Design and Fabrication of a Low-Cost, Multiband and High Gain Square Tooth-Enabled Metamaterial Superstrate Microstrip Patch Antenna
Abstract
:1. Introduction
2. Materials and Methods
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, J.; Yang, H.Y.D. Microstrip Patch Antennas on Tunable Electromagnetic Band-Gap Substrates. IEEE Trans. Antennas Propag. 2009, 57, 1612–1617. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.K.; Sorathiya, V.; Sbeah, Z.; Lavadiya, S.; Nguyen, T.K.; Dhasarathan, V. Graphene-Based Tunable Infrared Multi Band Absorber. Opt. Commun. 2020, 474, 126109. [Google Scholar] [CrossRef]
- Divya, C.; Koushick, V. Design and Implementation of Slotted Metamaterial Stacked Microstrip Patch Antenna for Broadband Applications. J. Phys. Conf. Ser. 2020, 1432, 012067. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.J.; Abbas, A.; Kim, T.J.; Kim, N. A Metasurface-Based Low-Profile Wideband Circularly Polarized Patch Antenna for 5G Millimeter-Wave Systems. IEEE Access 2020, 8, 22127–22135. [Google Scholar] [CrossRef]
- Patel, S.K.; Shah, K.H.; Kosta, Y.P. Frequency-Reconfigurable and High-Gain Metamaterial Microstrip-Radiating Structure. Waves Random Complex Media 2019, 29, 523–539. [Google Scholar] [CrossRef]
- Rajak, N.; Chattoraj, N.; Mark, R. Metamaterial Cell Inspired High Gain Multiband Antenna for Wireless Applications. AEU - Int. J. Electron. Commun. 2019, 109, 23–30. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Patel, S.K.; Lavadiya, S.; Parmar, J.; Bui, C.D. Design and Fabrication of Multiband Reconfigurable Copper and Liquid Multiple Complementary Split-Ring Resonator Based Patch Antenna. Waves Random Complex Media 2022, 1–24. [Google Scholar] [CrossRef]
- Piper, B.R.; Bialkowski, M.E. Modelling the Effect of 3D Conformity on Single and Multi-Band Patch Antennas. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Columbus, OH, USA, 22–27 June 2003; Volume 3, pp. 116–119. [Google Scholar]
- Yu, K.; Li, Y.; Wang, Y. Multi-Band Metamaterial-Based Microstrip Antenna for WLAN and WiMAX Applications. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium, ACES, Florence, Italy, 26–30 March 2017; pp. 1–2. [Google Scholar]
- Yoon, C.; Choi, S.H.; Lee, H.C.; Park, H.D. Small Microstrip Patch Antennas with Short-Pin Using a Dual-Band Operation. Microw. Opt. Technol. Lett. 2008, 50, 367–371. [Google Scholar] [CrossRef]
- Ding, Y.; Li, M.Q.; Chang, H.X.; Qin, K. A Dual-Band High Gain Antenna Based on Split Ring Resonators and Corrugated Plate. Prog. Electromagn. Res. Lett. 2014, 44, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Antar, Y.M.M. Microstrip Antenna Design Handbook. IEEE Antennas Propag. Mag. 2003, 45, 86. [Google Scholar] [CrossRef]
- Patel, S.K.; Lavadiya, S.; Kosta, Y.P.; Kosta, M.; Nguyen, T.K.; Dhasarathan, V. Numerical Investigation of Liquid Metamaterial-Based Superstrate Microstrip Radiating Structure. Phys. B Condens. Matter 2020, 585, 412095. [Google Scholar] [CrossRef]
