Impact of the Semiconductor Defect Density on Solution-Processed Flexible Schottky Barrier Diodes
Abstract
:1. Introduction
2. Experimental Part
2.1. Fabrication Process
2.2. SBD Simulation
3. Traditional Extraction Methods to Obtain SBD Main Parameters from I–V Curves
3.1. Ideal Extraction Method
3.2. Norde’s Function
3.3. Cheung’s Function
3.4. Forward–Reverse (F–R) Function
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baeg, K.-J.; Lee, J. Flexible Electronic Systems on Plastic Substrates and Textiles for Smart Wearable Technologies. Adv. Mater. Technol. 2020, 5, 2000071. [Google Scholar] [CrossRef]
- Berger, P.R.; Li, M.; Mattei, R.M.; Niang, M.A.; Talisa, N.; Tripepi, M.; Harris, B.; Bhalerao, S.R.; Chowdhury, E.A.; Winter, C.H.; et al. Advancements in Solution Processable Devices using Metal Oxides For Printed Internet-of-Things Objects. In Proceedings of the IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Singapore, 12–15 March 2019. [Google Scholar] [CrossRef]
- Chan, K.-Y.; Ng, Z.-N.; Au, B.W.-C.; Knipp, D. Visibly transparent metal oxide diodes prepared by solution processing. Opt. Mater. 2018, 75, 595–600. [Google Scholar] [CrossRef]
- Rouis, A.; Hizem, N.; Kalboussi, A. Electrical characterizations of Schottky diode with zinc oxide nanowires. In Proceedings of the IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), Gammarth, Tunisia, 28 April–1 May 2019. [Google Scholar] [CrossRef]
- Ahmeda, M.A.M.; Mwankemwa, B.S.; Carleschi, E.; Doyle, B.P.; Meyer, W.E.; Nel, J.M. Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition. Mater. Sci. Semicond. Processing 2018, 79, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Caglar, Y.; Caglar, M.T.; Ilican, S. XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes. Optik 2018, 164, 424–432. [Google Scholar] [CrossRef]
- Rana, V.S.; Rajput, J.K.; Pathak, T.K.; Purohit, L.P. Cu sputtered Cu/ZnO Schottky diodes on fluorine doped tin oxide substrate for optoelectronic applications. Thin Solid Film. 2019, 679, 79–85. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, G.; Li, Y.; Ai, T.; Wu, C.; Jia, J.; Yan, F.; Wang, Y. Study on the electrical properties of nano ZnO/PET-ITO heterojunction prepared by hydrothermal method. J. Electron Spectrosc. Relat. Phenom. 2019, 235, 68–72. [Google Scholar] [CrossRef]
- Ozório, M.S.; Nascimento, M.R.; Vieira, D.H.; Nogueira, G.L.; Martin, C.S.; Lima, S.A.M.; Alves, N. AZO transparent electrodes grown in situ during the deposition of zinc acetate dihydrate onto aluminum thin film by spray pyrolysis. J. Mater. Sci. Mater. Electron. 2019, 30, 13454–13461. [Google Scholar] [CrossRef]
- Yilmaz, M.; Cirak, B.B.; Aydogan, S.; Grilli, M.L.; Biber, M. Facile electrochemical-assisted synthesis of TiO2 nanotubes and their role in Schottky barrier diode applications. Superlattices Microstruct. 2018, 113, 310–318. [Google Scholar] [CrossRef]
- Tinoco, J.C.; Hernández, S.A.; Rodrigez-Bernal, O.; Vega-Poot, A.G.; Rodriguez Gattorno, G.; de la L. Olvera, M.; Martinez-Lopez, A.G. Fabrication of Schottky Barrier Diodes based on ZnO for Flexible Electronics. J. Mater. Sci. Mater. Electron. 2020, 30, 7373–7377. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Wilson, J.; Ma, X.; Jin, J.; Song, A. Room Temperature Processed Ultrahigh-Frequency Indium–Gallium–Zinc-Oxide Schottky Diode. IEEE Electron Device Lett. 2016, 37, 389–392. [Google Scholar] [CrossRef]
- Xin, Q.; Yan, L.; Du, L.; Zhang, J.; Luo, Y.; Wang, Q.; Song, A. Influence of sputtering conditions on room-temperature fabricated InGaZnO-based Schottky diodes. Thin Solid Film. 2016, 616, 569–572. [Google Scholar] [CrossRef]
- ATLAS User’s Manual; SILVACO Inc.: Santa Clara, CA, USA, 2020.
- Norde, H. A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 1979, 50, 5052–5053. [Google Scholar] [CrossRef]
- Bohlin, K.E. Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 1986, 60, 1223–1224. [Google Scholar] [CrossRef]
- Cheung, S.K.; Cheung, N.W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett 1989, 49, 85–87. [Google Scholar] [CrossRef]
- Ortiz-Conde, A.; García-Sánchez, F.J. A new approach to the extraction of single exponential diode model parameters. Solid State Electron. 2018, 144, 33–38. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Eg | 3.2 eV | NTA, NTD | 1018 to 1020 eV−1 cm−3 |
χs | 4.3 eV | ETA | 0.105 eV |
NC, NV | 5 × 1018 cm−3 | ETD | 0.385 eV |
μe | 10 cm2/Vs | NB | 5 × 1016 and 5 × 1018 cm−3 |
Diode Length (μm) | Ideal Method | Norde’s Function | Cheung’s Method | F–R Method | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
η | ϕb (eV) | η | ϕb (eV) | Rs (Ω) | η | ϕb (eV) | Rs (Ω) | η | ϕb (eV) | Rs (Ω) | |
1000 | 16.5 | 0.48 | 2.2 | 0.53 | 592 | 2.4 | 0.54 | 506 | 4.1 | 0.52 | 395 |
700 | 15.6 | 0.47 | 2.6 | 0.55 | 714 | 3.1 | 0.53 | 546 | 3.2 | 0.52 | 675 |
500 | 14.4 | 0.48 | 3.0 | 0.56 | 1478 | 3.1 | 0.53 | 1189 | 3.1 | 0.52 | 1300 |
300 | 12 | 0.48 | 3.5 | 0.59 | 2300 | 2.3 | 0.54 | 3238 | 3 | 0.53 | 3300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinoco, J.C.; Hernandez, S.A.; Olvera, M.d.l.L.; Estrada, M.; García, R.; Martinez-Lopez, A.G. Impact of the Semiconductor Defect Density on Solution-Processed Flexible Schottky Barrier Diodes. Micromachines 2022, 13, 800. https://doi.org/10.3390/mi13050800
Tinoco JC, Hernandez SA, Olvera MdlL, Estrada M, García R, Martinez-Lopez AG. Impact of the Semiconductor Defect Density on Solution-Processed Flexible Schottky Barrier Diodes. Micromachines. 2022; 13(5):800. https://doi.org/10.3390/mi13050800
Chicago/Turabian StyleTinoco, Julio C., Samuel A. Hernandez, María de la Luz Olvera, Magali Estrada, Rodolfo García, and Andrea G. Martinez-Lopez. 2022. "Impact of the Semiconductor Defect Density on Solution-Processed Flexible Schottky Barrier Diodes" Micromachines 13, no. 5: 800. https://doi.org/10.3390/mi13050800
APA StyleTinoco, J. C., Hernandez, S. A., Olvera, M. d. l. L., Estrada, M., García, R., & Martinez-Lopez, A. G. (2022). Impact of the Semiconductor Defect Density on Solution-Processed Flexible Schottky Barrier Diodes. Micromachines, 13(5), 800. https://doi.org/10.3390/mi13050800