Neural Network Methods in the Development of MEMS Sensors
Abstract
:1. Introduction
2. Overview of the Development of MEMS Sensors
3. NN Methods in the Design of MEMS Sensors
3.1. NN Methods in Dimension Optimization
3.2. NN Methods in Geometrical Design
3.3. Discussions on the Design Works
4. NN Methods in the Fabrication of MEMS Sensors
4.1. NN Methods in the Determination of Mask Layout and Fabrication Process
4.2. NN Methods in the Detection of Fabrication Defects
4.3. Brief Discussion
5. NN Methods in the Calibration and Compensation of MEMS Sensors
5.1. NN Methods in Compensation
5.2. NN Methods in Calibration
5.2.1. Inferring the Measurand Parameters
5.2.2. Material Identification
5.2.3. Data Supplement in the Calibration
5.3. Brief Summary and Discussion
6. Challenges
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bogue, R. MEMS sensors: Past, present and future. Sens. Rev. 2007, 27, 7–13. [Google Scholar] [CrossRef]
- Ciuti, G.; Ricotti, L.; Menciassi, A.; Dario, P. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy. Sensors 2015, 15, 6441–6468. [Google Scholar] [CrossRef] [PubMed]
- Gad-el-Hak, M. MEMS: Introduction and Fundamentals; CRC press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Gad-el-Hak, M. MEMS: Design and Fabrication; CRC press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Nihtianov, S.; Luque, A. Smart Sensors and MEMS: Intelligent Sensing Devices and Microsystems for Industrial Applications; Woodhead Publishing: Sawston, UK, 2018. [Google Scholar]
- Marco, S.; Samitier, J.; Ruiz, O.; Morante, J.R.; Esteve, J. High-performance piezoresistive pressure sensors for biomedical applications using very thin structured membranes. Meas. Sci. Technol. 1996, 7, 1195–1203. [Google Scholar] [CrossRef]
- Niu, Z.; Zhao, Y.; Tian, B. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity. Rev. Sci. Instrum. 2014, 85, 015001. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Zhao, Y.; Jiang, Z.; Zhang, L.; Liao, N.; Liu, Y.; Meng, C. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS). Sensors 2009, 9, 1382–1393. [Google Scholar] [CrossRef]
- Yu, Z.; Meng, X.; Jiang, Z.; Zhao, Y.; Tian, B. Absolute micro pressure measurements based on a high-overload-resistance sensor. Micro Nano Lett. 2012, 7, 1180–1183. [Google Scholar] [CrossRef]
- Xu, T.; Zhao, L.; Jiang, Z.; Guo, X.; Ding, J.; Xiang, W.; Zhao, Y. A high sensitive pressure sensor with the novel bossed diaphragm combined with peninsula-island structure. Sens. Actuators A Phys. 2016, 244, 66–76. [Google Scholar] [CrossRef]
- Li, C.; Cordovilla, F.; Ocana, J.L. Annularly grooved membrane combined with rood beam piezoresistive pressure sensor for low pressure applications. Rev. Sci. Instrum. 2017, 88, 035002. [Google Scholar] [CrossRef]
- Tran, A.V.; Zhang, X.; Zhu, B. The Development of a New Piezoresistive Pressure Sensor for Low Pressures. IEEE Trans. Ind. Electron. 2018, 65, 6487–6496. [Google Scholar] [CrossRef]
- Tian, B.; Zhao, Y.; Jiang, Z. The novel structural design for pressure sensors. Sens. Rev. 2010, 30, 305–313. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, Y.; Li, L.; Li, C.; Meng, X.; Tian, B. Design optimization of a high-sensitive absolute micro-pressure sensor. Sens. Rev. 2014, 34, 312–318. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, X.; Yang, H.; Qin, H.; Wang, W. Structural Engineering in Piezoresistive Micropressure Sensors: A Focused Review. Micromachines 2023, 14, 1507. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.A.; Green, B.J. Wisdom in the Age of AI Education. Postdigital Sci. Educ. 2024, 1–23. [Google Scholar] [CrossRef]