- Lavadiya, S.P.; Sorathiya, V.; Kanzariya, S.; Chavda, B.; Naweed, A.; Faragallah, O.S.; Eid, M.M.A.; Rashed, A.N.Z. Low Profile Multiband Microstrip Patch Antenna with Frequency Reconfigurable Feature Using PIN Diode for S, C, X, and Ku Band Applications. Int. J. Commun. Syst. 2022, 35, e5141. [Google Scholar] [CrossRef]
- Patel, S.K.; Kosta, Y.P. Meandered Multiband Metamaterial Square Microstrip Patch Antenna Design. Waves Random Complex Media 2012, 22, 475–487. [Google Scholar] [CrossRef]
- Godaymi Al-Tumah, W.A.; Shaaban, R.M.; Ahmed, Z.A. A Modified E-Shaped Microstrip Patch Antenna for Dual Band in x-and Ku-Bands Applications. J. Phys. Conf. Ser. 2019, 1234, 012028. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Rahmat-Samii, Y. A Compact Dual Band Circularly Polarized Antenna Design for Mars Rover Mission. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Columbus, OH, USA, 22–27 June 2003; Volume 3, pp. 858–861. [Google Scholar]
- Ismail, M.K.H.; Esa, M. Low Profile Printed Antenna with a Pair of Step-Loading for Dual-Frequency Operation. In Proceedings of the 2003 Asia-Pacific Conference on Applied Electromagnetics, APACE, Shah Alam, Malayasia, 12–14 August 2003; pp. 54–57. [Google Scholar]
- Patel, S.K.; Kosta, Y.P.; Charola, S. Liquid Metamaterial Based Radome Design. Microw. Opt. Technol. Lett. 2018, 60, 2303–2309. [Google Scholar] [CrossRef]
- Viswanadha, K.; Raghava, N.S. Design and Analysis of a Multi-Band Flower Shaped Patch Antenna for WLAN/WiMAX/ISM Band Applications. Wirel. Pers. Commun. 2020, 112, 863–887. [Google Scholar] [CrossRef]
- Lier, E.; Jakobsen, K.R. Rectangular Microstrip Patch Antennas with Infinite and Finite Ground Plane Dimensions. IEEE Trans. Antennas Propag. 1983, 31, 978–984. [Google Scholar] [CrossRef]
- Thai, T.T.; DeJean, G.R.; Tentzeris, M.M. Design and Development of a Novel Compact Soft-Surface Structure for the Front-to-Back Ratio Improvement and Size Reduction of a Microstrip Yagi Array Antenna. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Lavadiya, S.P.; Patel, S.K.; Ahmed, K.; Taya, S.A.; Das, S.; Babu, K.V. Design and Fabrication of Flexible and Frequency Reconfigurable Antenna Loaded with Copper, Distilled Water and Seawater Metamaterial Superstrate for IoT Applications. Int. J. RF Microw. Comput. Eng. 2022, 32, e23481. [Google Scholar] [CrossRef]
- Rajesh, G.S.; Kishore, K.V.; Kumar, V. Multiband Microstrip Patch Antenna Design Using Metamaterial for Airborne SAR System. In Proceedings of the 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, SPICES, Calicut, India, 19–21 February 2015; pp. 1–3. [Google Scholar]
- Sharma, N.; Vyas, K.; Srivastava, R. Analysis and Design of Microstrip Patch Antenna with Two Different Metamaterial Unit Cells. In Flexible Electronics for Electric Vehicles; Springer: Singapore, 2023; pp. 577–588. [Google Scholar]
- Singh, A.K.; Inamdar, K. Fractal CSRR Metamaterial-Based Wearable Antenna for IoT Application. In Emerging Technology Trends in Electronics, Communication and Networking; Springer: Singapore, 2023; pp. 105–117. [Google Scholar]
