A Cross-Scale Electrothermal Co-Simulation Approach for Power MOSFETs at Device–Package–Heatsink–Board Levels
Abstract
:1. Introduction
2. Methodology
3. Simulation Results and Analysis
3.1. Device–Package-Level Co-Simulation
3.2. Device–Package–Heatsink–Board-Level Co-Simulation
3.3. Device–Package–Heatsink–Board-Level Parameter Analysis
4. Experimental
4.1. The Variation in Drain Current
4.2. The Variation in Chip Temperature
4.3. Comparison of Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarkar, T.; Challa, A.; Huang, K.; Venkatraman, P.; Probst, D. Application-driven device/circuit co-simulation framework for power MOSFET design and technology development. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 288–291. [Google Scholar] [CrossRef]
- Anghel, C.; Gillon, A.R.; Ionescu, M. Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETs. IEEE Electron. Device Lett. 2004, 25, 141–143. [Google Scholar] [CrossRef]
- Stefanov, E.N.; Escoffier, R.; Blondel, G.; Rouleau, B. Self-heating analysis of power MOSFET module during burn-in test. In Proceedings of the 2011 IEEE 23th International Symposium on Power Semiconductor Devices and ICs (ISPSD), San Diego, CA, USA, 23–26 May 2011; pp. 23–26. [Google Scholar] [CrossRef]
- Gaska, R.; Osinsky, A.; Yang, J.W.; Shur, M.S. Self-heating in high-power AlGaN-GaN HFETs. IEEE Electron. Device Lett. 1998, 19, 89–91. [Google Scholar] [CrossRef]
- Choi, S.; Graham, S.; Chowdhury, S.; Heller, E.R.; Tadjer, M.J.; Moreno, G.; Narumanchi, S. A perspective on the electro-thermal co-design of ultra-wide bandgap lateral devices. Appl. Phys. Lett. 2021, 119, 170501. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Z.; Buttay, C.; Ngo, K.; Lu, G.-Q. Improved Measurement Accuracy for Junction-to-Case Thermal Resistance of GaN HEMT Packages by Gate-to-Gate Electrical Resistance and Stacking Thermal Interface Materials. IEEE Trans. Power Electron. 2022, 37, 6285–6289. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, H.; Li, W.; He, X.; Iannuzzo, F.; Blaabjerg, F. Analytical and Experimental Investigation on A Dynamic Thermo-Sensitive Electrical Parameter With Maximum dIC/dt During Turn-off for High Power Trench Gate/Field-Stop IGBT Modules. IEEE Trans. Power Electron. 2017, 32, 6394–6404. [Google Scholar] [CrossRef]
- Shi, B.; Feng, S.; Shi, L.; Shi, D.; Zhang, Y.; Zhu, H. Junction Temperature Measurement Method for Power mosfets Using Turn-On Delay of Impulse Signal. IEEE Trans. Power Electron. 2018, 33, 5274–5282. [Google Scholar] [CrossRef]
- Zhang, Z.; Dyer, J.; Wu, X.; Wang, F.; Costinett, D.; Tolbert, L.M.; Blalock, B.J. Online Junction Temperature Monitoring Using Intelligent Gate Drive for SiC Power Devices. IEEE Trans. Power Electron. 2019, 34, 7922–7932. [Google Scholar] [CrossRef]
- Qin, Y.; Albano, B.; Spencer, J.; Lundh, J.S.; Wang, B.; Buttay, C.; Tadjer, M.; DiMarino, C.; Zhang, Y. Thermal management and packaging of wide and ultra-wide bandgap power devices: A review and perspective. J. Phys. D Appl. Phys. 2023, 56, 093001. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.; Sasaki, K.; Ye, J.; Zhang, Y. Recent progress of Ga2O3 power technology: Large-area devices, packaging and applications. Jpn. J. Appl. Phys. 2023, 62, SF0801. [Google Scholar] [CrossRef]
- Alam, M.A.; Mahajan, B.K.; Chen, Y.-P.; Ahn, W.; Jiang, H.; Shin, S.H. A Device-to-System Perspective Regarding Self-Heating Enhanced Hot Carrier Degradation in Modern Field-Effect Transistors: A Topical Review. IEEE Trans. Electron. Devices 2019, 66, 4556–4565. [Google Scholar] [CrossRef]
