Analysis of Nitrogen-Doping Effect on Sub-Gap Density of States in a-IGZO TFTs by TCAD Simulation
Abstract
:1. Introduction
2. Experiments and Modeling Scheme
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010, 2, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Marks, T.J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Janotti, A.; Van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Yanagi, H.; Ikenaga, E.; Yang, K.; Kobayashi, K.; Hirano, M.; Hosono, H. Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive X-ray photoelectron spectroscopy. Appl. Phys. Lett. 2008, 92, 202117. [Google Scholar] [CrossRef]
- Yao, J.; Xu, N.; Deng, S.; Chen, J.; She, J.; Shieh, H.D.; Liu, P.T.; Huang, Y.P. Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy. IEEE Trans. Electron Devices 2011, 58, 1121–1126. [Google Scholar]
- Fishchuk, I.I.; Kadashchuk, A.; Bhoolokam, A.; de Jamblinne de Meux, A.; Pourtois, G.; Gavrilyuk, M.M.; Köhler, A.; Bässler, H.; Heremans, P.; Genoe, J. Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: The case of the amorphous oxide InGaZnO. Phys. Rev. B 2016, 93, 195204. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zhang, L.; Shao, Y.; Zhou, X.; He, H.; Zhang, S. Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor. ACS Appl. Mater. Interfaces 2018, 10, 25850–25857. [Google Scholar] [CrossRef]
- Li, S.; Wang, M.; Zhang, D.; Wang, H.; Shan, Q. A Unified Degradation Model of a-InGaZnO TFTs Under Negative Gate Bias with or without an Illumination. IEEE J. Electron Devices Soc. 2019, 7, 1063–1071. [Google Scholar] [CrossRef]
- Huang, X.; Wu, C.; Lu, H.; Ren, F.; Xu, Q.; Ou, H.; Zhang, R.; Zheng, Y. Electrical instability of amorphous indium-gallium-zinc oxide thin film transistors under monochromatic light illumination. Appl. Phys. Lett. 2012, 100, 243505. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Qi, G.; Qiao, H.; Wang, W.; Xiao, H.; Hu, Y.; Guo, L.; Dai, M.; Wang, P.; Webster, T.J. Modeling and Mechanism of Enhanced Performance of In-Ga-Zn-O Thin-Film Transistors with Nanometer Thicknesses under Temperature Stress. J. Phys. Chem. C 2020, 124, 22793–22798. [Google Scholar] [CrossRef]
- Eun Kim, C.; Yun, I. Effects of nitrogen doping on device characteristics of InSnO thin film transistor. Appl. Phys. Lett. 2012, 100, 013501. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.C.; Chang, S.P.; Chen, I.C.; Tsai, Y.L.; Cheng, T.H.; Chang, S.J. Polycrystalline In–Ga–O Thin-Film Transistors Coupled with a Nitrogen Doping Technique for High-Performance UV Detectors. IEEE Trans. Electron Devices 2020, 67, 140–145. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.; Sung, T.; Park, H.; Baeck, J.; Bae, J.; Park, K.; Yoon, S.; Kang, I.; Chung, K.; et al. Highly Reliable Amorphous In-Ga-Zn-O Thin-Film Transistors Through the Addition of Nitrogen Doping. IEEE Trans. Electron Devices 2019, 66, 457–463. [Google Scholar] [CrossRef]
- Liu, J.; Guo, J.; Yang, W.; Wang, C.; Yuan, B.; Liu, J.; Wu, Z.; Zhang, Q.; Liu, D.; Chen, H.; et al. Graded Channel Junctionless InGaZnO Thin-Film Transistors with Both High Transporting Properties and Good Bias Stress Stability. ACS Appl. Mater. Interfaces 2020, 12, 43950–43957. [Google Scholar] [CrossRef]