- Tiwari, D.; Ansari, J.A.; Saroj, A.K.; Kumar, M. Analysis of a Miniaturized Hexagonal Sierpinski Gasket Fractal Microstrip Antenna for Modern Wireless Communications. AEU - Int. J. Electron. Commun. 2020, 123, 153288. [Google Scholar] [CrossRef]
- Patel, S.K.; Argyropoulos, C.; Kosta, Y.P. Broadband Compact Microstrip Patch Antenna Design Loaded by Multiple Split Ring Resonator Superstrate and Substrate. Waves Random Complex Media 2017, 27, 92–102. [Google Scholar] [CrossRef]
- Sumathi, K.; Lavadiya, S.; Yin, P.Z.; Parmar, J.; Patel, S.K. High Gain Multiband and Frequency Reconfigurable Metamaterial Superstrate Microstrip Patch Antenna for C/X/Ku-Band Wireless Network Applications. Wirel. Netw. 2021, 27, 2131–2146. [Google Scholar] [CrossRef]
- Methfesse, S.; Schmidt, L.P. Design of a Balanced-Fed Patch-Excited Horn Antenna at Millimeter-Wave Frequencies. In Proceedings of the EuCAP 2010—The 4th European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–4. [Google Scholar]
- Zhu, H.; Cheung, S.W.; Yuk, T.I.P. Enhancing Antenna Boresight Gain Using a Small Metasurface Lens: Reduction in Half-Power Beamwidth. IEEE Antennas Propag. Mag. 2016, 58, 35–44. [Google Scholar] [CrossRef]
- Latif, S.I.; Shafai, L.; Shafai, C. Gain and Efficiency Enhancement of Compact and Miniaturised Microstrip Antennas Using Multi-Layered Laminated Conductors. IET Microw. Antennas Propag. 2011, 5, 402–411. [Google Scholar] [CrossRef]
- Lavadiya, S.P.; Patel, S.K.; Rayisyan, M. High Gain and Frequency Reconfigurable Copper and Liquid Metamaterial Tooth Based Microstrip Patch Antenna. AEU - Int. J. Electron. Commun. 2021, 137, 153799. [Google Scholar] [CrossRef]
- Slyusar, V.I. Metamaterials on Antenna Solutions. In Proceedings of the International Conference on Antenna Theory and Techniques, Lviv, Ukraine, 6–9 October 2009; pp. 19–24. [Google Scholar]
- Madhav, B.T.P.; Manjeera, M.; Navya, M.S.; Sharada Devi, D.; Sumanth, V. Novel Metamaterial Loaded Multiband Patch Antenna. Indian J. Sci. Technol. 2016, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Palandoken, M. Artificial Materials Based Microstrip Antenna Design. In Microstrip Antennas; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Jaydeep, S.; Sunil, L. An Investigation on Recent Trends in Metamaterial Types and Its Applications. i-Manager’s J. Mater. Sci. 2018, 5, 55. [Google Scholar] [CrossRef]
- Lavadiya, S.; Sorathiya, V.; Das, S. Simulation and Fabrication of High Gain Diffracted Ground-Based Metamaterial Microstrip Patch Antenna for C Band. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2022; Volume 851, pp. 403–412. ISBN 9789811691539. [Google Scholar]
- Jackson, D.R.; Williams, J.T.; Bhattacharyya, A.K.; Smith, R.L.; Buchheit, S.J.; Long, S.A. Microstrip Patch Designs That Do Not Excite Surface Waves. IEEE Trans. Antennas Propag. 1993, 41, 1026–1037. [Google Scholar] [CrossRef]
- Pirhadi, A.; Hakkak, M.; Keshmiri, F. Using Electromagnetic Bandgap Superstrate to Enhance the Bandwidth of Probe-Fed Microstrip Antenna. Prog. Electromagn. Res. 2006, 61, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Fangming, Z.; Qingchun, L.; Jun, H. A Directive Patch Antenna with a Metamaterial Cover. In Proceedings of the Asia-Pacific Microwave Conference Proceedings, APMC, Suzhou, China, 4–7 December 2005; Volume 3, pp. 1–3. [Google Scholar]
