Microelectronics and Optoelectronic Devices: From Fundamental Research to Advanced Applications

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "E:Engineering and Technology".

Deadline for manuscript submissions: closed (31 July 2024) | Viewed by 10963

Special Issue Editor


E-Mail Website
Guest Editor
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Interests: optoelectronic devices; photodetector; ultrafast spectroscopy; quantum dots; perovskite
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent decades, microelectronics and optoelectronics have received widespread attention from academics and industries and have undergone rapid development in both fundamental research and advanced applications, including high-speed information processing in electronics, sensing, display, lighting, energy harvesting, and communication. Microelectronics and optoelectronics devices are the key to future high-tech life, and their fundamental research and advanced applications are closely related. It is vital to enhance the basic research in microelectronics and optoelectronics to guide the mass production applications of integrated devices. Therefore, this Special Issue aims to present research papers, short communications, and review articles focusing on basic research on microelectronic and optoelectronic devices to reveal the underlying physics or mechanisms, as well as cutting-edge applications to present efficient electronic information processing. This research topic spans a broad variety of subjects in microelectronic and optoelectronic devices, including transistors, diodes, memristors, and their integrated devices for microelectronics, and photodetectors, light-emitting diodes, lasers, and solar cells for optoelectronics.

We look forward to receiving your submissions.

Prof. Dr. Xiao Luo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • optoelectronic devices
  • photodetectors
  • solar cells
  • LED
  • photonic synapses
  • microelectronic devices
  • transistors
  • diodes
  • memristors
  • semiconductor materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 2799 KiB  
Article
Surface Modification of Heterojunction with Intrinsic Thin Layer Solar Cell Electrode with Organosilane
by Bing-Mau Chen, Chih-Hung Chen and Shang-Ping Ying
Micromachines 2024, 15(11), 1339; https://doi.org/10.3390/mi15111339 - 31 Oct 2024
Viewed by 523
Abstract
Solar cell (SC) technologies, which are essential in the transition toward sustainable energy, utilize photovoltaic cells to convert solar energy into electricity. Of the available technologies, heterojunction with intrinsic thin-layer (HIT) solar cells offers high efficiency and reliability. The current study explored the [...] Read more.
Solar cell (SC) technologies, which are essential in the transition toward sustainable energy, utilize photovoltaic cells to convert solar energy into electricity. Of the available technologies, heterojunction with intrinsic thin-layer (HIT) solar cells offers high efficiency and reliability. The current study explored the enhancement of HIT solar cell performance through the use of 3-aminopropyltrimethoxysilane (APTMS) self-assembled monolayers (SAMs) on the surface of the cells’ indium tin oxide (ITO) layer. Photoluminescence mapping revealed greater brightness and photocurrent in the HIT sample treated with APTMS SAMs, with the results indicating more favorable optical and electrical properties. The application of APTMS SAMs led to higher open-circuit voltage, fill factor, maximum power output, and efficiency by passivating the ITO surface and achieving energy level alignment, thereby enhancing the charge carrier dynamics. These findings demonstrate the potential of APTMS SAMs to improve HIT solar cell efficiency and reliability. Full article
Show Figures

Figure 1

9 pages, 2494 KiB  
Article
Utilization of Optical OFDM Modulation on Blue LED VLC Datacom Without Equalization for 4 m Wireless Link
by Yuan-Zeng Lin, Chien-Hung Yeh, Wen-Piao Lin and Chi-Wai Chow
Micromachines 2024, 15(11), 1322; https://doi.org/10.3390/mi15111322 - 30 Oct 2024
Viewed by 478
Abstract
To achieve higher visible light communication (VLC) traffic capacity, using the wide bandwidth light-emitting diode (LED) and spectral efficiency modulation signal, is currently the most commonly used method. In this demonstration, we apply the orthogonal frequency division multiplexing quadrature amplitude modulation (OFDM-QAM) with [...] Read more.
To achieve higher visible light communication (VLC) traffic capacity, using the wide bandwidth light-emitting diode (LED) and spectral efficiency modulation signal, is currently the most commonly used method. In this demonstration, we apply the orthogonal frequency division multiplexing quadrature amplitude modulation (OFDM-QAM) with bit- and power-loading algorithm on single blue LED to achieve >1 Gbit/s VLC capacity, when a 400 MHz bandwidth avalanche photodiode (APD)-based receiver (Rx) is exploited for decoding. Here, the higher sensitivity APD can be applied to compensate for the wireless VLC link length in the proposed LED VLC system, and due to the lower LED illumination (255 to 40 lux), is used for the indoor access network after passing the wireless link length of 1 to 4 m. As a result, using single blue LED can achieve 0.962 to 1.057 Gbit/s OFDM rate with available 400 MHz bandwidth APD in poorly illuminated condition indoors without applying analogy equalization. Full article
Show Figures