- Abliz, A.; Gao, Q.; Wan, D.; Liu, X.; Xu, L.; Liu, C.; Jiang, C.; Li, X.; Chen, H.; Guo, T.; et al. Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliability of InGaZnO Thin-Film Transistors. ACS Appl. Mater. Interfaces 2017, 9, 10798–10804. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 2010, 11, 044305. [Google Scholar] [CrossRef]
- SILVACO. Atlas User’s Manual: Device Simulation Software; SILVACO: Santa Clara, CA, USA, 2004. [Google Scholar]
- Adaika, M.; Meftah, A.; Sengouga, N.; Henini, M. Numerical simulation of bias and photo stress on indium–gallium–zinc-oxide thin film transistors. Vacuum 2015, 120, 59–67. [Google Scholar] [CrossRef]
- Li, G.; Abliz, A.; Xu, L.; André, N.; Liu, X.; Zeng, Y.; Flandre, D.; Liao, L. Understanding hydrogen and nitrogen doping on active defects in amorphous In-Ga-Zn-O thin film transistors. Appl. Phys. Lett. 2018, 112, 253504. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, S.; Kim, W.; Bae, M.; Jeong, H.K.; Kong, D.; Choi, S.; Kim, D.M.; Kim, D.H. Amorphous InGaZnO Thin-Film Transistors—Part II: Modeling and Simulation of Negative Bias Illumination Stress-Induced Instability. IEEE Trans. Electron Devices 2012, 59, 2699–2706. [Google Scholar] [CrossRef]
- Billah, M.; Chowdhury, M.; Mativenga, M.; Um, J.; Mruthyunjaya, R.; Heiler, G.; Tredwell, T.; Jang, J. Analysis of Improved Performance Under Negative Bias Illumination Stress of Dual Gate Driving a- IGZO TFT by TCAD Simulation. IEEE Electron Device Lett. 2016, 37, 735–738. [Google Scholar] [CrossRef]
- Kim, Y.; Bae, M.; Kim, W.; Kong, D.; Jung, H.K.; Kim, H.; Choi, S.; Kim, D.M.; Kim, D.H. Amorphous InGaZnO Thin-Film Transistors—Part I: Complete Extraction of Density of States Over the Full Subband-Gap Energy Range. IEEE Trans. Electron Devices 2012, 59, 2689–2698. [Google Scholar] [CrossRef]
- Ryu, B.; Noh, H.; Choi, E.; Chang, K.J. O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors. Appl. Phys. Lett. 2010, 97, 022108. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Chang, C.; Fuh, C.; Liao, Y.; Sze, S.M. Effects of Nitrogen on Amorphous Nitrogenated InGaZnO (a-IGZO:N) Thin Film Transistors. J. Disp. Technol. 2016, 12, 1070–1077. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, K.M.; Heo, K.Y.; Park, S.K.; Lee, S.K.; Kim, H.J. Effects of UV light and carbon nanotube dopant on solution-based indium gallium zinc oxide thin-film transistors. Curr. Appl. Phys. 2011, 11, 280–285. [Google Scholar] [CrossRef]
- Yang, S.; Hwan Ji, K.; Ki Kim, U.; Seong Hwang, C.; Ko Park, S.; Hwang, C.; Jang, J.; Kyeong Jeong, J. Suppression in the negative bias illumination instability of Zn-Sn-O transistor using oxygen plasma treatment. Appl. Phys. Lett. 2011, 99, 102103. [Google Scholar] [CrossRef]
- Hernandez Gutierrez, C.A.; Casallas Moreno, Y.L.; Rangel Kuoppa, V.T.; Cardona, D.; Hu, Y.; Kudriatsev, Y.; Zambrano Serrano, M.A.; Gallardo Hernandez, S.; Lopez Lopez, M. Study of the heavily p-type doping of cubic GaN with Mg. Sci. Rep. 2020, 10, 16858. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Q.; Zhang, F.; Li, L.; Zhou, D.; Liu, Y.; Wang, D.; Ao, J. Reduction of leakage current by O2 plasma treatment for device isolation of AlGaN/GaN heterojunction field-effect transistors. Appl. Surf. Sci. 2015, 351, 1155–1160. [Google Scholar] [CrossRef]
