A General, Label-Free and Homogeneous Electrochemical Strategy for Probing of Protease Activity and Screening of Inhibitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Analysis of ACE
2.4. Analysis of Thrombin
3. Results and Discussion
3.1. Principle of the Proposal
3.2. Electrochemical Behavior of Copper Complexes
3.3. Feasibility of the Method
3.4. Sensitivity
3.5. Inhibition Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, L. Viral proteases. Chem. Rev. 2002, 102, 4609. [Google Scholar] [CrossRef] [PubMed]
- Ong, I.L.H.; Yang, K.-L. Recent developments in protease activity assays and sensors. Analyst 2017, 142, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welser, K.; Adsley, R.; Moore, B.M.; Chan, W.C.; Aylott, J.W. Protease sensing with nanoparticle based platforms. Analyst 2011, 136, 29. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Liu, G.; Yi, X. Surface plasmon resonance for protease detection by integration of homogeneous reaction. Biosensors 2021, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Deng, D.; Wang, Y.; Song, K.; Shang, Z.; Wang, Q.; Xia, N.; Zhang, B. A colorimetric strategy for assay of protease activity based on goldnanoparticle growth controlled by ascorbic acid and Cu(II)-coordinated peptide. Sens. Actuators B Chem. 2018, 266, 246. [Google Scholar] [CrossRef]
- Xia, N.; Huang, Y.; Cui, Z.; Liu, S.; Deng, D.; Liu, L.; Wang, J. Impedimetric biosensor for assay of caspase-3 activity and evaluation of cell apoptosis using self-assembled biotin-phenylalanine network as signal enhancer. Sens. Actuators B Chem. 2020, 320, 128436. [Google Scholar] [CrossRef]
- Xia, N.; Sun, Z.; Ding, F.; Wang, Y.; Sun, W.; Liu, L. Protease biosensor by conversion of a homogeneous assay into a surface-tethered electrochemical analysis based on streptavidin-biotin interactions. ACS Sens. 2021, 6, 1166. [Google Scholar] [CrossRef]
- Tatarko, M.; Ivanov, I.N.; Hianik, T. New insights on plasmin long term stability and the mechanism of its activity inhibition analyzed by quartz crystal microbalance. Micromachines 2022, 13, 55. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, L.; Meng, F.; Huang, J.; Li, G. Electrochemical approach to detect apoptosis. Anal. Chem. 2008, 80, 5272. [Google Scholar] [CrossRef]
- La, M.; Zhao, X.-Y.; Peng, Q.-L.; Chen, C.-D.; Zhao, G.-Q. Electrochemical biosensors for probing of protease activity and screening of protease inhibitors. Int. J. Electrochem. Sci. 2015, 10, 3329. [Google Scholar]
- Shin, D.-S.; Liu, Y.; Gao, Y.; Kwa, T.; Matharu, Z.; Revzin, A. Micropatterned surfaces functionalized with electroactive peptides for detecting protease release from cells. Anal. Chem. 2013, 85, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.; Zuo, X.; Yang, R.; Xia, F.; Plaxco, K.W.; White, R.J. Comparing the properties of electrochemical-based DNA sensors employing different redox tags. Anal. Chem. 2009, 81, 9109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, N.; Sun, T.; Liu, L.; Tian, L.; Sun, Z. Heterogeneous sensing of post-translational modification enzymes by integrating the advantage of homogeneous analysis. Talanta 2022, 237, 122949. [Google Scholar] [CrossRef] [PubMed]
- Takano, S.; Shiomoto, S.; Inoue, K.Y.; Ino, K.; Ino, H.; Matsue, T. Electrochemical approach for the development of a simple method for setecting cell apoptosis based on caspase-3 activity. Anal. Chem. 2014, 86, 4723. [Google Scholar] [CrossRef]
- Park, S.; Yang, H. Sensitive and selective trypsin detection using redox cycling in the presence of L-ascorbic acid. Analyst 2014, 139, 4051. [Google Scholar] [CrossRef] [PubMed]
- Sóvágó, I.; Várnagy, K.; Lihi, N.; Grenács, Á. Coordinating properties of peptides containing histidyl residues. Coord. Chem. Rev. 2016, 327, 43–54. [Google Scholar] [CrossRef]
- Frączyk, T. Cu(II)-binding N-terminal sequences of human proteins. Chem. Biodivers. 2021, 18, e2100043. [Google Scholar] [CrossRef]
- Li, P.S.; Kerman, K. Electrochemical detection of interaction between copper(II) and peptides related to pathological α-synuclein mutants. Anal. Chem. 2019, 91, 3818. [Google Scholar] [CrossRef]
- Synhaivska, O.; Mermoud, Y.; Baghernejad, M.; Alshanski, I.; Hurevich, M.; Yitzchaik, S.; Wipf, M.; Calame, M. Detection of Cu2+ ions with GGH peptide realized with Si-nanoribbon ISFET. Sensors 2019, 19, 4022. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, P.; Bossak, K.; Stefaniak, E.; Hureau, C.; Raibaut, L.; Bal, W.; Faller, P. N-terminal Cu-binding motifs (Xxx-Zzz-His, Xxx-His) and their derivatives: Chemistry, biology and medicinal applications. Chem. Eur. J. 2018, 24, 8029. [Google Scholar] [CrossRef]
- Deng, D.; Liu, L.; Bu, Y.; Liu, X.; Wang, X.; Zhang, B. Electrochemical sensing devices using ATCUN-Cu(II) complexes as electrocatalysts for water oxidation. Sensor. Actuators B Chem. 2018, 269, 189. [Google Scholar] [CrossRef]
