The Impact of Manufacturing Imperfections on the Performance of Metalenses and a Manufacturing-Tolerant Design Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Characterization of the Solid-Immersion Metalens
2.2. Impact of the Manufacturing Imperfection
2.2.1. Impact of the Rough Surface in Trenches
2.2.2. Impact of the Sidewall Slope and Aspect Ratio Dependent Etching (ARDE) Effect
2.3. A Manufacturing-Tolerant Design (MTD) Method
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, R.; Geng, G.; Wei, Q.; Liu, Y.; Zhou, H.; Zhang, X.; He, C.; Li, X.; Li, X.; Wang, Y.; et al. Controllable Polarization and Diffraction Modulated Multi-Functionality Based on Metasurface. Adv. Opt. Mater. 2022, 10, 2102596. [Google Scholar] [CrossRef]
- Ou, K.; Li, G.; Li, T.; Yang, H.; Yu, F.; Chen, J.; Zhao, Z.; Cao, G.; Chen, X.; Lu, W. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale 2018, 10, 19154–19161. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- Sell, J.Y.D.; Doshay, S.; Yang, R.; Fan, J.A. Large angle, multi-functional metagratings based on freeform multi-mode geometries. Nano Lett. 2017, 17, 3752–3757. [Google Scholar] [CrossRef]
- Aieta, F.; Genevet, P.; Yu, N.; Kats, M.A.; Gaburro, Z.; Capasso, F. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 2012, 12, 1702–1706. [Google Scholar] [CrossRef]
- Li, K.; Haque, S.; Martins, A.; Fortunato, E.; Martins, R.; Mendes, M.J.; Schuster, C.S. Light trapping in solar cells: Simple design rules to maximize absorption. Optica 2020, 7, 1377–1384. [Google Scholar] [CrossRef]
- Ren, Z.; Dong, B.; Qiao, Q.; Liu, X.; Liu, J.; Zhou, G.; Lee, C. Subwavelength on-chip light focusing with bigradient all-dielectric metamaterials for dense photonic integration. InfoMat 2021, 4, e12264. [Google Scholar] [CrossRef]
- Kun, L.; Tianyi, G.; Xiaoyong, H.; Qihuang, G. On-Chip Nanophotonic Devices Based on Dielectric Metasurfaces. Chin. Opt. Lett. 2021, 41, 0823001. [Google Scholar]
- Hsiao, H.-H.; Chu, C.H.; Tsai, D.P. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1, 1600064. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B. Photonic and Plasmonic Metasensors. Laser Photonics Rev. 2021, 16, 2100328. [Google Scholar] [CrossRef]
- Zang, W.; Yuan, Q.; Chen, R.; Li, L.; Li, T.; Zou, X.; Zheng, G.; Chen, Z.; Wang, S.; Wang, Z.; et al. Chromatic Dispersion Manipulation Based on Metalenses. Adv. Mater. 2020, 32, e1904935. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, L.; Zheng, Y.; Feng, H.E.; Qiu, W. Design Method of Two-Dimensional Cylindrical Subwavelength Integrated Chip. J. Changchun Univ. Sci. Technol. 2018, 41, 5. [Google Scholar]
- Chen, S.H.; Yi, X.J.; Li, Y.; He, M.; Kong, L.B.; Ma, H. Hybrid integration between long focus microlens array and IR detector array. Int. J. Infrared Millim. Waves 2001, 22, 393–398. [Google Scholar] [CrossRef]
- Abolmaali, F.; Brettin, A.; Green, A.; Limberopoulos, N.I.; Urbas, A.M.; Astratov, V.N. Photonic jets for highly efficient mid-IR focal plane arrays with large angle-of-view. Opt. Express 2017, 25, 31174–31185. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Chen, M.; Zhang, R.Z. Influence of Chirp Parameter on Far-Field Distribution of the Beam. Opt. Optoelectron. Technol. 2013, 11, 19–24. [Google Scholar]