- Lin, Z. Techniques for supercharging academic writing with generative AI. Nat. Biomed. Eng. 2024, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Grimes, M.; von Krogh, G.; Feuerriegel, S.; Rink, F.; Gruber, M. From Scarcity to Abundance: Scholars and Scholarship in an Age of Generative Artificial Intelligence. Acad. Manag. J. 2023, 66, 1617–1624. [Google Scholar] [CrossRef]
- Elbadawi, M.; Li, H.; Basit, A.W.; Gaisford, S. The role of artificial intelligence in generating original scientific research. Int. J. Pharm. 2024, 652, 123741. [Google Scholar] [CrossRef]
- Wang, H.; Fu, T.; Du, Y.; Gao, W.; Huang, K.; Liu, Z.; Chandak, P.; Liu, S.; Van Katwyk, P.; Deac, A.; et al. Scientific discovery in the age of artificial intelligence. Nature 2023, 620, 47–60. [Google Scholar] [CrossRef]
- Alanazi, A. Using machine learning for healthcare challenges and opportunities. Inform. Med. Unlocked 2022, 30, 100924. [Google Scholar] [CrossRef]
- Nitski, O.; Azhie, A.; Qazi-Arisar, F.A.; Wang, X.; Ma, S.; Lilly, L.; Watt, K.D.; Levitsky, J.; Asrani, S.K.; Lee, D.S.; et al. Long-term mortality risk stratification of liver transplant recipients: Real-time application of deep learning algorithms on longitudinal data. Lancet Digit. Health 2021, 3, e295–e305. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Wang, R.; Liu, Z.; Wang, M.; Tan, H.; Wu, Y.; Liu, X.; Sun, H.; Yang, R.; et al. Annotation-efficient deep learning for automatic medical image segmentation. Nat. Commun. 2021, 12, 5915. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Guo, W.; Liu, H.; Li, X.; Zhang, Q.; Du, Z.; Hu, G.; Han, X.; Pu, L.; et al. A deep learning approach to automate whole-genome prediction of diverse epigenomic modifications in plants. New Phytol. 2021, 232, 880–897. [Google Scholar] [CrossRef] [PubMed]
- Bayer, P.E.; Edwards, D. Machine learning in agriculture: From silos to marketplaces. Plant Biotechnol. J. 2021, 19, 648–650. [Google Scholar] [CrossRef] [PubMed]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Sha, W.; Guo, Y.; Yuan, Q.; Tang, S.; Zhang, X.; Lu, S.; Guo, X.; Cao, Y.-C.; Cheng, S. Artificial Intelligence to Power the Future of Materials Science and Engineering. Adv. Intell. Syst. 2020, 2, 1900143. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, Y.; Kuo, J.-H.; Deng, H.; Cui, F.; Zhang, Z.; Zhang, M.; Zhao, C.; Gao, X.; Zhou, T.; et al. Toward smarter management and recovery of municipal solid waste: A critical review on deep learning approaches. J. Clean. Prod. 2022, 346, 130943. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Y.; Zhao, J.; Liu, J.; Chung, C.Y. Hybrid Deep Learning for Dynamic Total Transfer Capability Control. IEEE Trans. Power Syst. 2021, 36, 2733–2736. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, S.; Liu, Z.; Li, T.; Li, C.; Huang, X.L.; Wang, C.; Xie, Z.; Al-Hartomy, O.A.; Al-Ghamdi, A.A.; et al. The rise of AI optoelectronic sensors: From nanomaterial synthesis, device design to practical application. Mater. Today Phys. 2022, 27, 100812. [Google Scholar] [CrossRef]
- Huang, S.; Croy, A.; Ibarlucea, B.; Cuniberti, G. Machine Learning-Driven Gas Identification in Gas Sensors. In Machine Learning for Advanced Functional Materials; Joshi, N., Kushvaha, V., Madhushri, P., Eds.; Springer: Singapore, 2023; pp. 21–41. [Google Scholar]
- Yang, S.; Lei, G.; Xu, H.; Lan, Z.; Wang, Z.; Gu, H. A Review of the High-Performance Gas Sensors Using Machine Learning. In Machine Learning for Advanced Functional Materials; Joshi, N., Kushvaha, V., Madhushri, P., Eds.; Springer: Singapore, 2023; pp. 163–198. [Google Scholar]
- Haq, M.A.U.; Armghan, A.; Aliqab, K.; Alsharari, M. A Review of Contemporary Microwave Antenna Sensors: Designs, Fabrication Techniques, and Potential Application. IEEE Access 2023, 11, 40064–40074. [Google Scholar] [CrossRef]
- Sheikhi, A.; Bazgir, M.; Dowlatshahi, M.B. Optimization and Machine Learning Algorithms for Intelligent Microwave Sensing: A Review. In Handbook of Formal Optimization; Anand, J., Kulkarni, A.H.G., Eds.; Springer: Singapore, 2024; pp. 1–33. [Google Scholar]
