamarro. 2022. "Fluorescence Imaging Characterization of the Separation Process in a Monolithic Microfluidic Free-Flow Electrophoresis Device Fabricated Using Low-Temperature Co-Fired Ceramics" Micromachines 13, no. 7: 1023. https://doi.org/10.3390/mi13071023
APA StyleCouceiro, P., & Alonso-Chamarro, J. (2022). Fluorescence Imaging Characterization of the Separation Process in a Monolithic Microfluidic Free-Flow Electrophoresis Device Fabricated Using Low-Temperature Co-Fired Ceramics. Micromachines, 13(7), 1023. https://doi.org/10.3390/mi13071023