- Chien, J.F.; Chen, C.H.; Shyue, J.J.; Chen, M.J. Local electronic structures and electrical characteristics of well-controlled nitrogen-doped ZnO thin films prepared by remote plasma in situ atomic layer doping. ACS Appl. Mater. Interfaces 2012, 4, 3471–3475. [Google Scholar] [CrossRef]
- Hernández Gutiérrez, C.A.; Kudriavtsev, Y.; Cardona, D.; Guillén Cervantes, A.; Santana Rodríguez, G.; Escobosa, A.; Hernández Hernández, L.A.; López López, M. InxGa1-x N nucleation by In+ ion implantation into GaN. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 413, 62–67. [Google Scholar] [CrossRef]
- Hernández Gutiérrez, C.A.; Kudriavtsev, Y.; Cardona, D.; Hernández, A.G.; Camas-Anzueto, J.L. Optical, electrical, and chemical characterization of nanostructured InxGa1-xN formed by high fluence In+ ion implantation into GaN. Opt. Mater. 2021, 111, 110541. [Google Scholar] [CrossRef]
- Hu, Y.; Hernandez Gutierrez, C.A.; Solis Cisneros, H.I.; Santana, G.; Kudriatsev, Y.; Camas Anzueto, J.L.; Lopez Lopez, M. Blue luminescence origin and Mg acceptor saturation in highly doped zinc-blende GaN with Mg. J. Alloys Compd. 2022, 897, 163133. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping. J. Disp. Technol. 2009, 5, 468–483. [Google Scholar] [CrossRef]
- Vygranenko, Y.; Wang, K.; Nathan, A. Stable indium oxide thin-film transistors with fast threshold voltage recovery. Appl. Phys. Lett. 2007, 91, 263508. [Google Scholar] [CrossRef]
- Kwon, D.W.; Kim, J.H.; Chang, J.S.; Kim, S.W.; Kim, W.; Park, J.C.; Song, I.; Kim, C.J.; Jung, U.I.; Park, B. Temperature effect on negative bias-induced instability of HfInZnO amorphous oxide thin film transistor. Appl. Phys. Lett. 2011, 98, 063502. [Google Scholar] [CrossRef]
- Ide, K.; Kikuchi, Y.; Nomura, K.; Kimura, M.; Kamiya, T.; Hosono, H. Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 2011, 99, 093507. [Google Scholar] [CrossRef]
- Zhou, X.; Shao, Y.; Zhang, L.; Lu, H.; He, H.; Han, D.; Wang, Y.; Zhang, S. Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors Under Positive Gate-Bias Stress. IEEE Electron Device Lett. 2017, 38, 1252–1255. [Google Scholar] [CrossRef]
- Chowdhury, M.D.H.; Migliorato, P.; Jang, J. Time-temperature dependence of positive gate bias stress and recovery in amorphous indium-gallium-zinc-oxide thin-film-transistors. Appl. Phys. Lett. 2011, 98, 153511. [Google Scholar] [CrossRef]
- Omura, H.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hirano, M.; Hosono, H. First-principles study of native point defects in crystalline indium gallium zinc oxide. J. Appl. Phys. 2009, 105, 093712. [Google Scholar] [CrossRef]
- Zhou, X.; Shao, Y.; Zhang, L.; Xiao, X.; Han, D.; Wang, Y.; Zhang, S. Oxygen Adsorption Effect of Amorphous InGaZnO Thin-Film Transistors. IEEE Electron Device Lett. 2017, 38, 465–468. [Google Scholar] [CrossRef]
- Anderson, P.W. Model for the Electronic Structure of Amorphous Semiconductors. Phys. Rev. Lett. 1975, 34, 953–955. [Google Scholar] [CrossRef]
- Jang, J.T.; Park, J.; Ahn, B.D.; Kim, D.M.; Choi, S.J.; Kim, H.S.; Kim, D.H. Study on the photoresponse of amorphous In-Ga-Zn-O and zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation. ACS Appl. Mater. Interfaces 2015, 7, 15570–15577. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, S.; Kim, C.; Park, J.; Song, I.; Jeon, S.; Ahn, S.; Park, J.; Jeong, J.K. The influence of visible light on the gate bias instability of In–Ga–Zn–O thin film transistors. Solid-State Electron. 2011, 62, 77–81. [Google Scholar] [CrossRef]