- Ali Alizadeh, O.A.S.; Alireza, B.; Novinzadeh. Artificial intelligence-driven optimization of MEMS navigation sensors for enhanced user experience. RUDN J. Eng. Res. 2023, 24, 305–322. [Google Scholar] [CrossRef]
- Wang, J.; Xu, B.; Shi, L.; Zhu, L.; Wei, X. Prospects and Challenges of AI and Neural Network Algorithms in MEMS Microcantilever Biosensors. Processes 2022, 10, 1658. [Google Scholar] [CrossRef]
- Ha, N.; Xu, K.; Ren, G.; Mitchell, A.; Ou, J.Z. Machine Learning-Enabled Smart Sensor Systems. Adv. Intell. Syst. 2020, 2, 2000063. [Google Scholar] [CrossRef]
- Warden, P.; Stewart, M.; Plancher, B.; Katti, S.; Reddi, V.J. Machine Learning Sensors. Commun. ACM 2023, 66, 25–28. [Google Scholar] [CrossRef]
- Ballard, Z.; Brown, C.; Madni, A.M.; Ozcan, A. Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 2021, 3, 556–565. [Google Scholar] [CrossRef]
- Zhao, W.; Bhushan, A.; Santamaria, A.; Simon, M.; Davis, C. Machine Learning: A Crucial Tool for Sensor Design. Algorithms 2008, 1, 130–152. [Google Scholar] [CrossRef]
- Podder, I.; Fischl, T.; Bub, U. Artificial Intelligence Applications for MEMS-Based Sensors and Manufacturing Process Optimization. Telecom 2023, 4, 165–197. [Google Scholar] [CrossRef]
- Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Ebrahimi Warkiani, M.; Asadnia, M. Design and applications of MEMS flow sensors: A review. Sens. Actuators A Phys. 2019, 295, 483–502. [Google Scholar] [CrossRef]
- Fraden, J. Handbook of Modern Sensors: Physics, Designs, and Applications, 5th ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Jack, W.J. Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart Mater. Struct. 2001, 10, 1115. [Google Scholar] [CrossRef]
- Barlian, A.A.; Park, W.T.; Mallon, J.R.; Rastegar, A.J.; Pruitt, B.L. Review: Semiconductor Piezoresistance for Microsystems. Proc. IEEE 2009, 97, 513–552. [Google Scholar] [CrossRef] [PubMed]
- Tadigadapa, S.; Mateti, K. Piezoelectric MEMS sensors: State-of-the-art and perspectives. Meas. Sci. Technol. 2009, 20, 092001. [Google Scholar] [CrossRef]
- Algamili, A.S.; Khir, M.H.M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Ba Hashwan, S.S.; Junaid, M.M. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef]
- Fischer, A.C.; Forsberg, F.; Lapisa, M.; Bleiker, S.J.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015, 1, 15005. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.B.; Dong, B.; Lee, C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, T.; He, Z.; Ye, J.; Gong, S.; Wang, X.; Yang, Y. The High-Efficiency Design Method for Capacitive MEMS Accelerometer. Micromachines 2023, 14, 1891. [Google Scholar] [CrossRef] [PubMed]
- Saheban, H.; Kordrostami, Z.; Hamedi, S. A multi-objective optimization of sensitivity and bandwidth of a 3-D MEMS bionic vector hydrophone. Analog Integr. Circuits Signal Process. 2022, 110, 455–467. [Google Scholar] [CrossRef]
- Yuan, W.; Chang, H.; Li, W.; Ma, B. Application of an optimization methodology for multidisciplinary system design of microgyroscopes. Microsyst. Technol. 2005, 12, 315–323. [Google Scholar] [CrossRef]
- Engesser, M.; Franke, A.R.; Maute, M.; Meisel, D.C.; Korvink, J.G. A robust and flexible optimization technique for efficient shrinking of MEMS accelerometers. Microsyst. Technol. 2009, 16, 647–654. [Google Scholar] [CrossRef]
- Giannini, D.; Braghin, F.; Aage, N. Topology optimization of 2D in-plane single mass MEMS gyroscopes. Struct. Multidiscip. Optim. 2020, 62, 2069–2089. [Google Scholar] [CrossRef]
