Ethanol Production Using Zymomonas mobilis and In Situ Extraction in a Capillary Microreactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Operating Point
2.3. Extraction System
2.4. Cultivation of Zymomonas mobilis
2.4.1. Batch Experiments
2.4.2. Experiments in the CFI
2.5. Analytics
3. Results
3.1. Growth and Ethanol Production in Batch Experiments
3.2. Continuous Flow Experiments in a CFI
3.2.1. Operating Point in the CFI
3.2.2. Growth of Zymomonas mobilis and Ethanol Production in Continuous Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DIN_EN_ISO 10991:2010-03; Mikroverfahrenstechnik—Begriffe (ISO_10991:2009). Dreisprachige Fassung EN_ISO_10991:2009. Beuth Verlag GmbH, DO: Berlin, Germany, 2010.
- Pietrek, P.; Deschner, B.J.; Navarrete, A. Neues von der Mikroverfahrenstechnik. Chem. Ing. Tech. 2018, 90, 1943–1948. [Google Scholar] [CrossRef]
- Kockmann, N. Transport Phenomena in Micro Process Engineering; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kurt, S.K.; Gürsel, I.V.; Hessel, V.; Nigam, K.D.; Kockmann, N. Liquid-liquid Extraction System with Microstructured Coiled Flow Inverter and other Capillary Setups for Single-stage Extraction Applications. Chem. Eng. J. 2016, 284, 764–777. [Google Scholar] [CrossRef]
- Taylor, I. Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 1961, 10, 161. [Google Scholar] [CrossRef]
- Dani, A.; Guiraud, P.; Cockx, A. Local measurement of oxygen transfer around a single bubble by planar laser-induced fuorescence. Chem. Eng. Sci. 2007, 62, 7245–7252. [Google Scholar] [CrossRef]
- Kurt, S.K.; Warnebold, F.; Nigam, K.D.P.; Kockmann, N. Gas-liquid reaction and mass transfer in microstructured coiled flow inverter. Chem. Eng. Sci. 2017, 169, 164–178. [Google Scholar] [CrossRef]
- Meyer, C.; Hoffmann, M.; Schlüter, M. Micro-PIV analysis of gas-liquid Taylor flow in a vertical oriented square shaped fluidic channel. Int. J. Multiph. Flow 2014, 67, 140–148. [Google Scholar] [CrossRef]
- Kreutzer, M.T.; Kapteijn, F.; Moulijn, J.A.; Heiszwolf, J. Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels. Chem. Eng. Sci. 2005, 60, 5895–5916. [Google Scholar] [CrossRef]
- Taha, T.; Cui, Z.F. Hydrodynamics of slug flow inside capillaries. Chem. Eng. Sci. 2004, 59, 1181–1190. [Google Scholar] [CrossRef]
- Roudet, M.; Loubiere, K.; Gourdon, C.; Cabassud, M. Hydrodynamic and mass transfer in inertial gas–liquid flow regimes through straight and meandering millimetric square channels. Chem. Eng. Sci. 2011, 66, 2974–2990. [Google Scholar] [CrossRef]
- Vashisth, S.; Nigam, K.D.P. Liquid-phase residence time distribution for two-phase flow in coiled flow inverter. Ind. Eng. Chem. Res. 2008, 47, 3630–3638. [Google Scholar] [CrossRef]
- Dean, W.R. Xvi: Note on the motion of fluid in a curved pipe. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 1927, 4, 208–223. [Google Scholar] [CrossRef]
- Dean, W.R. Lxxii: The stream-line motion of fluid in a curved pipe (second paper). Lond. Edinb. Dubl. Philos. Mag. J. Sci. 1928, 5, 673–695. [Google Scholar] [CrossRef]
- Dean, W.R.; Hurst, J.M. Note on the motion of fluid in a curved pipe. Mathematika 1959, 6, 77–85. [Google Scholar] [CrossRef]
- Hämmerlin, G. Die Stabilität der Strömung in einem gekrümmten Kanal. Arch. Rational Mech. Anal. 1957, 1, 212–224. [Google Scholar] [CrossRef]
- Guenther, A.; Khan, S.A.; Thalmann, M.; Trachsel, F.; Jensen, K.F. Transport and reaction in microscale segmented gas-liquid flow. Lab Chip 2004, 4, 278–286. [Google Scholar] [CrossRef]