- Feng, X.; Deng, J.; Liu, M.; Li, C.; Zou, D. Microlens array for shortwave infrared detectors. Opto-Electron. Eng. 2017, 44, 633–637. [Google Scholar]
- Feng, Z.F.L.; Hao, B.; Qing, Y.; Minjing, L.; Feng, C. Development and Preparation of Refractive Infrared Microlens Array Device. Laser Optoelectron. Prog. 2020, 57, 071607. [Google Scholar] [CrossRef]
- Xu, P.; Qiao, H.; Wang, R.; Liu, S.; Li, X. Study on Infrared Refractive Micro-lens Prepared by Dry and Wet Etching on CdZnTe Substrate. Semicond. Optoelectron. 2014, 35, 1022–1025. [Google Scholar]
- JLai, J.; Ke, C.J.; Chen, S.H.; Yi, X.J. Fabrication of Microlens Array and Its Integration with Image Sensors. Semicond. Optoelectron. 2004, 25, 183–187. [Google Scholar]
- Chen, S.H.; Yi, X.J.; Kong, L.B.; He, M.; Wang, H.C. Monolithic integration technique for microlens arrays with infrared focal plane arrays. Infrared Phys. Technol. 2002, 43, 109–112. [Google Scholar] [CrossRef]
- Zhang, S.; Soibel, A.; Keo, S.A.; Wilson, D.; Rafol, S.B.; Ting, D.Z.; She, A.; Gunapala, S.D.; Capasso, F. Solid-immersion metalenses for infrared focal plane arrays. Appl. Phys. Lett. 2018, 113, 111104. [Google Scholar] [CrossRef]
- Ou, K.; Yu, F.L.; Li, G.H.; Wang, W.J.; Miroshnichenko, A.E.; Huang, L.J.; Wang, P.; Li, T.X.; Li, Z.F.; Chen, X.S.; et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv. 2020, 6, eabc0711. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.T.; Zhu, A.Y.; Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 2020, 5, 604–620. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, Y.; Luo, Z.; Zhang, P.; Zhao, Y. Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors. Opt. Lasers Eng. 2022, 150, 106849. [Google Scholar] [CrossRef]
- Iliescu, C.; Chen, B. Thick and low-stress PECVD amorphous silicon for MEMS applications. J. Micromech. Microeng. 2008, 18, 015024. [Google Scholar] [CrossRef]
- Pan, Y.Q.; Huang, G.J. Study on Infrared Optical Properties of Amorphous Silicon Films Deposited by Ion Beam Assisted Deposition. J. Xi’an Technol. Univ. 2011, 31, 9–13. [Google Scholar]
- Volland, B.E.; Heerlein, H.; Kostic, I.; Rangelow, I.W. The application of secondary effects in high aspect ratio dry etching for the fabrication of MEMS. Microelectron. Eng. 2001, 57–58, 641–650. [Google Scholar] [CrossRef]
- Shi, Z.; Jefimovs, K.; Romano, L.; Stampanoni, M. Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching. Micromachines 2020, 11, 864. [Google Scholar] [CrossRef]
- Gerlt, M.S.; Laubli, N.F.; Manser, M.; Nelson, B.J.; Dual, J. Reduced Etch Lag and High Aspect Ratios by Deep Reactive Ion Etching (DRIE). Micromachines 2021, 12, 542. [Google Scholar] [CrossRef]
- de la Rue, R.M.; van der Heijden, R.W.; Viktorovitch, P.; Andriesse, M.S.P.; Carlstrom, C.-F.; Torres, C.M.S.; Midrio, M.; van der Drift, E.; Geluk, E.-J.; Karouta, A.F.; et al. Deep dry etching process development for photonic crystals in InP-based planar waveguides. Photonic Cryst. Mater. Nanostructures 2004, 5450, 523–532. [Google Scholar]
- Wang, H.; Zhu, Y.; Gu, Y.; Chen, P.; Wang, W.; Chen, X.; Yang, B.; Li, T.; Shao, X.; Li, X.; et al. High electron mobility InP grown by solid source molecular beam epitaxy. Mater. Sci. Semicond. Process. 2020, 112, 105012. [Google Scholar] [CrossRef]