- Li, Q.; Lu, K.; Wu, K.; Zhang, H.; Sun, X.; Wu, X.; Xiao, D. A Novel High-Speed and High-Accuracy Mathematical Modeling Method of Complex MEMS Resonator Structures Based on the Multilayer Perceptron Neural Network. Micromachines 2021, 12, 1313. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, W.; Lu, H.; Wu, Y.; Fan, C. Machine learning algorithm for the structural design of MEMS resonators. Microelectron. Eng. 2023, 271–272, 111950. [Google Scholar] [CrossRef]
- Chen, D.; Hou, C.; Fei, C.; Li, D.; Lin, P.; Chen, J.; Yang, Y. An optimization design strategy of 1–3 piezocomposite ultrasonic transducer for imaging applications. Mater. Today Commun. 2020, 24, 100991. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, J.; Fei, C.; Li, D.; Liu, Y.; Chen, Q.; Lou, L.; Feng, W.; Yang, Y. An Efficient Optimization Design for 1 MHz Ultrasonic Transmitting Transducer. IEEE Sens. J. 2021, 21, 7420–7427. [Google Scholar] [CrossRef]
- Li, Z.; Chen, D.; Fei, C.; Li, D.; Feng, W.; Yang, Y. Optimization Design of Ultrasonic Transducer With Multimatching Layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2202–2211. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Makarenko, M.; Burguete Lopez, A.; Getman, F.; Fratalocchi, A. Advancing statistical learning and artificial intelligence in nanophotonics inverse design. Nanophotonics 2022, 11, 2483–2505. [Google Scholar] [CrossRef]
- Repän, T.; Venkitakrishnan, R.; Rockstuhl, C. Artificial neural networks used to retrieve effective properties of metamaterials. Opt. Express 2021, 29, 36072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Cheng, X.; Zhou, Z.; Zhang, Q.; Gu, W.; Sun, D.; Huang, X. An Artificial Neural Network Method for High-Accurate and High-Efficient MEMS Pressure Sensor Design. IEEE Sens. J. 2022, 22, 20585–20592. [Google Scholar] [CrossRef]
- Wang, P.; Lu, Q.; Fan, Z. Evolutionary design optimization of MEMS: A review of its history and state-of-the-art. Clust. Comput. 2018, 22, 9105–9111. [Google Scholar] [CrossRef]
- Wu, J.; Sigmund, O.; Groen, J.P. Topology optimization of multi-scale structures: A review. Struct. Multidiscip. Optim. 2021, 63, 1455–1480. [Google Scholar] [CrossRef]
- Farnsworth, M.; Benkhelifa, E.; Tiwari, A.; Zhu, M.; Moniri, M. An efficient evolutionary multi-objective framework for MEMS design optimisation: Validation, comparison and analysis. Memetic Comput. 2011, 3, 175–197. [Google Scholar] [CrossRef]
- Giannini, D.; Aage, N.; Braghin, F. Topology optimization of MEMS resonators with target eigenfrequencies and modes. Eur. J. Mech.-A/Solids 2022, 91, 104352. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chung, F.-M.; Ho, Y.-P. Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger. IEEE/ASME Trans. Mechatron. 2021, 26, 1828–1836. [Google Scholar] [CrossRef]
- Ongkodjojo Ong, A.; Tay, F.E.H. Pareto Simulated Annealing (Sa)-Based Multi-Objective Optimization for Mems Design and Application. Int. J. Softw. Eng. Knowl. Eng. 2011, 15, 455–460. [Google Scholar] [CrossRef]
- Zhun, F.; Jinchao, L.; Sorensen, T.; Pan, W. Improved Differential Evolution Based on Stochastic Ranking for Robust Layout Synthesis of MEMS Components. IEEE Trans. Ind. Electron. 2009, 56, 937–948. [Google Scholar] [CrossRef]
- Guo, R.; Xu, R.; Wang, Z.; Sui, F.; Lin, L. Accelerating Mems Design Process Through Machine Learning from Pixelated Binary Images. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Gainesville, FL, USA, 25–29 January 2021; pp. 153–156. [Google Scholar]
- Guo, R.; Sui, F.; Yue, W.; Wang, Z.; Pala, S.; Li, K.; Xu, R.; Lin, L. Deep learning for non-parameterized MEMS structural design. Microsyst. Nanoeng. 2022, 8, 91. [Google Scholar] [CrossRef]
- Sui, F.; Yue, W.; Guo, R.; Behrouzi, K.; Lin, L. Designing Weakly Coupled Mems Resonators with Machine Learning-Based Method. In Proceedings of the 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 454–457. [Google Scholar]