- Mosallaei, H.; Sarabandi, K. Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate. IEEE Trans. Antennas Propag. 2004, 52, 2403–2414. [Google Scholar] [CrossRef]
- Mosallaei, H.; Sarabandi, K. A Novel Artificial Reactive Impedance Surface for Miniaturized Wideband Planar Antenna Design: Concept and Characterization. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Columbus, OH, USA, 22–27 June 2003; Volume 2, pp. 403–406. [Google Scholar]
- Patel, S.K.; Lavadiya, S.P.; Parmar, J.; Ahmed, K.; Taya, S.A.; Das, S. Low-Cost, Multiband, High Gain and Reconfigurable Microstrip Radiating Structure Using PIN Diode for 5G/Wi-MAX/WLAN Applications. Phys. B Condens. Matter 2022, 639, 413972. [Google Scholar] [CrossRef]
- Patel, S.K.; Lavadiya, S.P.; Parmar, J.; Das, S.; Ahmed, K.; Taya, S.A. Low-Cost, Compact, and Reconfigurable Antennas Using Complementary Split-Ring Resonator Metasurface for next-Generation Communication Systems. Int. J. Microw. Wirel. Technol. 2022, 1–11. [Google Scholar] [CrossRef]
- D.P. CRC Handbook of Chemistry and Physics: Editor-in-chief D.R. Lide; CRC Press, Boca Raton, FL, USA, 71st edn, 1990–1991, pp. 2324. J. Mol. Struct. 1992, 268, 320. [Google Scholar] [CrossRef]
- Lavadiya, S.P.; Sorathiya, V.; Kanzariya, S.; Chavda, B.; Faragallah, O.S.; Eid, M.M.A.; Rashed, A.N.Z. Design and Verification of Novel Low-Profile Miniaturized Pattern and Frequency Tunable Microstrip Patch Antenna Using Two PIN Diodes. Braz. J. Phys. 2021, 51, 1303–1313. [Google Scholar] [CrossRef]
- Patel, S.K.; Kosta, Y. Investigation on Radiation Improvement of Corner Truncated Triband Square Microstrip Patch Antenna with Double Negative Material. J. Electromagn. Waves Appl. 2013, 27, 819–833. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley and Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
Design | Antenna Design |
---|---|
1 | Connected patch inner and patch outer (CPIO) and split ring resonator with tooth (SWT) |
2 | Connected patch inner and patch outer (CPIO) and split ring resonator without tooth (SWOT) |
3 | Disconnected patch inner and patch outer (DCPIO) and split ring resonator with tooth (SWT) |
4 | Disconnected patch inner and patch outer (DCPIO) and split ring resonator without tooth (SWOT) |
Design | No of Bands | Reflectance Response (S11) | Resonance Frequency (GHz) | VSWR | Bandwidth (GHz) | Starting Point (GHz) | Ending Point (GHz) |
---|---|---|---|---|---|---|---|
CPIO and SWT | 7.00 | −24.78 | 3.33 | 1.15 | 0.02 | 3.32 | 3.34 |
−11.11 | 3.52 | 2.00 | 0.03 | 3.51 | 3.54 | ||
−20.11 | 4.04 | 1.28 | 0.13 | 3.98 | 4.11 | ||
−13.64 | 4.37 | 1.73 | 0.01 | 4.36 | 4.37 | ||
−13.00 | 4.72 | 1.78 | 0.11 | 4.68 | 4.79 | ||
−33.79 | 6.49 | 1.05 | 0.18 | 6.46 | 6.64 | ||
−11.17 | 7.89 | 2.06 | 0.07 | 7.85 | 7.92 | ||
CPIO and SWOT | 6.00 | −13.37 | 2.91 | 1.54 | 0.03 | 2.90 | 2.93 |
−23.80 | 3.46 | 1.13 | 0.02 | 3.45 | 3.47 | ||
−26.30 | 4.05 | 1.10 | 0.11 | 4.00 | 4.11 | ||