- Haase, S.; Murzin, D.Y.; Salmi, T. Review on hydrodynamics and mass transfer in minichannel wall reactors with gas–liquid taylor flow. Chem. Eng. Res. Des. 2016, 113, 304–329. [Google Scholar] [CrossRef]
- Guenther, A.; Jhunjhunwala, M.; Thalmann, M.; Schmidt, M.A.; Jensen, K.F. Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 2005, 21, 1547–1555. [Google Scholar] [CrossRef]
- Mierka, O.; Münster, R.; Surkamp, J.; Turek, S.; Kockmann, N. Direct numerical simulation of dispersion and mixing in gas-liquid Dean-Taylor flow with influence of a 90° bend. Chem. Eng. Sci. 2024, 301, 120691. [Google Scholar] [CrossRef]
- Wittmann, C.; Liao, J.C. Industrial Biotechnology, Microorganisms, 1. Auflage; WileyVCH: Hoboken, NJ, USA, 2017. [Google Scholar]
- Demain, A.L.; Adrio, J.L. Contributions of microorganisms to industrial biology. Mol. Biotechnol. 2008, 38, 41–55. [Google Scholar] [CrossRef]
- Demain, A.L. Microbial biotechnology. Trends Biotechnol. 2000, 18, 26–31. [Google Scholar] [CrossRef]
- Maheshwari, D.K.; Dubey, R.C.; Saravanamurthu, R. Industrial Exploitation of Microorganisms; I. K. International Publishing House: New Delhi, India, 2010; pp. 1–5. [Google Scholar]
- Schroer, K.; Mackfeld, U.; Tan, A.W.I.; Bringer-Meyer, S.; Heuser, F.; Hummel, W.; Weckbecker, A.; Daussmann, T.; Pfaller, R.; Liese, A.; et al. Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. J. Biotechnol. 2007, 132, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, G.A. Carbohydrate metabolism in Zymomonas mobilis: A catabolic highway with some scenic routes. FEMS Microbiol. Lett. 1996, 145, 301–307. [Google Scholar] [CrossRef]
- Bruce, L.J.; Axford, D.B.; Ciszek, B.; Daugulis, A.J. Extractive fermentation by Zymomonas mobilis and the control of oscillatory behavior. Biotechnol. Lett. 1991, 13, 291–296. [Google Scholar] [CrossRef]
- Bruce, L.J.; Daugulis, A.J. Extractive fermentation by Zymomonas mobilis and the use of solvent mixtures. Biotechnol. Lett. 1992, 14, 71–76. [Google Scholar] [CrossRef]
- Malinowski, J.J.; Daugulis, A.J. Liquid-liquid and vapour-liquid behaviour of oleyl alcohol applied to extractive fermentation processing. Can. J. Chem. Eng. 1993, 71, 431–436. [Google Scholar] [CrossRef]
- Honda, H.; Taya, M.; Kobayashi, T. Ethanol fermentation associated with solvent extraction using immobilized growing cells of Saccharomyces cerevisiae and its lactose-fermentable fusant. J. Chem. Eng. Jpn. 1986, 19, 268–273. [Google Scholar] [CrossRef]
- Offeman, R.D.; Stephenson, S.K.; Franqui, D.; Cline, J.L.; Robertson, G.H.; Orts, W.J. Extraction of ethanol with higher alcohol solvents and their toxicity to yeast. Sep. Purif. Technol. 2008, 63, 444–451. [Google Scholar] [CrossRef]
- DSMZ.de. Medium 10—Zymomonas Medium. Available online: https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium10.pdf (accessed on 10 August 2024).
- Cazetta, M.L.; Celligoi, M.A.P.C.; Buzato, J.B.; Scarmino, I.S. Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresour. Technol. 2007, 98, 2824–2828. [Google Scholar] [CrossRef] [PubMed]
- Panesar, P.S.; Marwaha, S.S.; Kennedy, J.F. Zymomonas mobilis: An alternative ethanol producer. J. Chem. Technol. Biotechnol. 2006, 81, 623–635. [Google Scholar] [CrossRef]
- Shin-Etsu Silicone: The Unique Properties of Silicones. Available online: https://www.shinetsusilicone-global.com/products/type/oil/detail/about/index2.shtml (accessed on 10 August 2024).