Figure 1

11 pages, 5162 KiB  
Article
Thiol-SAM Concentration Effect on the Performance of Interdigitated Electrode-Based Redox-Free Biosensors
by Abdulaziz K. Assaifan
Micromachines 2024, 15(10), 1254; https://doi.org/10.3390/mi15101254 - 12 Oct 2024
Viewed by 711
Abstract
Despite the direct, redox-free and simple detection non-faradaic impedimetric biosensors offer, considerable optimizations are required to enhance their performance for the detection of various biomarkers. Non-faradaic EIS sensors’ performance depends on the interfacial capacitance between a polarized biosensor surface and the tested sample [...] Read more.
Despite the direct, redox-free and simple detection non-faradaic impedimetric biosensors offer, considerable optimizations are required to enhance their performance for the detection of various biomarkers. Non-faradaic EIS sensors’ performance depends on the interfacial capacitance between a polarized biosensor surface and the tested sample solution. Careful engineering and design of the interfacial capacitance is encouraged to magnify the redout signal upon bioreceptor–antigen interactions. One of the methods to achieve this goal is by optimizing the self-assembled monolayer concentration, which has not been reported for non-faradaic impedimetric sensors. Here, the impact of alkanethiolate (cysteamine) concentration on the performance of gold (Au) interdigitated electrode (Au-IDE) biosensors is reported. Six sets of biosensors were prepared, each with a different cysteamine concentration: 100 nM, 1 μM, 10 μM, 100 μM, 1 mM, and 10 mM. The biosensors were prepared for the direct detection of LDL cholesterol by attaching LDL antibodies on top of the cysteamine via a glutaraldehyde cross-linker. As the concentration of cysteamine increased from 100 nM to 100 μM, the sensitivity of the biosensor increased from 6.7 to 16.2 nF/ln (ng/mL). As the cysteamine concentration increased from 100 μM to 10 mM, the sensitivity deteriorated. The limit of detection (LoD) of the biosensor improved as the cysteamine increased from 100 nM to 100 μM (i.e., 400 ng/mL to 59 pg/mL). However, the LoD started to increase to 67 pg/mL and 16 ng/mL for 1 mM and 10 mM cysteamine concentrations, respectively. This shows that the cysteamine concentration has a detrimental effect on redox-free biosensors. The cysteamine layer has to be as thin as possible and uniformly cover the electrode surfaces to maximize positive readout signals and reduce negative signals, significantly improving both sensitivity and LoD. Full article
Show Figures

Figure 1

19 pages, 11191 KiB  
Article
A Highly Linear Ultra-Low-Area-and-Power CMOS Voltage-Controlled Oscillator for Autonomous Microsystems
by Javier de Mena Pacheco, Tomas Palacios, Marek Hempel and Marisa Lopez Vallejo
Micromachines 2024, 15(10), 1193; https://doi.org/10.3390/mi15101193 - 26 Sep 2024
Viewed by 3317
Abstract
Voltage-controlled oscillators (VCOs) can be an excellent means of converting a magnitude into a readable value. However, their design becomes a real challenge for power-and-area-constrained applications, especially when a linear response is required. This paper presents a VCO for smart dust systems fabricated [...] Read more.
Voltage-controlled oscillators (VCOs) can be an excellent means of converting a magnitude into a readable value. However, their design becomes a real challenge for power-and-area-constrained applications, especially when a linear response is required. This paper presents a VCO for smart dust systems fabricated by 65 nm technology. It is designed to minimize leakage, limit high peak currents and provide an output whose frequency variation is linear with the input voltage, while allowing rail-to-rail input range swing. The oscillator occupies 592 μm2, operates in a frequency range from 43 to 53 Hz and consumes a maximum average power of 210 pW at a supply voltage of 1 V and 4 pW at 0.3 V. In addition, the proposed VCO exhibits a quasi-linear response of frequency vs. supply voltage and temperature, allowing easy temperature compensation with complementary to absolute temperature (CTAT) voltage. Full article
Show Figures

