Thiol-SAM Concentration Effect on the Performance of Interdigitated Electrode-Based Redox-Free Biosensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrochemical Characterization of Cysteamine-Functionalized Au-IDEs
2.3. Biofunctionalization
2.4. Non-Faradaic EIS Measurements
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchicchio, E.; De Angelis, A.; Santoni, F.; Carbone, P.; Bianconi, F.; Smeraldi, F. Battery SOC Estimation from EIS Data Based on Machine Learning and Equivalent Circuit Model. Energy 2023, 283, 128461. [Google Scholar] [CrossRef]
- Padha, B.; Verma, S.; Mahajan, P.; Arya, S. Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications. J. Electrochem. Sci. Technol. 2022, 13, 167–176. [Google Scholar] [CrossRef]
- Freire, L.; Ezpeleta, I.; Sanchez, J.; Castro, R. Advanced EIS-Based Sensor for Online Corrosion and Scaling Monitoring in Pipelines of Geothermal Power Plants. Metals 2024, 14, 279. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.C.; Lai, T.Y.; Lin, S.H.; Kuo, P.Y.; Lai, C.H.; Nien, Y.H.; Su, T.Y. Characteristics and Stability of a Flexible Arrayed Uric Acid Biosensor Based on NiO Film Modified by Graphene and Magnetic Beads. IEEE Sens. J. 2021, 21, 7218–7225. [Google Scholar] [CrossRef]
- Assaifan, A.K.; Lloyd, J.S.; Samavat, S.; Deganello, D.; Stanton, R.J.; Teng, K.S. Nanotextured Surface on Flexographic Printed ZnO Thin Films for Low-Cost Non-Faradaic Biosensors. ACS Appl. Mater. Interfaces 2016, 8, 33802–33810. [Google Scholar] [CrossRef]
- Shariati, M. Impedimetric Biosensor for Monitoring Complementary DNA from Hepatitis B Virus Based on Gold Nanocrystals. J. Electrochem. Soc. 2021, 168, 016512. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.H.; Li, C.B.; Ding, Y.F.; Wang, Y.S.; Zhu, W.J.; Wang, J.; Shao, Y.C.; Pan, H.; Wang, X.H. EIS Biosensor Based on a Novel Myoviridae Bacteriophage SEP37 for Rapid and Specific Detection of Salmonella in Food Matrixes. Food Res. Int. 2022, 158, 111479. [Google Scholar] [CrossRef]
- Fedaci, C.; Uygun, H.; Uygun, Z.O.; Akcay, Y. A Novel Biorecognition Receptor Citropin-A Modified Impedimetric Biosensor for Detection of LNCaP Prostate Cancer Cells. Anal. Biochem. 2022, 652, 114772. [Google Scholar] [CrossRef]
- Le, H.T.N.; Kim, D.; Phan, L.T.; Cho, S. Ultrasensitive Capacitance Sensor to Detect Amyloid-Beta 1-40 in Human Serum Using Supramolecular Recognition of β-CD/RGO/ITO Micro-Disk Electrode. Talanta 2022, 237, 122907. [Google Scholar] [CrossRef]
- Assaifan, A.K.; Alqahtani, F.A.; Alnamlah, S.; Almutairi, R.; Alkhammash, H.I. Detection and Real-Time Monitoring of LDL-Cholesterol by Redox-Free Impedimetric Biosensors. BioChip J. 2022, 16, 197–206. [Google Scholar] [CrossRef]
- K’Owino, I.O.; Sadik, O.A. Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring. Electroanalysis 2005, 17, 2101–2113. [Google Scholar] [CrossRef]
- Berggren, C.; Bjarnason, B.; Johansson, G. Capacitive Biosensors. Electroanalysis 2001, 13, 173–180. [Google Scholar] [CrossRef]
- Assaifan, A.K.; Almansour, R.A.; Alessa, J.A.; Alhudaithy, S.; Fakhouri, A.S.; Alsaleh, A.A. Roles of Interdigitated Electrode Geometry in Non-Faradaic Impedimetric Biosensors. J. Electrochem. Soc. 2024, 171, 087515. [Google Scholar] [CrossRef]
- Bhide, A.; Cheeran, S.; Muthukumar, S.; Prasad, S. Enzymatic Low Volume Passive Sweat Based Assays for Multi-Biomarker Detection. Biosensors 2019, 9, 13. [Google Scholar] [CrossRef]