- Sui, F.; Guo, R.; Yue, W.; Behrouzi, K.; Lin, L. Customizing Mems Designs via Conditional Generative Adversarial Networks. In Proceedings of the 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 450–453. [Google Scholar]
- Sui, F.; Yue, W.; Zhang, Z.; Guo, R.; Lin, L. Trial-and-Error Learning for MEMS Structural Design Enabled by Deep Reinforcement Learning. In Proceedings of the 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), Munich, Germany, 15–19 January 2023; pp. 503–506. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Ma, L.; Antonsson, E.K. Robust Mask-Layout and Process Synthesis Through an Evolutionary Algorithm. In Proceedings of the ASME 2000 International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 5–10 November 2000; pp. 299–306. [Google Scholar]
- Ma, L.; Antonsson, E.K. Robust mask-layout and process synthesis. J. Microelectromechanical Syst. 2003, 12, 728–739. [Google Scholar] [CrossRef]
- Schiek, R.L.; Schmidt, R.C. Automated surface micro-machining mask creation from a 3D model. Microsyst. Technol. 2005, 12, 204–207. [Google Scholar] [CrossRef]
- Zheng, L.; Hua, C. Generating process model from feature-based design model for surface micromachining device. In Proceedings of the 2010 IEEE International Conference on Progress in Informatics and Computing, Shanghai, China, 10–12 December 2010; pp. 684–688. [Google Scholar]
- Chuangfu, Z.; Taian, R.; Dejiang, L.; Zhuangde, J. Automated Generation of Mask and Process Flow for Surface Micromachined Devices. J. Xi’an Jiaotong Univ. 2007, 41, 1031–1035. [Google Scholar]
- Schmidt, T.; Hahn, K.; Bruck, R. A knowledge based approach for MEMS fabrication process design automation. In Proceedings of the 2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT), Penang, Malaysia, 4–6 November 2008; pp. 1–6. [Google Scholar]
- Deng, M.; Zhang, Q.; Zhang, K.; Li, H.; Zhang, Y.; Cao, W. A Novel Defect Inspection System Using Convolutional Neural Network for MEMS Pressure Sensors. J. Imaging 2022, 8, 268. [Google Scholar] [CrossRef]
- Adly, F.; Yoo, P.D.; Muhaidat, S.; Al-Hammadi, Y.; Uihyoung, L.; Ismail, M. Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps. IEEE Trans. Semicond. Manuf. 2015, 28, 145–152. [Google Scholar] [CrossRef]
- Tello, G.; Al-Jarrah, O.Y.; Yoo, P.D.; Al-Hammadi, Y.; Muhaidat, S.; Lee, U. Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes. IEEE Trans. Semicond. Manuf. 2018, 31, 315–322. [Google Scholar] [CrossRef]
- Maksim, K.; Kirill, B.; Eduard, Z.; Nikita, G.; Aleksandr, B.; Arina, L.; Vladislav, S.; Daniil, M.; Nikolay, K. Classification of Wafer Maps Defect Based on Deep Learning Methods With Small Amount of Data. In Proceedings of the 2019 International Conference on Engineering and Telecommunication (EnT), Dolgoprudny, Russia, 20–21 November 2019; pp. 1–5. [Google Scholar]
- Chiu, M.C.; Chen, T.M. Applying Data Augmentation and Mask R-CNN-Based Instance Segmentation Method for Mixed-Type Wafer Maps Defect Patterns Classification. IEEE Trans. Semicond. Manuf. 2021, 34, 455–463. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H. Semi-Supervised Multi-Label Learning for Classification of Wafer Bin Maps With Mixed-Type Defect Patterns. IEEE Trans. Semicond. Manuf. 2020, 33, 653–662. [Google Scholar] [CrossRef]
- Kim, T.; Behdinan, K. Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: A review. J. Intell. Manuf. 2022, 34, 3215–3247. [Google Scholar] [CrossRef]
- Xie, Y.; Li, S.; Wu, C.T.; Lai, Z.; Su, M. A novel hypergraph convolution network for wafer defect patterns identification based on an unbalanced dataset. J. Intell. Manuf. 2022, 35, 633–646. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Tao, Q.; Li, A.; Chen, Y. An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis. Reliab. Eng. Syst. Saf. 2024, 244, 109966. [Google Scholar] [CrossRef]