Figure 1

10 pages, 7454 KiB  
Article
Optical Properties and Growth Characteristics of 8-Quinolinolato Lithium (Liq) Nano-Layers Deposited by Gas Transport Deposition
by Alexandros Zachariadis, Michalis Chatzidis, Despoina Tselekidou, Olaf Wurzinger, Dietmar Keiper, Peter K. Baumann, Michael Heuken, Kyparisis Papadopoulos, Argiris Laskarakis, Stergios Logothetidis and Maria Gioti
Micromachines 2024, 15(9), 1089; https://doi.org/10.3390/mi15091089 - 28 Aug 2024
Viewed by 727
Abstract
Organometallic complexes containing reactive alkali metals, such as lithium (Li), represent a promising material approach for electron injection layers and electron transport layers (EILs and ETLs) to enhance the performance of Organic Light-Emitting Diodes (OLEDs). 8-Quinolinolato Lithium (Liq) has shown remarkable potential as [...] Read more.
Organometallic complexes containing reactive alkali metals, such as lithium (Li), represent a promising material approach for electron injection layers and electron transport layers (EILs and ETLs) to enhance the performance of Organic Light-Emitting Diodes (OLEDs). 8-Quinolinolato Lithium (Liq) has shown remarkable potential as an EIL and ETL when conveyed in very thin films. Nevertheless, the deposition of nano-layers requires precise control over both thickness and morphology. In this work, we investigate the optical properties and morphological characteristics of Liq thin films deposited via Organic Vapor Phase Deposition (OVPD). Specifically, we present our methodology for analyzing the measured pseudodielectric function <ε(ω)> using Spectroscopic Ellipsometry (SE), alongside the nano-topography of evaporated Liq nano-layers using Atomic Force Microscopy (AFM). This information can contribute to the understanding of the functionality of this material, since ultra-thin Liq interlayers can significantly increase the operational stability of OLED architectures. Full article
Show Figures

Figure 1

16 pages, 3805 KiB  
Article
Machine Learning-Guided Cycle Life Prediction for Electrochromic Devices Based on Deuterium and Water Mixing Solvent
by Yitong Wu, Sifan Kong, Qingxin Yao, Muyun Li, Huayi Lai, Duoyu Sun, Qingyue Cai, Zelin Qiu, Honglong Ning and Yong Zhang
Micromachines 2024, 15(9), 1073; https://doi.org/10.3390/mi15091073 - 26 Aug 2024
Viewed by 1229
Abstract
Electrochromic devices have demonstrated considerable potential in a range of applications, including smart windows and automotive rearview mirrors. However, traditional cycle life testing methods are time-consuming and require significant resources to process a substantial amount of generated data, which presents a significant challenge [...] Read more.
Electrochromic devices have demonstrated considerable potential in a range of applications, including smart windows and automotive rearview mirrors. However, traditional cycle life testing methods are time-consuming and require significant resources to process a substantial amount of generated data, which presents a significant challenge and remains an urgent issue to be addressed. To address this challenge, we proposed the use of Long Short-Term Memory (LSTM) networks to construct a prediction model of the cycle life of electrochromic devices and introduced an interpretable analysis method to further analyze the model’s predictive capabilities. The original dataset used for modeling was derived from preliminary experiments conducted under 1000 cycles of six devices prepared with varying mixing ratios of heavy water (D2O). Furthermore, validation experiments confirmed the feasibility of the D2O mixing strategy, with 83% of the devices exhibiting a high initial transmittance modulation amplitude (ΔT = 43.95%), a rapid response time (tc = 7 s and tb = 8 s), and excellent cyclic stability (ΔT = 44.92% after 1000 cycles). This study is the first to use machine learning techniques to predict the cycle life of electrochromic devices while proposing performance enhancement and experimental time savings for inorganic all-liquid electrochromic devices. Full article
Show Figures

Figure 1

11 pages, 5108 KiB  
Article
A Low-Power Optoelectronic Receiver IC for Short-Range LiDAR Sensors in 180 nm CMOS
by Shinhae Choi, Yeojin Chon and Sung Min Park
Micromachines 2024, 15(9), 1066; https://doi.org/10.3390/mi15091066 - 23 Aug 2024
Viewed by 803
Abstract
This paper presents a novel power-efficient topology for receivers in short-range LiDAR sensors. Conventionally, LiDAR sensors exploit complex time-to-digital converters (TDCs) for time-of-flight (ToF) distance measurements, thereby frequently leading to intricate circuit designs and persistent walk error issues. However, this work features a [...] Read more.
This paper presents a novel power-efficient topology for receivers in short-range LiDAR sensors. Conventionally, LiDAR sensors exploit complex time-to-digital converters (TDCs) for time-of-flight (ToF) distance measurements, thereby frequently leading to intricate circuit designs and persistent walk error issues. However, this work features a fully differential trans-impedance amplifier with on-chip avalanche photodiodes as optical detectors so that the need of the following post-amplifiers and output buffers can be eliminated, thus considerably reducing power consumption. Also, the combination of amplitude-to-voltage (A2V) and time-to-voltage (T2V) converters are exploited to replace the complicated TDC circuit. The A2V converter efficiently processes weak input photocurrents ranging from 1 to 50 μApp which corresponds to a maximum distance of 22.8 m, while the T2V converter handles relatively larger photocurrents from 40 μApp to 5.8 mApp for distances as short as 30 cm. The post-layout simulations confirm that the proposed LiDAR receiver can detect optical pulses over the range of 0.3 to 22.8 m with a low power dissipation of 10 mW from a single 1.8 V supply. This topology offers significant improvements in simplifying the receiver design and reducing the power consumption, providing a more efficient and accurate solution that is highly suitable for short-range LiDAR sensor applications. Full article
Show Figures

