Height Uniformity Simulation and Experimental Study of Electroplating Gold Bump for 2.5D/3D Integrated Packaging
Abstract
:1. Introduction
2. Simulation and Experimental Methods
3. Results and Discussion
3.1. Influence of Flow Field
3.1.1. Influence of Inlet Diameter
3.1.2. Influence of Inlet Flow
3.1.3. Influence of Ti Wire Mesh Height
3.1.4. Influence of Ti Wire Mesh Density
3.2. Influence of Electric Field
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, H.W.; Chen, K.N. Development of Low Temperature Cu-Cu Bonding and Hybrid Bonding for Three-Dimensional Integrated Circuits (3D IC). Microelectron. Reliab. 2021, 127, 114412. [Google Scholar] [CrossRef]
- Kabir, A.M.D.; Peng, Y. Holistic Chiplet-Package Co-Optimization for Agile Custom 2.5-D Design. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 715–726. [Google Scholar] [CrossRef]
- Pu, J.; Wang, X.; Xu, R.; Xu, S.; Komvopoulous, K. Highly Flexible, Foldable, and Rollable Microsupercapacitors on an Ultrathin Polyimide Substrate with High Power Density. Microsyst. Nanoeng. 2018, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Smet, V.; Tummala, R. A Review of SiC Power Module Packaging Technologies: Challenges, Advances, and Emerging Issues. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 239–255. [Google Scholar] [CrossRef]
- Ding, C.; Liu, H.; Ngo, D.T.K.; Burgos, R.; Lu, G.Q. A Double-Side Cooled SiC MOSFET Power Module with Sintered-Silver Interposers: I-Design, Simulation, Fabrication, and Performance Characterization. IEEE Trans. Power Electron. 2021, 36, 11672–11680. [Google Scholar] [CrossRef]
- Liu, P.; Tong, L.; Wang, J.; Shi, L.; Tang, H. Challenges and Developments of Copper Wire Bonding Technology. Microelectron. Reliab. 2012, 52, 1092–1098. [Google Scholar] [CrossRef]
- Liu, W.; Mei, Y.; Xie, Y.; Wang, M.; Li, X.; Lu, G.Q. Design and Characterizations of a Planar Multichip Half-Bridge Power Module by Pressureless Sintering of Nanosilver Paste. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 1627–1636. [Google Scholar] [CrossRef]
- Fang, J.W.; Chang, Y.W. Area-I/O Flip-Chip Routing for Chip-Package Co-Design Considering Signal Skews. IEEE Trans. Comput. Aid. D. 2010, 29, 711–721. [Google Scholar] [CrossRef]
- Kam, D.G. Optimization of Flip-Chip Transitions for 60-GHz Packages. IEICE Electron. Expr. 2014, 11, 20140256. [Google Scholar] [CrossRef]
- Wu, P.C.; Ou, S.L.; Horng, R.H.; Wuu, D.S. Improved Performance and Heat Dissipation of Flip-Chip White High-Voltage Light Emitting Diodes. IEEE Trans. Device Mater. Reliab. 2017, 17, 197–203. [Google Scholar] [CrossRef]
- Wu, D.; Tian, W.; Wang, C.; Huo, R.; Wang, Y. Research of Wafer Level Bonding Process Based on Cu-Sn Eutectic. Micromachines 2020, 11, 789. [Google Scholar] [CrossRef]
- Yang, T.F.; Kao, K.S.; Cheng, R.C.; Chang, J.Y.; Zhan, C.J. Evaluation of Cu/SnAg Microbump Bonding Processes for 3D Integration Using Wafer-Level Underfill Film. Solder. Surf. Mt. Technol. 2012, 24, 287–293. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, J.; Ding, G. Modeling and Analysis of TSV Arrays with Different Ground and Signal Distributions in 2.5D/3D Integration Systems. J. Phys. Conf. Ser. 2018, 1087, 052019. [Google Scholar] [CrossRef]