- Quesada-Molina, J.P.; Mariani, S. A Two-Scale Multi-Physics Deep Learning Model for Smart MEMS Sensors. J. Mater. Sci. Chem. Eng. 2021, 9, 41–52. [Google Scholar] [CrossRef]
- Quesada-Molina, J.P.; Mariani, S. Deep Learning-based Multiscale Modelling of Polysilicon MEMS. In Proceedings of the 2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), St Julian, Malta, 25–27 April 2022; pp. 1–7. [Google Scholar]
- Molina, J.P.Q.; Rosafalco, L.; Mariani, S. Mechanical Characterization of Polysilicon MEMS Devices: A Stochastic, Deep Learning-based Approach. In Proceedings of the 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland, 5–8 July 2020; pp. 1–8. [Google Scholar]
- Quesada-Molina, J.P.; Mariani, S. A Deep Learning Approach for Polycrystalline Microstructure-Statistical Property Prediction. In Proceedings of the Computational Science–ICCS 2021, Krakow, Poland, 16–18 June 2021; Springer: Cham, Switzerland, 2021; pp. 549–561. [Google Scholar]
- Quesada-Molina, J.P.; Mariani, S. Two-Scale Deep Learning Model for Polysilicon MEMS Sensors. Comput. Sci. Math. Forum 2021, 2, 12. [Google Scholar] [CrossRef]
- Dassi, L.; Merola, M.; Riva, E.; Santalucia, A.; Venturelli, A.; Ghisi, A.; Mariani, S. A Stochastic Model to Describe the Scattering in the Response of Polysilicon MEMS. Eng. Proc. 2021, 2, 95. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Li, Z.; Ma, Z.; Ma, X.; Wang, X.; Zheng, X.; Jin, Z. Combined Temperature Compensation Method for Closed-Loop Microelectromechanical System Capacitive Accelerometer. Micromachines 2023, 14, 1623. [Google Scholar] [CrossRef]
- Gianesini, B.M.; Cortez, N.E.; Antunes, R.A.; Vieira Filho, J. Method for removing temperature effect in impedance-based structural health monitoring systems using polynomial regression. Struct. Health Monit. 2020, 20, 202–218. [Google Scholar] [CrossRef]
- Zhai, Y.; Xu, T.; Xu, G.; Cao, X.; Yang, C.; Li, H. Improvement and compensation of temperature drift of scale factor of a SOI-based MEMS differential capacitive accelerometer. Meas. Sci. Technol. 2023, 34, 085113. [Google Scholar] [CrossRef]
- Li, K.; Cui, R.; Cai, Q.; Wei, W.; Shen, C.; Tang, J.; Shi, Y.; Cao, H.; Liu, J. A Fusion Algorithm for Real-Time Temperature Compensation and Noise Suppression With a Double U-Beam Vibration Ring Gyroscope. IEEE Sens. J. 2024, 24, 7614–7624. [Google Scholar] [CrossRef]
- Ruzza, G.; Guerriero, L.; Revellino, P.; Guadagno, F.M. A Low-Cost Chamber Prototype for Automatic Thermal Analysis of MEMS IMU Sensors in Tilt Measurements Perspective. Sensors 2019, 19, 2705. [Google Scholar] [CrossRef]
- Zhou, W.; He, J.; Yu, H.; He, X.; Peng, P. Analytical study of temperature coefficients of bulk MEMS capacitive accelerometers operating in closed-loop mode. Sens. Actuators A Phys. 2019, 290, 239–247. [Google Scholar] [CrossRef]
- Hecht-Nielsen, R. Theory of the Backpropagation Neural Network. In Neural Networks for Perception; Wechsler, H., Ed.; Academic Press: Cambridge, MA, USA, 1992; pp. 65–93. [Google Scholar]
- Zhang, Q.; Tan, Z.; Guo, L. Compensation of Temperature Drift of MEMS Gyroscope Using BP Neural Network. In Proceedings of the 2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009. [Google Scholar]
- Fontanella, R.; Accardo, D.; Caricati, E.; Cimmino, S.; De Simone, D.; Lucignano, G. Improving Inertial Attitude Measurement Performance by Exploiting MEMS Gyros and Neural Thermal Calibration. In Proceedings of the AIAA Information Systems-AIAA Infotech @ Aerospace, Grapevine, TX, USA, 9–13 January 2017; p. 1134. [Google Scholar]
- Fontanella, R.; Accardo, D.; Lo Moriello, R.S.; Angrisani, L.; De Simone, D. MEMS gyros temperature calibration through artificial neural networks. Sens. Actuators A Phys. 2018, 279, 553–565. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, S.; Tao, J. Temperature Compensation for MEMS Mass Flow Sensors Based on Back Propagation Neural Network. In Proceedings of the 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 25–29 April 2021; pp. 1601–1604. [Google Scholar]