- Dell’Olio, F.; Indiveri, F.; Innone, F.; Ciminelli, C.; Armenise, M.N. Experimental countermeasures to reduce the backscattering noise in an InP hybrid optical gyroscope. In Proceedings of the 2014 Third Mediterranean Photonics Conference, Trani, Italy, 7–9 May 2014; pp. 1–3. [Google Scholar]
- Khorasaninejad, M.; Zhu, A.Y.; Roques-Carmes, C.; Chen, W.T.; Oh, J.; Mishra, I.; Devlin, R.C.; Capasso, F. Polarization-Insensitive Metalenses at Visible Wavelengths. Nano Lett. 2016, 16, 7229–7234. [Google Scholar] [CrossRef]
- Dong, X.; Cheng, J.; Yuan, Y.; Xing, Z.; Fan, F.; Wang, X.; Chang, S. Arbitrary large-gradient wavefront shaping: From local phase modulation to nonlocal diffraction engineering. Photonics Res. 2022, 10, 896. [Google Scholar] [CrossRef]
- Fattal, D.; Li, J.; Peng, Z.; Fiorentino, M.; Beausoleil, R.G. A silicon lens for integrated free-space optics. In Proceedings of the Advanced Photonics, Toronto, ON, Canada, 12–15 June 2011. [Google Scholar]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 2015, 6, 7069. [Google Scholar] [CrossRef] [PubMed]
- Lalanne, P.; Chavel, P. Metalenses at visible wavelengths: Past, present, perspectives. Laser Photonics Rev. 2017, 11, 3. [Google Scholar] [CrossRef]
- Li, F.; Deng, J.; Zhou, J.; Chu, Z.; Yu, Y.; Dai, X.; Guo, H.; Chen, L.; Guo, S.; Lan, M.; et al. HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses. Sci. Rep. 2020, 10, 6372. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N. Selective Etching and Polymer Deposition on InP Surface in CH4/H2Reactive Ion Etching Using A New Mask Structure for Application to Submicrometer Pitch Grating. Appl. Phys. Express 2010, 3, 066501. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Ruda, H.E.; Navarro, A.Z. Inductively coupled plasma etching of InP using N2/H2. J. Appl. Phys. 2001, 89, 5322–5325. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Ruda, H.E. Inductively coupled plasma etching of InP using CH4/H2 and CH4/H2/N2. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2002, 20, 47–52. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, W.; Yu, F.; Liu, Q.; Guo, Z.; Li, G.; Chen, P.; Lu, W. The Impact of Manufacturing Imperfections on the Performance of Metalenses and a Manufacturing-Tolerant Design Method. Micromachines 2022, 13, 1531. https://doi.org/10.3390/mi13091531
Zhu Y, Wang W, Yu F, Liu Q, Guo Z, Li G, Chen P, Lu W. The Impact of Manufacturing Imperfections on the Performance of Metalenses and a Manufacturing-Tolerant Design Method. Micromachines. 2022; 13(9):1531. https://doi.org/10.3390/mi13091531
Chicago/Turabian StyleZhu, Yicheng, Wenjuan Wang, Feilong Yu, Qingquan Liu, Zilu Guo, Guanhai Li, Pingping Chen, and Wei Lu. 2022. "The Impact of Manufacturing Imperfections on the Performance of Metalenses and a Manufacturing-Tolerant Design Method" Micromachines 13, no. 9: 1531. https://doi.org/10.3390/mi13091531
APA StyleZhu, Y., Wang, W., Yu, F., Liu, Q., Guo, Z., Li, G., Chen, P., & Lu, W. (2022). The Impact of Manufacturing Imperfections on the Performance of Metalenses and a Manufacturing-Tolerant Design Method. Micromachines, 13(9), 1531. https://doi.org/10.3390/mi13091531