- Lau, J.; Tzeng, P.; Lee, C.; Zhan, C.; Li, M.; Cline, J.; Saito, K.; Hsin, Y.; Chang, P.; Chang, Y.; et al. Redistribution layers (RDLs) for 2.5 D/3D IC integration. Int. Symp. Microelectron. 2013, 2013, 000434–000441. [Google Scholar] [CrossRef]
- Zhang, R.; Meyer, B.H.; Wang, K.; Stan, M.R.; Skadron, K. Tolerating the Consequences of Mutiple EM-Induced C4 Bump Failures. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 2335–2344. [Google Scholar] [CrossRef]
- Noma, H.; Oyama, Y.; Nishiwaki, H.; Takami, M.; Takatani, T.; Toriyama, K.; Orii, Y. Wettability and Reliability for Double-Sided Assembly with Chip Connection (C2) Flip-Chip Technology. Trans. Jpn. Inst. Electron. Packag. 2009, 2, 85–90. [Google Scholar] [CrossRef]
- Chiu, Y.T.; Lin, K.L.; Lai, Y.S. Dissolution of Sn in a SnPb Solder Bump under Current Stressing. J. Appl. Phys. 2012, 111, 043517. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, X.C.; Liu, Y.; Li, H.; Wang, Y. Aging Resistance and Mechanical Properties of Sn3.0Ag0.5Cu Solder Bump Joints with Different Bump Shapes. Rare Met. 2021, 40, 225–230. [Google Scholar] [CrossRef]
- Song, R.W.; Fleshman, C.J.; Wang, Y.C.; Tsai, S.Y.; Duh, J.G. IMC Suppression and Phase Stabilization of Cu/Sn-Bi/Cu Microbump via Zn Doping. Mater. Lett. 2021, 282, 128735. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Wang, L.; Fan, J.; Fan, X.; Sun, F.; Zhang, G. A New Hermetic Sealing Method for Ceramic Package using Nanosilver Sintering Technology. Microelectron. Reliab. 2018, 81, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, H.; Wang, L.; Fan, X.; Zhang, G.; Sun, F. Stress Analysis of Pressure-Assisted Sintering for the Double-Side Assembly of Power Module. Solder. Surf. Mt. Technol. 2019, 31, 20–27. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Zhang, H.; Xue, Y.; Zhou, M.; Cao, R.; Chen, P.; Zeng, X. Plasticity Enhancement of Nano-Ag Sintered Joint based on Metal Foam. J. Mater. Sci. Mater. Electron. 2021, 32, 7187–7197. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhang, H.; Chen, Z.; Zhou, G.; Liu, X.; Zhu, W. The Thermal Cycling Reliability of Copper Pillar Solder Bump in Flip Chip via Thermal Compression Bonding. Microelectron. Reliab. 2020, 104, 113543. [Google Scholar] [CrossRef]
- Wang, F.; Han, L. Experimental Study of Thermosonic Gold Bump Flip-Chip Bonding with a Smooth End Tool. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 930–934. [Google Scholar] [CrossRef]
- Pai, R.S.; Crain, M.M.; Walsh, K.M. Maskless Shaping of Gold Stud Bumps as High Aspect Ratio Microstructures. Microelectron. Eng. 2011, 88, 135–139. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Pan, C.T.; Chen, B.S.; Jian, S.R. Numerical Analysis of the Welding Behaviors in Micro-Copper Bumps. Metals 2021, 11, 460. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Ji, H.; Li, M. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles. ACS Appl. Mater. Inter. 2016, 8, 33289–33298. [Google Scholar] [CrossRef]
