The Dark Annulus of a Drop in a Hele-Shaw Cell Is Caused by the Refraction of Light through Its Meniscus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Surface Tension Coefficient and Refractive Index
2.2. Fabrication of the Hele-Shaw Cell
2.3. Confocal Fluorescence Microscopy Imaging of a Drop
2.4. Image Processing
3. Results and Discussion
3.1. Brightfield Images: Dependence of the Dark Ring Width on Concentration
3.2. Confocal Images: The Thickness and Meniscus Profile of Drops
3.3. Ray Optics Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Gottberg, J.; Ryu, S. Contact angle measurement using a Hele-Shaw cell: A proof-of-concept study. Results Eng. 2021, 11, 100278. [Google Scholar] [CrossRef]
- Yokota, M.; Okumura, K. Dimensional crossover in the coalescence dynamics of viscous drops confined in between two plates. Proc. Natl. Acad. Sci. USA 2011, 108, 6395–6398. [Google Scholar] [CrossRef] [Green Version]
- Yokota, M.; Okumura, K. Coalescence dynamics of a quasi two-dimensional viscous drop. J. Phys. Soc. Jpn. 2012, 81, SA015. [Google Scholar] [CrossRef] [Green Version]
- Farinha, J.P.S.; Winnik, M.A.; Hahn, K.G. Characterization of oil droplets under a polymer film by laser scanning confocal fluorescence microscopy. Langmuir 2000, 16, 3391–3400. [Google Scholar] [CrossRef]
- Mohammadi, R.; Amirfazli, A. Contact angle measurement for dispersed microspheres using scanning confocal microscopy. J. Dispers. Sci. Technol. 2004, 25, 567–574. [Google Scholar] [CrossRef]
- Yeong, K.K.; Gavriilidis, A.; Zapf, R.; Kost, H.-J.; Hessel, V.; Boyde, A. Characterisation of liquid film in a microstructured falling film reactor using laser scanning confocal microscopy. Exp. Therm. Fluid Sci. 2006, 30, 463–472. [Google Scholar] [CrossRef]
- Sundberg, M.; Månsson, A.; Tågerud, S. Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization. J. Colloid Interface Sci. 2007, 313, 454–460. [Google Scholar] [CrossRef]
- Salim, A.; Sausse, J.; Pironon, J.; Fourar, M.; De Veslud, C.L.C. 3D Confocal Scanning Laser Microscopy to quantify contact angles in natural oil-water mixtures. Oil Gas Sci. Technol.-Rev. De L’ifp 2008, 63, 645–655. [Google Scholar] [CrossRef]
- Lv, P.; Xue, Y.; Liu, H.; Shi, Y.; Xi, P.; Lin, H.; Duan, H. Symmetric and asymmetric meniscus collapse in wetting transition on submerged structured surfaces. Langmuir 2015, 31, 1248–1254. [Google Scholar] [CrossRef]
- Kilmametov, A.; Gröger, R.; Hahn, H.; Schimmel, T.; Walheim, S. Bulk density measurements of small solid objects using laser confocal microscopy. Adv. Mater. Technol. 2017, 2, 1600115. [Google Scholar] [CrossRef]
- Tress, M.; Karpitschka, S.; Papadopoulos, P.; Snoeijer, J.H.; Vollmer, D.; Butt, H., Jr. Shape of a sessile drop on a flat surface covered with a liquid flim. Soft Matter 2017, 13, 3760–3767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreder, M.J.; Daniel, D.; Tetreault, A.; Cao, Z.; Lemaire, B.; Timonen, J.V.I.; Aizenberg, J. Film dynamics and lubricant depletion by droplets moving on lubricated surfaces. Phys. Rev. X 2018, 8, 031053. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Srinivasan, V.; Wangaskar, B.; Khandekar, S. Dynamic evolution of an evaporating liquid meniscus from structured screen meshes. Transp. Porous Med. 2018, 121, 539–555. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Wang, Z.; Pan, S.; Yi, B.; Ai, L.; Gao, J.; Mugele, F.; Yao, X. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Strombom, E.H.; Caicedo-Carvajal, C.E.; Thyagu, N.N.; Palumbo, D.; Shinbrot, T. Simple, simpler, simplest: Spontaneous pattern formation in a commonplace system. Am. J. Phys. 2012, 80, 578–587. [Google Scholar] [CrossRef]