- Co, C.P. Solubility of Silicone Fluids. Available online: https://www.clearcoproducts.com/pdf/library/Solubility1.pdf (accessed on 10 August 2024).
- Hellendoorn, L.; van den Heuvel, J.C.; Ottengraf, S.P.P. Kinetics of a co-immobilised system. Prog. Biotechnol. 1996, 11, 479–485. [Google Scholar]
- Rogers, P.L.; Lee, K.J.; Tribe, D.E. Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotech. Lett. 1979, 1, 165–170. [Google Scholar] [CrossRef]
- Würges, K.; Minör, D.; Rao, N.; Lütz, S. Continuous Biocatalytic Processes. Org. Process Res. Dev. 2009, 13, 607–616. [Google Scholar]
- Winand, L.; Theisen, S.; Lütz, S.; Rosenthal, K.; Nett, M. Immobilization of the Amidohydrolase MxcM and Its Application for Biocatalytic Flow Synthesis of Pseudochelin A. Catalysts 2023, 13, 229. [Google Scholar] [CrossRef]
- Santi, M.; Sancineto, L.; Nascimento, V.; Azeredo, J.B.; Orozco, E.V.M.; Andrade, L.H.; Gröger, H.; Santi, C. Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. Int. J. Mol. Sci. 2021, 22, 990. [Google Scholar] [CrossRef]
- Ruscoe, R.E.; Cosgrove, S.C. Future directions in flow biocatalysis: The impact of new technology on sustainability. Curr. Opin. Green Sustain. Chem. 2024, 49, 100954. [Google Scholar] [CrossRef]
Component | Concentration [g L−1] |
---|---|
Glucose | 20 |
Yeast extract | 10 |
Peptone | 10 |
Component | Concentration [g L−1] |
---|---|
Glucose | 200 |
Yeast extract | 10 |
Peptone | 5 |
(NH4)2SO4 | 1 |
KH2PO4 | 2 |
MgSO4 7H2O | 5 |
FeSO4 | 0.5 |
Agar-Agar | 2 |
Chemical | Manufacturer | Purity |
---|---|---|
Yeast extract | VWR Chemicals | For microbiology |
Peptone | Carl Roth GmbH | For microbiology |
Potassium hydrogen phosphate | Carl Roth GmbH | >98% |
Ammonium sulfate | Carl Roth GmbH | >99.5% |
Magnesium sulfate heptahydrate | Carl Roth GmbH | >99% |
Iron(II) sulfate heptahydrate | Fluka | >99% |
cis-9-octadecenol | Sigma-Aldrich | >80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surkamp, J.; Wellmann, L.; Lütz, S.; Rosenthal, K.; Kockmann, N. Ethanol Production Using Zymomonas mobilis and In Situ Extraction in a Capillary Microreactor. Micromachines 2024, 15, 1255. https://doi.org/10.3390/mi15101255
Surkamp J, Wellmann L, Lütz S, Rosenthal K, Kockmann N. Ethanol Production Using Zymomonas mobilis and In Situ Extraction in a Capillary Microreactor. Micromachines. 2024; 15(10):1255. https://doi.org/10.3390/mi15101255
Chicago/Turabian StyleSurkamp, Julia, Lennart Wellmann, Stephan Lütz, Katrin Rosenthal, and Norbert Kockmann. 2024. "Ethanol Production Using Zymomonas mobilis and In Situ Extraction in a Capillary Microreactor" Micromachines 15, no. 10: 1255. https://doi.org/10.3390/mi15101255
APA StyleSurkamp, J., Wellmann, L., Lütz, S., Rosenthal, K., & Kockmann, N. (2024). Ethanol Production Using Zymomonas mobilis and In Situ Extraction in a Capillary Microreactor. Micromachines, 15(10), 1255. https://doi.org/10.3390/mi15101255