- Ren, H.; Wu, F.; Shin, S.; Liu, L.; Zou, G.; Suga, T. Low Temperature Cu Bonding with Large Tolerance of Surface Oxidation. AIP Adv. 2019, 9, 055127. [Google Scholar] [CrossRef]
- Oppermann, H.; Dietrich, L. Nanoporous Gold Bumps for Low Temperature Bonding. Microelectron. Reliab. 2012, 52, 356–360. [Google Scholar] [CrossRef]
- Föhlich, J.; Dietrich, L.; Oppermann, H.; Lang, K.D. Surface Treatment of Gold Bumps for Thermocompression Bonding with Low Temperature and Low Pressure. In Proceedings of the 2018 7th Electronic System-Integration Technology Conference (ESTC), Dresden, Germany, 18–21 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Antelius, M.; Fischer, A.C.; Roxhed, N.; Stemme, G.; Niklaus, F. Room-Temperature Wafer-Level Vacuum Sealing by Compression of High-Speed Wire Bonded Gold Bumps. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 1360–1363. [Google Scholar] [CrossRef]
- Tanida, K.; Umemoto, M.; Tomita, Y.; Tago, M.; Kajiwara, R.; Akiyama, Y.; Takahashi, K. Au Bump Interconnection with Ultrasonic Flip-Chip Bonding in 20 μm Pitch. Jpn. J. Appl. Phys. 2003, 42, 2198–2203. [Google Scholar] [CrossRef]
- Sharma, M.; Pandey, D.; Khosla, D.; Goyal, S.; Pandey, B.K.; Gupta, A.K. Design of a GaN-Based Flip Chip Light Emitting Diode (FC-LED) with Au Bumps & Thermal Analysis with Different Sizes and Adhesive Materials for Performance Considerations. Silicon 2022, 14, 7109–7120. [Google Scholar] [CrossRef]
- Wang, M.; Dai, J.; Wang, F.; Kong, Y. Research on Au/Au Micro-Bump Bonding for Millimeter Wave Frequencies Heterogeneous Integration. In Proceedings of the 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chongqing, China, 15–17 November 2021; pp. 148–150. [Google Scholar] [CrossRef]
- Wu, C.H.; Pearn, W.L.; Tai, Y.T. An Improved Manufacturing Yield Measure for Gold Bumping Processes with Very Low Nonconformities. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 991–997. [Google Scholar] [CrossRef]
- Yoon, J.; Chun, H.; Jung, S. Reliability Evaluation of Au-20Sn Flip Chip Solder Bump Fabricated by Sequential Electroplating Method with Sn and Au. Mat. Sci. Eng. A 2008, 473, 119–125. [Google Scholar] [CrossRef]
- Jung, S.W.; Jung, J.P.; Zhou, Y. Characteristics of Sn-Cu Solder Bump Formed by Electroplating for Flip Chip. IEEE Trans. Electron. Packag. Manuf. 2006, 29, 10–16. [Google Scholar] [CrossRef]
- Hwang, H.; Hong, S.; Jung, J.; Kang, C. Pb-free Solder Bumping for Flip Chip Package by Electroplating. Solder. Surf. Mt. Technol. 2003, 15, 10–16. [Google Scholar] [CrossRef]
- Goh, Y.; Haseeb, A.S.M.A.; Sabri, M.F.M. Effects of Hydroquinone and Gelatin on the Electrodeposition of Sn-Bi Low Temperature Pb-free Solder. Electrochim. Acta 2013, 90, 265–273. [Google Scholar] [CrossRef]
- Cicero, U.L.; Arnone, C.; Barbera, M.; Collura, A.; Lullo, G. Electroplated Indium Bumps as Thermal and Electrical Connections of NTD-Ge Sensors for the Fabrication of Microcalorimeter Arrays. J. Low Temp. Phys. 2012, 167, 535–540. [Google Scholar] [CrossRef]