- Stauffer, C.E. The measurement of surface tension by the pendant drop technique. J. Phys. Chem. 1965, 69, 1933–1938. [Google Scholar] [CrossRef]
- bin Mat Yunus, W.M.; bin Abdul Rahman, A. Refractive index of solutions at high concentrations. Appl. Opt. 1988, 27, 3341–3343. [Google Scholar] [CrossRef]
- Li, W.; Segre, P.; Gammon, R.; Sengers, J.; Lamvik, M. Determination of the temperature and concentration dependence of the refractive index of a liquid mixture. J. Chem. Phys. 1994, 101, 5058–5069. [Google Scholar] [CrossRef]
- Tan, C.-Y.; Huang, Y.-X. Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution. J. Chem. Eng. Data 2015, 60, 2827–2833. [Google Scholar] [CrossRef]
- Lee, D.; Erickson, A.; You, T.; Dudley, A.T.; Ryu, S. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology. Lab Chip 2018, 18, 2077–2086. [Google Scholar] [CrossRef]
- Lee, D.; Rahman, M.M.; Zhou, Y.; Ryu, S. Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 2015, 31, 9684–9693. [Google Scholar] [CrossRef] [PubMed]
- Kasa, I.A. Circle fitting procedure and its error analysis. IEEE Trans. Instrum. Meas. 1976, 25, 8–14. [Google Scholar] [CrossRef]
- Dolganov, P.V.; Zverev, A.S.; Baklanova, K.D.; Dolganov, V.K. Dynamics of capillary coalescence and breakup: Quasi-two-dimensional nematic and isotropic droplets. Phys. Rev. E 2021, 104, 014702. [Google Scholar] [CrossRef] [PubMed]
- Dolganov, P.V.; Zverev, A.S.; Baklanova, K.D.; Dolganov, V.K. Quasi-two-dimensional coalescence of nematic and isotropic droplets and Rayleigh–Plateau instability in flat optical cells. Soft Matter 2022, 18, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Frohn, A.; Roth, N. Dynamics of Droplets; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Hecht, E. Optics, 4th ed.; Addison Wesley: Boston, MA, USA, 2002. [Google Scholar]
Liquid | Density (g/cm3) | Surface Tension Coefficient (mN/m) | Refractive Index (-) |
---|---|---|---|
Mineral oil | 0.87 | - | 1.467 |
Corn syrup (18% w/w) | 1.04 | 39.2 ± 0.7 | 1.353 |
Corn syrup (67% w/w) | 1.26 | 41.1 ± 1.2 | 1.421 |
Corn syrup (82% w/w) | 1.31 | 40.0 ± 0.3 | 1.445 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S.; Zhang, H.; Emeigh, C. The Dark Annulus of a Drop in a Hele-Shaw Cell Is Caused by the Refraction of Light through Its Meniscus. Micromachines 2022, 13, 1021. https://doi.org/10.3390/mi13071021
Ryu S, Zhang H, Emeigh C. The Dark Annulus of a Drop in a Hele-Shaw Cell Is Caused by the Refraction of Light through Its Meniscus. Micromachines. 2022; 13(7):1021. https://doi.org/10.3390/mi13071021
Chicago/Turabian StyleRyu, Sangjin, Haipeng Zhang, and Carson Emeigh. 2022. "The Dark Annulus of a Drop in a Hele-Shaw Cell Is Caused by the Refraction of Light through Its Meniscus" Micromachines 13, no. 7: 1021. https://doi.org/10.3390/mi13071021
APA StyleRyu, S., Zhang, H., & Emeigh, C. (2022). The Dark Annulus of a Drop in a Hele-Shaw Cell Is Caused by the Refraction of Light through Its Meniscus. Micromachines, 13(7), 1021. https://doi.org/10.3390/mi13071021