A Novel Isolation Approach for GaN-Based Power Integrated Devices
Abstract
:1. Introduction
2. Structure Description
3. Results and Discussion
3.1. Influence of the High Voltage Applied on the Backside Contact
3.2. Effective Isolation to Mitigate Backside Voltage Influence on the HEMT Device
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Yao, C.; Fu, L.; Zhang, X.; Wang, J. Evaluations and Applications of GaN HEMTs for Power Electronics. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 563–569. [Google Scholar]
- Al Taradeh, N.; Frayssinet, E.; Rodriguez, C.; Morancho, F.; Sonneville, C.; Phung, L.-V.; Soltani, A.; Tendille, F.; Cordier, Y.; Maher, H. Characterization of M-GaN and a-GaN Crystallographic Planes after Being Chemically Etched in TMAH Solution. Energies 2021, 14, 4241. [Google Scholar] [CrossRef]
- Chub, A.; Zdanowski, M.; Blinov, A.; Rabkowski, J. Evaluation of GaN HEMTs for High-Voltage Stage of Isolated DC-DC Converters. In Proceedings of the 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Bydgoszcz, Poland, 29 June–1 July 2016; pp. 375–379. [Google Scholar]
- Su, M.; Chen, C.; Rajan, S. Prospects for the Application of GaN Power Devices in Hybrid Electric Vehicle Drive Systems. Semicond. Sci. Technol. 2013, 28, 074012. [Google Scholar] [CrossRef]
- Heckel, T.; Rettner, C.; Marz, M. Fundamental Efficiency Limits in Power Electronic Systems. In Proceedings of the 2015 IEEE International Telecommunications Energy Conference (INTELEC), Osaka, Japan, 18–22 October 2015; pp. 1–6. [Google Scholar]
- Li, G.; Wang, W.; Yang, W.; Lin, Y.; Wang, H.; Lin, Z.; Zhou, S. GaN-Based Light-Emitting Diodes on Various Substrates: A Critical Review. Rep. Prog. Phys. 2016, 79, 056501. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Tone, K.; Asubar, J.T.; Tokuda, H.; Kuzuhara, M. High Breakdown Voltage AlGaN/GaN HEMTs on Free-Standing GaN Substrate. In Proceedings of the 2015 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 4–5 June 2015; pp. 54–55. [Google Scholar]
- Chakroun, A.; Jaouad, A.; Bouchilaoun, M.; Arenas, O.; Soltani, A.; Maher, H. Normally-off AlGaN/GaN MOS-HEMT Using Ultra-Thin Al0.45 Ga0.55 N Barrier Layer: Normally-off AlGaN/GaN MOS-HEMT. Phys. Status Solidi A 2017, 214, 1600836. [Google Scholar] [CrossRef]
- Rolland, G.; Rodriguez, C.; Gommé, G.; Boucherif, A.; Chakroun, A.; Bouchilaoun, M.; Pepin, M.C.; El Hamidi, F.; Maher, S.; Arès, R.; et al. High Power Normally-OFF GaN/AlGaN HEMT with Regrown p Type GaN. Energies 2021, 14, 6098. [Google Scholar] [CrossRef]
- Sun, M.; Pan, M.; Gao, X.; Palacios, T. Vertical GaN Power FET on Bulk GaN Substrate. In Proceedings of the 2016 74th Annual Device Research Conference (DRC), Newark, DE, USA, 19–22 June 2016; pp. 1–2. [Google Scholar]
- Pépin, M.-C.; Maher, H.; Rodriguez, C.; Soltani, A. Simulation of a Normally off GaN Vertical Fin Power Fet Transistor to Study Its Breakdown Mechanism; Institute of Electronics, Microelectronics and Nanotechnology (IEMN): Villeneuve d’Ascq, France, 2019. [Google Scholar]
- Letellier, A.; Dubois, M.R.; Trovao, J.P.; Maher, H. Gallium Nitride Semiconductors in Power Electronics for Electric Vehicles: Advantages and Challenges. In Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 19–22 October 2015; pp. 1–6. [Google Scholar]