- Tsai, Y.; Hu, H.; Chen, K. Low Temperature Copper-Copper Bonding of Non-Planarized Copper Pillar with Passivation. IEEE Electron. Device Lett. 2020, 41, 1229–1232. [Google Scholar] [CrossRef]
- Neher, C.; Lander, R.L.; Moskaleva, A.; Pasner, J.; Tripathi, M.; Woods, M. Further Developments in Gold-Stud Bump Bonding. J. Instrum. 2012, 7, C02005. [Google Scholar] [CrossRef]
- Dimitrijevic, S.; Rajčić-Vujasinović, M.; Trujic, V. Non-Cyanide Electrolytes for Gold Plating—A Review. Int. J. Electrochem. Sci. 2013, 8, 6620–6646. [Google Scholar]
- Li, J.D.; Zhang, P.; Wu, Y.H.; Liu, Y.S.; Xuan, M. Uniformity Study of Nickel Thin-Film Microstructure Deposited by Electroplating. Microsyst. Technol. 2009, 15, 505–510. [Google Scholar] [CrossRef]
- Luo, J.K.; Chu, D.P.; Flewitt, A.J.; Spearing, S.M.; Fleck, N.A.; Milne, W.I. Uniformity Control of Ni Thin-Film Microstructures Deposited by Through-Mask Plating. J. Electrochem. Soc. 2005, 152, C36–C41. [Google Scholar] [CrossRef] [Green Version]
Bump Types | Electroplating Parameters | ||
---|---|---|---|
Current Density | Electroplating Time | Electroplating Temperature | |
Au-Sn [36] | 0.5 A/dm2 | 60 min | 50 °C |
1 A/dm2 | 13 min | 50 °C | |
Sn-Cu [37] | 1–8 A/dm2 | 2 h | - |
Sn-Pb [38] | 6 A/dm2 | 3 h | - |
Sn-Ag [38] | 6 A/dm2 | 1 h | - |
Sn-Bi [39] | 10–30 mA/cm2 | - | Room temperature |
In [40] | 0.2 mA/cm2 | 20 min | Room temperature |
Cu [41] | 6 A/dm2 | 5 min | - |
Name | Symbol | Value | Unit |
---|---|---|---|
Au+ concentration in electroplating bath | C0 | 50 | mol/m3 |
Molar mass of deposition (Au) | M | 197 | g/mol |
Conductivity of cathode (Au) | σ1 | 4.52 | S/m |
Thickness of cathode (Au) | S | 8.5 × 10−9 | m |
Conductivity of electroplating bath | σ2 | 37.5 | S/m |
Density of electroplating bath | ρ | 1100 | kg/m3 |
Temperature of electroplating bath | T | 323 | K |
Kinematic viscosity of electroplating bath | μ | 0.001 | Pa·s |
Initial electric potential of anode | Phil | 2 | V |
Equilibrium electric potential | Eeq | 1.69 | V |
height Interval (μm) | 8~9 | 9~10 | 10~11 | 11~12 |
---|---|---|---|---|
numbers | 3 | 180 | 30 | 3 |
average (μm) | - | 9.61 | 10.28 | - |
range (μm) | - | 0.97 | 0.87 | - |
deviance (μm) | - | 0.20 | 0.26 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Li, Z.; Wang, Y.; Zhang, G. Height Uniformity Simulation and Experimental Study of Electroplating Gold Bump for 2.5D/3D Integrated Packaging. Micromachines 2022, 13, 1537. https://doi.org/10.3390/mi13091537
Tian W, Li Z, Wang Y, Zhang G. Height Uniformity Simulation and Experimental Study of Electroplating Gold Bump for 2.5D/3D Integrated Packaging. Micromachines. 2022; 13(9):1537. https://doi.org/10.3390/mi13091537
Chicago/Turabian StyleTian, Wenchao, Zhao Li, Yongkun Wang, and Guoguang Zhang. 2022. "Height Uniformity Simulation and Experimental Study of Electroplating Gold Bump for 2.5D/3D Integrated Packaging" Micromachines 13, no. 9: 1537. https://doi.org/10.3390/mi13091537
APA StyleTian, W., Li, Z., Wang, Y., & Zhang, G. (2022). Height Uniformity Simulation and Experimental Study of Electroplating Gold Bump for 2.5D/3D Integrated Packaging. Micromachines, 13(9), 1537. https://doi.org/10.3390/mi13091537