−12.93 | 4.73 | 1.58 | 0.06 | 4.70 | 4.76 | ||
−34.54 | 6.52 | 1.03 | 0.16 | 6.50 | 6.66 | ||
−10.00 | 7.71 | 1.96 | 0.02 | 7.70 | 7.72 | ||
DCPIO and SWT | 3.00 | −12.89 | 3.83 | 3.00 | 0.06 | 3.80 | 3.86 |
−10.00 | 7.06 | 6.77 | 0.02 | 7.05 | 7.07 | ||
−13.79 | 8.83 | 2.33 | 0.51 | 8.54 | 9.05 | ||
DCPIO and SWOT | 1.00 | −10.05 | 8.80 | 5.67 | 0.07 | 8.76 | 8.83 |
Design | No of Bands | Reflectance Response (S11) | Resonance Frequency (GHz) | VSWR | Bandwidth (GHz) | Starting Point (GHz) | Ending Point (GHz) |
---|---|---|---|---|---|---|---|
CPIO and SWT | 3.00 | −26.11 | 3.38 | 1.51 | 0.13 | 3.32 | 3.45 |
−15.70 | 4.66 | 5.21 | 0.22 | 4.59 | 4.81 | ||
−12.30 | 5.56 | 8.00 | 0.11 | 5.50 | 5.61 | ||
CPIO and SWOT | 2.00 | −21.52 | 3.39 | 1.18 | 0.06 | 3.36 | 3.42 |
−15.60 | 4.64 | 1.39 | 0.07 | 4.61 | 4.68 | ||
DCPIO and SWT | 3.00 | −10.74 | 6.06 | 1.99 | 0.10 | 6.01 | 6.11 |
−11.00 | 7.27 | 1.83 | 0.24 | 7.17 | 7.41 | ||
−10.89 | 8.49 | 1.87 | 0.20 | 8.40 | 8.60 | ||
DCPIO and SWOT | 1.00 | −10.10 | 8.64 | 2.21 | 0.02 | 8.63 | 8.65 |
Design | Substrate | |
---|---|---|
Rogers RT Duroid 5880 | FR4 | |
CPIO and SWT | 8.57 | 4.54 |
CPIO and SWOT | 8.34 | 3.51 |
DCPIO and SWT | 7.76 | 2.39 |
DCPIO and SWOT | 7.47 | 2.38 |
References | No of Bands | Resonating Frequency (GHz) | Minimum Reflectance Response (S11) | Peak Gain (dB) |
---|---|---|---|---|
[44] | 5 | 4.4, 5, 5.8, 8.05 | −17, −31, −13, −17 | - |
4 | 2.9, 5.1, 5.95, 6.55, 8.3 | −25, −13, −22, −25, −21.5 | - | |
5 | 3.2, 5.5, 6, 6.6, 8.3 | −10, −17, −22, −12, −10 | - | |
[9] | 3 | 3.4, 5.7 | −20, −39 | - |
[35] | 5 | 5.3, 7.5, 9.8, 14.9, 19 | −13, −12, −10, −23, −21 | 8.5 |
[6] | 2 | 5.7, 10.3 | −22, −21 | 6.38 |
[28] | 3 | 4, 4.8, 9 | −26, −16.5, −35 | 3.24 |
Proposed CPIO and SWT structure | 7 | 3.33, 3.52, 4.04, 4.37, 4.72, 6.49, 7.89 | −24.78, −11.11, −20.11, −13.64, −13, −33.79, −11.17 | 8.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliqab, K.; Lavadiya, S.; Alsharari, M.; Armghan, A.; Daher, M.G.; Patel, S.K. Design and Fabrication of a Low-Cost, Multiband and High Gain Square Tooth-Enabled Metamaterial Superstrate Microstrip Patch Antenna. Micromachines 2023, 14, 163. https://doi.org/10.3390/mi14010163
Aliqab K, Lavadiya S, Alsharari M, Armghan A, Daher MG, Patel SK. Design and Fabrication of a Low-Cost, Multiband and High Gain Square Tooth-Enabled Metamaterial Superstrate Microstrip Patch Antenna. Micromachines. 2023; 14(1):163. https://doi.org/10.3390/mi14010163
Chicago/Turabian StyleAliqab, Khaled, Sunil Lavadiya, Meshari Alsharari, Ammar Armghan, Malek G. Daher, and Shobhit K. Patel. 2023. "Design and Fabrication of a Low-Cost, Multiband and High Gain Square Tooth-Enabled Metamaterial Superstrate Microstrip Patch Antenna" Micromachines 14, no. 1: 163. https://doi.org/10.3390/mi14010163
APA StyleAliqab, K., Lavadiya, S., Alsharari, M., Armghan, A., Daher, M. G., & Patel, S. K. (2023). Design and Fabrication of a Low-Cost, Multiband and High Gain Square Tooth-Enabled Metamaterial Superstrate Microstrip Patch Antenna. Micromachines, 14(1), 163. https://doi.org/10.3390/mi14010163