Figure 1

17 pages, 4721 KiB  
Article
A Microwave Photonic 2 × 2 IBFD–MIMO Communication System with Narrowband Self-Interference Cancellation
by Ying Ma, Fangjing Shi and Yangyu Fan
Micromachines 2024, 15(5), 593; https://doi.org/10.3390/mi15050593 - 29 Apr 2024
Viewed by 1082
Abstract
Combined in-band full duplex-multiple input multiple output (IBFD–MIMO) technology can significantly improve spectrum efficiency and data throughput, and has broad application prospects in communications, radar, the Internet of Things (IoT), and other fields. Targeting the self-interference (SI) issue in microwave photonic-based IBFD–MIMO communication [...] Read more.
Combined in-band full duplex-multiple input multiple output (IBFD–MIMO) technology can significantly improve spectrum efficiency and data throughput, and has broad application prospects in communications, radar, the Internet of Things (IoT), and other fields. Targeting the self-interference (SI) issue in microwave photonic-based IBFD–MIMO communication systems, a microwave photonic self-interference cancellation (SIC) method applied to the narrowband 2 × 2 IBFD–MIMO communication system was proposed, simulated, and analyzed. An interleaver was used to construct a polarization multiplexing dual optical frequency comb with a frequency shifting effect, generating a dual-channel reference interference signal. The programmable spectrum processor was employed for filtering, attenuation, and phase-shifting operations, ensuring amplitude and phase matching to eliminate the two self-interference (SI) signals. The simulation results show that the single-frequency SIC depth exceeds 45.8 dB, and the narrowband SIC depth under 30 MHz bandwidth exceeds 32.7 dB. After SIC, the desired signal, employing a 4QAM modulation format, can be demodulated with an error vector magnitude (EVM) as low as 4.7%. Additionally, further channel expansion and system performance optimization are prospected. Full article
Show Figures

Figure 1

15 pages, 6041 KiB  
Article
Theoretical Justification of Structural, Magnetoelectronic and Optical Properties in QFeO3 (Q = Bi, P, Sb): A First-Principles Study
by Amna Parveen, Zeesham Abbas, Sajjad Hussain, Shoyebmohamad F. Shaikh, Muhammad Aslam and Jongwan Jung
Micromachines 2023, 14(12), 2251; https://doi.org/10.3390/mi14122251 - 17 Dec 2023
Cited by 9 | Viewed by 1215
Abstract
One of the primary objectives of scientific research is to create state-of-the-art multiferroic (MF) materials that exhibit interconnected properties, such as piezoelectricity, magnetoelectricity, and magnetostriction, and remain functional under normal ambient temperature conditions. In this study, we employed first-principles calculations to investigate how [...] Read more.
One of the primary objectives of scientific research is to create state-of-the-art multiferroic (MF) materials that exhibit interconnected properties, such as piezoelectricity, magnetoelectricity, and magnetostriction, and remain functional under normal ambient temperature conditions. In this study, we employed first-principles calculations to investigate how changing pnictogen elements affect the structural, electronic, magnetic, and optical characteristics of QFeO3 (Q = Bi, P, SB). Electronic band structures reveal that BiFeO3 is a semiconductor compound; however, PFeO3 and SbFeO3 are metallic. The studied compounds are promising for spintronics, as they exhibit excellent magnetic properties. The calculated magnetic moments decreased as we replaced Bi with SB and P in BiFeO3. A red shift in the values of ε2(ω) was evident from the presented spectra as we substituted Bi with Sb and P in BiFeO3. QFeO3 (Q = Bi, P, SB) showed the maximum absorption of incident photons in the visible region. The results obtained from calculating the optical parameters suggest that these materials have a strong potential to be used in photovoltaic applications. Full article
Show Figures

Figure 1

Back to TopTop