- Cipolletta, G.; D’Avanzo, G.; Delle Femine, A.; Gallo, D.; Landi, C.; Luiso, M. A Laboratory for Testing E-Mobility Power Electronics. In Proceedings of the 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Bologna, Italy, 1–2 July 2021; pp. 82–87. [Google Scholar]
- Zhang, Y.; Sun, M.; Piedra, D.; Hu, J.; Liu, Z.; Lin, Y.; Gao, X.; Shepard, K.; Palacios, T. 1200 V GaN Vertical Fin Power Field-Effect Transistors. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 9.2.1–9.2.4. [Google Scholar]
- Xia, F.; Sun, H.; Liu, Z.; Xia, X.; Tan, X.; Ma, J.; Zhang, M.; Guo, Z. Investigation of High Threshold Voltage E-Mode AlGaN/GaN MIS-HEMT with Triple Barrier Layer. Results Phys. 2021, 25, 104189. [Google Scholar] [CrossRef]
- Mahaboob, I.; Yakimov, M.; Hogan, K.; Rocco, E.; Tozier, S.; Shahedipour-Sandvik, F. Dynamic Control of AlGaN/GaN HEMT Characteristics by Implementation of a p-GaN Body-Diode-Based Back-Gate. IEEE J. Electron Devices Soc. 2019, 7, 581–588. [Google Scholar] [CrossRef]
- Altuntas, P.; Lecourt, F.; Cutivet, A.; Defrance, N.; Okada, E.; Lesecq, M.; Rennesson, S.; Agboton, A.; Cordier, Y.; Hoel, V.; et al. Power Performance at 40 GHz of AlGaN/GaN High-Electron Mobility Transistors Grown by Molecular Beam Epitaxy on Si(111) Substrate. IEEE Electron. Device Lett. 2015, 36, 303–305. [Google Scholar] [CrossRef]
- Synopsys. SentaurusTM Device User Guide. Version K-2015.06; Synopsys: Ottawa, ON, Canada, 2015. [Google Scholar]
- Hwang, Y.-H.; Dong, C.; Hsieh, Y.-L.; Zhu, W.; Ahn, S.; Ren, F.; Pearton, S.J.; Kravchenko, I.I. Improvement of Drain Breakdown Voltage with a Back-Side Gate on AlGaN/GaN High Electron Mobility Transistors. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2015, 33, 042201. [Google Scholar] [CrossRef]
- Dai, P.; Wang, S.; Lu, H. Research on the Reliability of Threshold Voltage Based on GaN High-Electron-Mobility Transistors. Micromachines 2024, 15, 321. [Google Scholar] [CrossRef] [PubMed]
Layer | Thickness (µm) | Doping Concentration (cm−3) |
---|---|---|
GaN Cap | 0.002 | 1 × 1016 |
AlGaN | 0.02 | 1 × 1016 |
n-GaN HEMT Channel | 0.05 | 1 × 1016 |
n-GaN Buffer | 0.5 | 1 × 1016 |
n-GaN Drift | 0.3 | 1 × 1016 |
n+ GaN Isolation | 0.01 | 1 × 1019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaidan, Z.; Al Taradeh, N.; Benjelloun, M.; Rodriguez, C.; Soltani, A.; Tasselli, J.; Isoird, K.; Phung, L.V.; Sonneville, C.; Planson, D.; et al. A Novel Isolation Approach for GaN-Based Power Integrated Devices. Micromachines 2024, 15, 1223. https://doi.org/10.3390/mi15101223
Zaidan Z, Al Taradeh N, Benjelloun M, Rodriguez C, Soltani A, Tasselli J, Isoird K, Phung LV, Sonneville C, Planson D, et al. A Novel Isolation Approach for GaN-Based Power Integrated Devices. Micromachines. 2024; 15(10):1223. https://doi.org/10.3390/mi15101223
Chicago/Turabian StyleZaidan, Zahraa, Nedal Al Taradeh, Mohammed Benjelloun, Christophe Rodriguez, Ali Soltani, Josiane Tasselli, Karine Isoird, Luong Viet Phung, Camille Sonneville, Dominique Planson, and et al. 2024. "A Novel Isolation Approach for GaN-Based Power Integrated Devices" Micromachines 15, no. 10: 1223. https://doi.org/10.3390/mi15101223
APA StyleZaidan, Z., Al Taradeh, N., Benjelloun, M., Rodriguez, C., Soltani, A., Tasselli, J., Isoird, K., Phung, L. V., Sonneville, C., Planson, D., Cordier, Y., Morancho, F., & Maher, H. (2024). A Novel Isolation Approach for GaN-Based Power Integrated Devices. Micromachines, 15(10), 1223. https://doi.org/10.3390/mi15101223