- Harford, C.; Sarkar, B. Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motifof proteins and peptides: Metal binding, DNA cleavage, and other properties. Acc. Chem. Res. 1997, 30, 123. [Google Scholar] [CrossRef]
- Agbale, C.M.; Cardoso, M.H.; Galyuon, I.K.; Franco, O. Designing metallodrugs with nuclease and protease activity. Metallomics 2016, 8, 1159. [Google Scholar] [CrossRef] [PubMed]
- Portelinha, J.; Duay, S.S.; Yu, S.I.; Heilemann, K.; Libardo, M.D.J.; Juliano, S.A.; Klassen, J.L.; Angeles-Boza, A.M. Antimicrobial peptides and copper(II) ions: Novel therapeutic opportunities. Chem. Rev. 2021, 121, 2648. [Google Scholar] [CrossRef]
- Wezynfeld, N.E.; Stefaniak, E.; Stachucy, K.; Drozd, A.; Płonka, D.; Drew, S.C.; Krężel, A.; Bal, W. Resistance of Cu(Ab4−16) to copper capture by metallothionein-3 supports a function for the Ab4−42 peptide as a synaptic CuII scavenger. Angew. Chem. Int. Ed. 2016, 55, 8235. [Google Scholar] [CrossRef]
- Folk, D.S.; Franz, K.J. A prochelator activated by β-secretase inhibits Aβ aggregation and supresses copper-induced reactive oxygen species formation. J. Am. Chem. Soc. 2010, 132, 4994. [Google Scholar] [CrossRef] [Green Version]
- Deng, D.; Hao, Y.; Yang, S.; Han, Q.; Liu, L.; Xiang, Y.; Tu, F.; Xia, N. A signal-on electrochemical biosensor for evaluation of caspase-3 activity and cell apoptosis by the generation of molecular electrocatalysts on graphene electrode surface for water oxidation. Sensor. Actuators B Chem. 2019, 286, 415. [Google Scholar] [CrossRef]
- Xia, N.; Deng, D.; Yang, S.; Hao, Y.; Wang, L.; Liu, Y.; An, C.; Han, Q.; Liu, L. Electrochemical immunosensors with protease as the signal label for the generation of peptide-Cu(II) complexes as the electrocatalysts toward water oxidation. Sens. Actuators B Chem. 2019, 291, 113. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, D.; McDonald, A.; Hao, Y.; Millhauser, G.L.; Zhou, F. Copper redox cycling in the prion protein depends critically on binding mode. J. Am. Chem. Soc. 2011, 133, 12229. [Google Scholar] [CrossRef] [Green Version]
- Doig, M.T.; Smiley, J.W. Direct injection assay of angiotensin-converting enzyme by high-performance liquid chromatography using a shielded hydrophobic phase column. J. Chromatogr. B Biomed. Sci. Appl. 1993, 613, 145. [Google Scholar] [CrossRef]
- Geng, F.; He, Y.; Yang, L.; Wang, Z. A rapid assay for angiotensin-converting enzyme activity using ultra-performance liquid chromatography–Mass spectrometry. Biomed. Chromatogr. 2010, 24, 312. [Google Scholar] [CrossRef] [PubMed]
- Sentandreu, M.Á.; Toldrá, F. A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chem. 2006, 97, 546. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, X.; Chen, T.; Li, L.; Rao, P. An assay for angiotensin-converting enzyme using capillary zone electrophoresis. Anal. Biochem. 2000, 280, 286. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Yu, T.; Hu, J.; Xianyu, Y. A bio-inspired plasmonic nanosensor for angiotensin-converting enzyme through peptide-mediated assembly of gold nanoparticles. Biosens. Bioelectron. 2022, 195, 113621. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Li, T.; Liu, D.-J.; Wang, Z.-X. A peptide microarray-based fluorescent and resonance light scattering assay for screening thrombin inhibitor. Chin. J. Anal. Chem. 2015, 43, 199. [Google Scholar] [CrossRef]
- Li, Q.-Q.; Yang, F.-Q.; Wang, Y.-Z.; Wu, Z.-Y.; Xia, Z.-N.; Chen, H. Evaluation of thrombin inhibitory activity of catechins by online capillary electrophoresis-based immobilized enzyme microreactor and molecular docking. Talanta 2018, 185, 16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Liu, G.; Zhang, F.; Liu, J.; La, M.; Xia, N. A General, Label-Free and Homogeneous Electrochemical Strategy for Probing of Protease Activity and Screening of Inhibitor. Micromachines 2022, 13, 803. https://doi.org/10.3390/mi13050803
Feng Y, Liu G, Zhang F, Liu J, La M, Xia N. A General, Label-Free and Homogeneous Electrochemical Strategy for Probing of Protease Activity and Screening of Inhibitor. Micromachines. 2022; 13(5):803. https://doi.org/10.3390/mi13050803
Chicago/Turabian StyleFeng, Yunxiao, Gang Liu, Fan Zhang, Jianwen Liu, Ming La, and Ning Xia. 2022. "A General, Label-Free and Homogeneous Electrochemical Strategy for Probing of Protease Activity and Screening of Inhibitor" Micromachines 13, no. 5: 803. https://doi.org/10.3390/mi13050803
APA StyleFeng, Y., Liu, G., Zhang, F., Liu, J., La, M., & Xia, N. (2022). A General, Label-Free and Homogeneous Electrochemical Strategy for Probing of Protease Activity and Screening of Inhibitor. Micromachines, 13(5), 803. https://doi.org/10.3390/mi13050803