- Albano, B.; Wang, B.; Zhang, Y.; DiMarino, C. Electro-Thermal Device-Package Co-Design for Ultra-Wide Bandgap Gallium Oxide Power Devices. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Chvala, A.; Donoval, D.; Satka, A.; Molnar, M.; Marek, J.; Pribytny, P. Advanced Methodology for Fast 3-D TCAD Device/Circuit Electrothermal Simulation and Analysis of Power HEMTs. IEEE Trans. Electron. Devices 2015, 62, 828–834. [Google Scholar] [CrossRef]
- Chvala, A.; Donoval, D.; Molnar, M.; Marek, J.; Pribytny, P. Advanced methodology for fast 3-D TCAD electrothermal simulation of power HEMTs including package. In Proceedings of the 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, DC, USA, 9–11 September 2015; pp. 116–119. [Google Scholar] [CrossRef]
- Chvala, A.; Benko, P.; Pribytny, P.; Marek, J.; Donoval, D. 3-D device and circuit electrothermal simulations of power integrated circuit including package. In Proceedings of the 2016 11th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM), Smolenice, Slovakia, 13–16 November 2016; pp. 165–168. [Google Scholar] [CrossRef]
- Holland, S.; Röver, M.; Kühl, H.-J.; Witt, H.-J.; Quade, R. Thermal aware design methodology for small signal discrete products. In Proceedings of the 18th International Workshop on THERMal INvestigation of ICs and Systems, Budapest, Hungary, 25–27 September 2012; pp. 1–6. [Google Scholar]
- Nallet, F.; Silvestri, L.; Cilento, T.; Yun, C.-S.; Holland, S.; Röver, M. TCAD simulation methodology for electrothermal analysis of discrete devices including package. In Proceedings of the 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Waikoloa, HI, USA, 15–19 June 2014; pp. 334–337. [Google Scholar] [CrossRef]
- Rencz, M.; Szekely, V.; Poppe, A. A Methodology for the Co-Simulation of Dynamic Compact Models of Packages With the Detailed Models of Boards. IEEE Trans. Comp. Packag. Technol. 2007, 30, 367–374. [Google Scholar] [CrossRef]
- Gorecki, K.; Gorecki, P.; Zarebski, J. Measurements of Parameters of the Thermal Model of the IGBT Module. IEEE Trans. Instrum. Meas. 2019, 68, 4864–4875. [Google Scholar] [CrossRef]
- Górecki, K.; Górecki, P. Nonlinear Compact Thermal Model of the IGBT Dedicated to SPICE. IEEE Trans. Power Electron. 2020, 35, 13420–13428. [Google Scholar] [CrossRef]
- Poppe, A.; Zhang, Y.; Wilson, J.; Farkas, G.; Szabó, P.; Parry, J.; Rencz, M.; Székely, V. Thermal Measurement and Modeling of Multi-Die Packages. IEEE Trans. Comp. Packag. Technol. 2009, 32, 484–492. [Google Scholar] [CrossRef]
- Borghese, A.; Catalano, A.P.; Riccio, M.; Codecasa, L.; Fayyaz, A.; d’Alessandro, V.; Castellazzi, A.; Maresca, L.; Breglio, G.; Irace, A. An Efficient Simulation Methodology to Quantify the Impact of Parameter Fluctuations on the Electrothermal Behavior of Multichip SiC Power Modules. MSF 2019, 963, 855–858. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Wu, Y.; Zhang, J.; Wang, L.; Liu, J. Chip-Level Electrothermal Stress Calculation Method of High-Power IGBT Modules in System-Level Simulation. IEEE Trans. Power Electron. 2022, 37, 10546–10561. [Google Scholar] [CrossRef]
- Lu, Y.; Xiang, E.; Zhu, A.; Gao, H.; Luo, H.; Yang, H.; Zhao, R. Physics-Based Electrothermal Stress Evaluation Approach of IGBT Modules Combined with Artificial Neural Network Model. IEEE Open J. Power Electron. 2023, 4, 740–751. [Google Scholar] [CrossRef]
- Chiozzi, D.; Bernardoni, M.; Delmonte, N.; Cova, P. A Neural Network Based Approach to Simulate Electrothermal Device Interaction in SPICE Environment. IEEE Trans. Power Electron. 2019, 34, 4703–4710. [Google Scholar] [CrossRef]
- De Falco, G.; Riccio, M.; Breglio, G.; Irace, A. Thermal-aware design and fault analysis of a DC/DC parallel resonant converter. Microelectron. Reliab. 2014, 54, 1833–1838. [Google Scholar] [CrossRef]
- Silvaco International Ltd. ATLAS User’s Manual, Version-2012.05; Silvaco International Ltd.: Santa Clara, CA, USA, 2012.