- Wang, S.; Zhu, W.; Shen, Y.; Ren, J.; Gu, H.; Wei, X. Temperature compensation for MEMS resonant accelerometer based on genetic algorithm optimized backpropagation neural network. Sens. Actuators A Phys. 2020, 316, 112393. [Google Scholar] [CrossRef]
- Wang, T.; Liu, X.; Zhong, S.; Luo, H. A Simplified Model MEMS Gyroscope Zero Bias Temperature Drift Calibration Method Based on BP Neural Network. In Proceedings of the 2022 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT), Wuhan, China, 19–21 August 2022; pp. 146–152. [Google Scholar]
- Deng, W.; Zhao, H.; Zou, L.; Li, G.; Yang, X.; Wu, D. A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput. 2016, 21, 4387–4398. [Google Scholar] [CrossRef]
- Ding, S.; Su, C.; Yu, J. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 2011, 36, 153–162. [Google Scholar] [CrossRef]
- Han, Z.; Hong, L.; Meng, J.; Li, Y.; Gao, Q. Temperature drift modeling and compensation of capacitive accelerometer based on AGA-BP neural network. Measurement 2020, 164, 108019. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Kazemi, N.; Daneshmand, M. Machine Learning to Immune Microwave Sensors from Temperature Impact. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 843–844. [Google Scholar]
- Yang, H.; Yang, Y.; Hou, Y.; Liu, Y.; Liu, P.; Wang, L.; Ma, Y. Investigation of the Temperature Compensation of Piezoelectric Weigh-In-Motion Sensors Using a Machine Learning Approach. Sensors 2022, 22, 2396. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, Q.; Zhang, Z.; Wang, H. Research on Temperature Compensation of Multi-Channel Pressure Scanner Based on an Improved Cuckoo Search Optimizing a BP Neural Network. Micromachines 2022, 13, 1351. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Zou, X.; Cheng, Y.; Liu, Y. Temperature Compensation of Laser Methane Sensor Based on a Large-Scale Dataset and the ISSA-BP Neural Network. Sensors 2024, 24, 493. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Jiang, L.; Zhao, L.; Ding, X. Temperature Compensation Method Based on an Improved Firefly Algorithm Optimized Backpropagation Neural Network for Micromachined Silicon Resonant Accelerometers. Micromachines 2022, 13, 1054. [Google Scholar] [CrossRef]
- Lu, S.; Li, S.; Habibi, M.; Safarpour, H. Improving the thermo-electro-mechanical responses of MEMS resonant accelerometers via a novel multi-layer perceptron neural network. Measurement 2023, 218, 113168. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Guo, G.; Chai, B.; Cheng, R.; Wang, Y. Temperature Drift Compensation of a MEMS Accelerometer Based on DLSTM and ISSA. Sensors 2023, 23, 1809. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, W.; Lin, B.; Zhu, Y.; Meng, F.; Zhao, X.; Ding, J.; Lou, S.; Wang, X.; He, J.; et al. Long short-term memory network of machine learning for compensating temperature error of a fiber optic gyroscope independent of the temperature sensor. Appl. Opt. 2022, 61, 8212. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; He, K.; Tan, P.; Ren, Y.; Zhao, J. Enhancing FOG Temperature Compensation using LSTM Method. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023; pp. 3878–3882. [Google Scholar]
- Wang, X.; Cao, H. Improved VMD-ELM Algorithm for MEMS Gyroscope of Temperature Compensation Model Based on CNN-LSTM and PSO-SVM. Micromachines 2022, 13, 2056. [Google Scholar] [CrossRef]
- Ouyang, M.; Gao, J.; Li, A.; Zhang, X.; Shen, C.; Cao, H. Micromechanical gyroscope temperature compensation based on combined LSTM-SVM-DBN algorithm. Sens. Actuators A Phys. 2024, 369, 115128. [Google Scholar] [CrossRef]