- Abdelrasoul, G.N.; Anwar, A.; MacKay, S.; Tamura, M.; Shah, M.A.; Khasa, D.P.; Montgomery, R.R.; Ko, A.I.; Chen, J. DNA Aptamer-Based Non-Faradaic Impedance Biosensor for Detecting E. coli. Anal. Chim. Acta 2020, 1107, 135–144. [Google Scholar] [CrossRef]
- Sharon, D.; Bennington, P.; Liu, C.; Kambe, Y.; Dong, B.X.; Burnett, V.F.; Dolejsi, M.; Grocke, G.; Patel, S.N.; Nealey, P.F. Interrogation of Electrochemical Properties of Polymer Electrolyte Thin Films with Interdigitated Electrodes. J. Electrochem. Soc. 2018, 165, H1028–H1039. [Google Scholar] [CrossRef]
- Song, P.; Guo, X.Y.; Pan, Y.C.; Shen, S.; Sun, Y.Q.; Wen, Y.; Yang, H.F. Insight in Cysteamine Adsorption Behaviors on the Copper Surface by Electrochemistry and Raman Spectroscopy. Electrochim. Acta 2013, 89, 503–509. [Google Scholar] [CrossRef]
- Gezahagne, H.F.; Brightbill, E.L.; Jin, D.S.; Krishnathas, S.; Brown, B.; Mooney, M.H.; O’Riordan, A.; Creedon, N.; Robinson, C.; Vogel, E.M. Suppression of Impedimetric Baseline Drift for Stable Biosensing. ECS Sens. Plus 2022, 1, 031605. [Google Scholar] [CrossRef]
- Arya, S.K.; Prusty, A.K.; Singh, S.P.; Solanki, P.R.; Pandey, M.K.; Datta, M.; Malhotra, B.D. Cholesterol Biosensor Based on N-(2-Aminoethyl)-3-Aminopropyl-Trimethoxysilane Self-Assembled Monolayer. Anal. Biochem. 2007, 363, 210–218. [Google Scholar] [CrossRef]
- Mulder, W.H.; Sluyters, J.H.; Pajkossy, T.; Nyikos, L. Tafel Current at Fractal Electrodes—Connection with Admittance Spectra. J. Electroanal. Chem. 1990, 285, 103–115. [Google Scholar] [CrossRef]
- Giancarla, A.; Zanoni, C.; Merli, D.; Magnaghi, L.R.; Biesuz, R. A New Cysteamine-Copper Chemically Modified Screen-Printed Gold Electrode for Glyphosate Determination. Talanta 2024, 269, 125436. [Google Scholar] [CrossRef] [PubMed]
- Cardona-Maya, Y.; Socorro, A.B.; Del Villar, I.; Cruz, J.L.; Corres, J.M.; Botero-Cadavid, J.F. Label-Free Wavelength and Phase Detection Based SMS Fiber Immunosensors Optimized with Cladding Etching. Sens. Actuators B-Chem. 2018, 265, 10–19. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Gouveia, C.A.J.; Jorge, P.A.S.; Baldini, F. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors. Biosensors 2017, 7, 23. [Google Scholar] [CrossRef] [PubMed]
Rs (Ω) | Rct (Ω) | Qdl (µF) | n | W (µΩS−1) | CCA (nF) | RCA (Ω) | |
---|---|---|---|---|---|---|---|
Bare Au | 604 | 1388 | 2.062 | 0.895 | 367 | ||
100 nM CA | 601 | 1305 | 1.97 | 0.824 | 325 | 281 | 31 |
1 µM CA | 598 | 285 | 1.63 | 0.502 | 183 | 273 | 50.1 |
10 µM CA | 605 | 261 | 1.48 | 0.43 | 244 | 266 | 67 |
100 µM CA | 599 | 205 | 1.24 | 0.411 | 221 | 260 | 157 |
1 mM CA | 605 | 82 | 1.12 | 0.37 | 252 | 243 | 201 |
10 mM CA | 609 | 39 | 0.423 | 0.35 | 260 | 218 | 211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assaifan, A.K. Thiol-SAM Concentration Effect on the Performance of Interdigitated Electrode-Based Redox-Free Biosensors. Micromachines 2024, 15, 1254. https://doi.org/10.3390/mi15101254
Assaifan AK. Thiol-SAM Concentration Effect on the Performance of Interdigitated Electrode-Based Redox-Free Biosensors. Micromachines. 2024; 15(10):1254. https://doi.org/10.3390/mi15101254
Chicago/Turabian StyleAssaifan, Abdulaziz K. 2024. "Thiol-SAM Concentration Effect on the Performance of Interdigitated Electrode-Based Redox-Free Biosensors" Micromachines 15, no. 10: 1254. https://doi.org/10.3390/mi15101254
APA StyleAssaifan, A. K. (2024). Thiol-SAM Concentration Effect on the Performance of Interdigitated Electrode-Based Redox-Free Biosensors. Micromachines, 15(10), 1254. https://doi.org/10.3390/mi15101254