- Lombardi, C.; Manzini, S.; Saporito, A.; Vanzi, M. A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1988, 7, 1164–1171. [Google Scholar] [CrossRef]
- Joyce, W.B.; Dixon, R.W. Analytic approximations for the Fermi energy of an ideal Fermi gas. Appl. Phys. Lett. 1977, 31, 354–356. [Google Scholar] [CrossRef]
- Hall, R.N. Electron-Hole Recombination in Germanium. Phys. Rev. 1952, 87, 387. [Google Scholar] [CrossRef]
- Shockley, W.; Read, W.T. Statistics of the Recombinations of Holes and Electrons. Phys. Rev. 1952, 87, 835–842. [Google Scholar] [CrossRef]
- Neamen, D.A.; Dhrubes, B. Semiconductor Physics and Devices; McGraw-Hill Higher Education: New York, NY, USA, 2011. [Google Scholar]
- Baliga, B.J. Fundamentals of Power Semiconductor Devices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
Layer | Geometric Size [mm3] | Thermal Material | Thermal Conductivity [W/(m·K)] |
---|---|---|---|
Chip | 4.1 × 3.1 × 0.16 | Si | 148 |
Die-attach solder | 4.1 × 3.1 × 0.06 | Pb92.5Sn5Ag2.5 | 26 |
Lead frame | / | Cu | 387 |
Pin | / | Cu | 387 |
Encapsulant | / | Epoxy resin | 2 |
Level Setting | Geometric Size [mm3] | Thermal Material | Thermal Conductivity [W/(m·K)] |
---|---|---|---|
Heatsink | 25 × 36 × 16 | Al | 205 |
PCB board | 100 × 100 × 2 | Cu/FR-4 | 387/0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Yao, J.; Chen, J.; Qian, Q.; Zhang, M.; Zhang, J.; Yao, Q.; Huang, C.; Sun, M.; Guo, Y. A Cross-Scale Electrothermal Co-Simulation Approach for Power MOSFETs at Device–Package–Heatsink–Board Levels. Micromachines 2024, 15, 1336. https://doi.org/10.3390/mi15111336
Dai Y, Yao J, Chen J, Qian Q, Zhang M, Zhang J, Yao Q, Huang C, Sun M, Guo Y. A Cross-Scale Electrothermal Co-Simulation Approach for Power MOSFETs at Device–Package–Heatsink–Board Levels. Micromachines. 2024; 15(11):1336. https://doi.org/10.3390/mi15111336
Chicago/Turabian StyleDai, Yuxuan, Jiafei Yao, Jing Chen, Qingyou Qian, Maolin Zhang, Jun Zhang, Qing Yao, Chenyang Huang, Mingshun Sun, and Yufeng Guo. 2024. "A Cross-Scale Electrothermal Co-Simulation Approach for Power MOSFETs at Device–Package–Heatsink–Board Levels" Micromachines 15, no. 11: 1336. https://doi.org/10.3390/mi15111336
APA StyleDai, Y., Yao, J., Chen, J., Qian, Q., Zhang, M., Zhang, J., Yao, Q., Huang, C., Sun, M., & Guo, Y. (2024). A Cross-Scale Electrothermal Co-Simulation Approach for Power MOSFETs at Device–Package–Heatsink–Board Levels. Micromachines, 15(11), 1336. https://doi.org/10.3390/mi15111336