- Yang, Z.; Meng, T.; Zhang, Q.; Shieh, H.D. Stability of Amorphous Indium–Tungsten Oxide Thin-Film Transistors Under Various Wavelength Light Illumination. IEEE Electron Device Lett. 2016, 37, 437–440. [Google Scholar] [CrossRef]
Parameters | Undoping | 20% N-Doping Ratio | 40% N-Doping Ratio | Description |
---|---|---|---|---|
DitA (eV−1 cm−2) | 2.5 × 1013 | 8.0 × 1012 | 1.5 × 1013 | Acceptor-like interface trap densities |
DitD (eV−1 cm−2) | 3.0 × 1013 | 9.0 × 1012 | 2.0 × 1013 | Donor-like interface trap densities |
NTA (eV−1 cm−3) | 8.0 × 1019 | 1.0 × 1019 | 1.5 × 1020 | Acceptor-like tail states at E = Ec |
NTD (eV−1 cm−3) | 1.5 × 1020 | 8.0 × 1019 | 1.3 × 1020 | Donor-like tail states at E = Ev |
NGD(Vo-related) (eV−1 cm−3) | 8.0 × 1020 | 5.0 × 1020 | 6.5 × 1020 | Peak of Vo-related states |
NGA(Oi) (eV−1 cm−3) | 2.6 × 1017 | 1.4 × 1017 | 2.1 × 1017 | Peak of Oi states |
NGD(Vo+/Vo2+) (eV−1 cm−3) | 8.0 × 1016 | 5.0 × 1016 | 6.5 × 1016 | Peak of Vo+/Vo2+ states |
Parameters | N-Doping Ratio | Initial | 1500 s | 5000 s | Description |
---|---|---|---|---|---|
NGA(Oi) (eV−1 cm−3) | 0% | 2.6 × 1017 | 3.2 × 1017 | 3.6 × 1017 | Peak of Oi states |
20% | 1.4 × 1017 | 2.0 × 1017 | 2.5 × 1017 | ||
40% | 2.1 × 1017 | 2.8 × 1017 | 3.2 × 1017 |
Parameters | N-Doping Ratio | Dark | 650 nm | 600 nm | 500 nm | Description |
---|---|---|---|---|---|---|
NGD(Vo-related) (eV−1 cm−3) | 0% | 8.0 × 1020 | Peak of Vo-related states | |||
20% | 5.0 × 1020 | |||||
40% | 6.5 × 1020 | |||||
NGD(Vo+/Vo2+) (eV−1 cm−3) | 0% | 8.0 × 1016 | 1.5 × 1017 | 2.5 × 1017 | 3.0 × 1017 | Peak of Vo+/Vo2+ states |
20% | 5.0 × 1016 | 9.0 × 1016 | 1.5 × 1017 | 2.2 × 1017 | ||
40% | 6.5 × 1016 | 1.2 × 1017 | 2.0 × 1017 | 2.5 × 1017 | ||
NGD(Vo2+-related) (eV−1 cm−3) | 0% | — | — | — | 1.2 × 1017 | Peak of Vo2+-related states |
20% | — | — | — | 7.0 × 1016 | ||
40% | — | — | — | 9.0 × 1016 | ||
NGA(Vo+-related) (eV−1 cm−3) | 0% | — | — | 9.0 × 1016 | 9.0 × 1016 | Peak of Vo+-related states |
20% | — | — | 4.0 × 1016 | 4.0 × 1016 | ||
40% | — | — | 7.5 × 1016 | 7.5 × 1016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Cao, W.; Huang, X.; Shi, Z.; Zhou, D.; Xu, W. Analysis of Nitrogen-Doping Effect on Sub-Gap Density of States in a-IGZO TFTs by TCAD Simulation. Micromachines 2022, 13, 617. https://doi.org/10.3390/mi13040617
Zhu Z, Cao W, Huang X, Shi Z, Zhou D, Xu W. Analysis of Nitrogen-Doping Effect on Sub-Gap Density of States in a-IGZO TFTs by TCAD Simulation. Micromachines. 2022; 13(4):617. https://doi.org/10.3390/mi13040617
Chicago/Turabian StyleZhu, Zheng, Wei Cao, Xiaoming Huang, Zheng Shi, Dong Zhou, and Weizong Xu. 2022. "Analysis of Nitrogen-Doping Effect on Sub-Gap Density of States in a-IGZO TFTs by TCAD Simulation" Micromachines 13, no. 4: 617. https://doi.org/10.3390/mi13040617
APA StyleZhu, Z., Cao, W., Huang, X., Shi, Z., Zhou, D., & Xu, W. (2022). Analysis of Nitrogen-Doping Effect on Sub-Gap Density of States in a-IGZO TFTs by TCAD Simulation. Micromachines, 13(4), 617. https://doi.org/10.3390/mi13040617