- Mao, N.; Xu, J.; Li, J.; He, H.; Rajinikanth, V. A LSTM-RNN-Based Fiber Optic Gyroscope Drift Compensation. Math. Probl. Eng. 2021, 2021, 1636001. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, Y.; Shu, X. Study on nonlinear error calibration of fiber optical gyroscope scale factor based on LSTM. Measurement 2022, 190, 110783. [Google Scholar] [CrossRef]
- Rong, Z.; Yanhua, Z.; Qilian, B. A novel intelligent strategy for improving measurement precision of FOG. IEEE Trans. Instrum. Meas. 2000, 49, 1183–1188. [Google Scholar] [CrossRef]
- Shiau, J.K.; Huang, C.X.; Chang, M.Y. Noise Characteristics of MEMS Gyro’s Null Drift and Temperature Compensation. J. Appl. Sci. Eng. 2012, 15, 239–246. [Google Scholar] [CrossRef]
- Shi, Y.; Fang, L.; Xue, Z.; Qi, Z. Research on Random Drift Model Identification and Error Compensation Method of MEMS Sensor Based on EEMD-GRNN. Sensors 2022, 22, 5225. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, C.; Liu, B.; Jiang, Y.; Li, Z.; Tai, H.; Li, X. Self-adaptive temperature and humidity compensation based on improved deep BP neural network for NO2 detection in complex environment. Sens. Actuators B Chem. 2022, 362, 131812. [Google Scholar] [CrossRef]
- Wang, P.; Huang, L.; Wang, P.; Zhao, L.; Ding, X. A Random Error Suppression Method Based on IGWPSO-ELM for Micromachined Silicon Resonant Accelerometers. Micromachines 2023, 14, 419. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, Q.; Li, J. A Hybrid Model for Random Drift Compensation of 3-axis MEMS Gyroscope. In Proceedings of the 2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 21–23 April 2023; pp. 595–598. [Google Scholar]
- Mi, J.; Wang, Q.; Han, X. Low-cost MEMS gyroscope performance improvement under unknown disturbances through deep learning-based array. Sens. Actuators A Phys. 2024, 368, 115086. [Google Scholar] [CrossRef]
- Sheng, W.; Yin, X.; Wen, J.; Peng, G.D. Accurate and fast calibration for FBG demodulation based on deep learning and ensemble learning. Opt. Laser Technol. 2024, 172, 110476. [Google Scholar] [CrossRef]
- Liu, S.Q.; Zhu, R. System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit. Sensors 2016, 16, 175. [Google Scholar] [CrossRef]
- Ru, X.; Gu, N.; Shang, H.; Zhang, H. MEMS Inertial Sensor Calibration Technology: Current Status and Future Trends. Micromachines 2022, 13, 879. [Google Scholar] [CrossRef] [PubMed]
- Harindranath, A.; Arora, M. A systematic review of user-conducted calibration methods for MEMS-based IMUs. Measurement 2024, 225, 114001. [Google Scholar] [CrossRef]
- Li , R.; Fu, C.; Yi , W.; Yi , X. Calib-Net: Calibrating the Low-Cost IMU via Deep Convolutional Neural Network. Front. Robot. AI 2022, 8, 772583. [Google Scholar] [CrossRef]
- Soriano, M.A.; Khan, F.; Ahmad, R. Two-Axis Accelerometer Calibration and Nonlinear Correction Using Neural Networks: Design, Optimization, and Experimental Evaluation. IEEE Trans. Instrum. Meas. 2020, 69, 6787–6794. [Google Scholar] [CrossRef]
- Balasubramani, V.; Sridhar, T.M. Machine Learning in Impedance-Based Sensors. In Machine Learning for Advanced Functional Materials; Joshi, N., Kushvaha, V., Madhushri, P., Eds.; Springer: Singapore, 2023; pp. 263–279. [Google Scholar]
- Zhao, W.-S.; Fang, Y.-H.; Wang, D.-W.; Liu, J. A Review on Microwave Resonant Sensors. Acta Electron. Sin. 2022, 50, 2530–2541. [Google Scholar] [CrossRef]
- Chaisaeng, P.; Limpiti, T.; Leekul, P. Intelligent Sensor System with Transmission Coefficient in X-band Frequency for Determining Sugar Content. Prog. Electromagn. Res. C 2023, 135, 157–172. [Google Scholar] [CrossRef]
- Kazemi, N.; Abdolrazzaghi, M.; Light, P.E.; Musilek, P. In–human testing of a non-invasive continuous low–energy microwave glucose sensor with advanced machine learning capabilities. Biosens. Bioelectron. 2023, 241, 115668. [Google Scholar] [CrossRef]
- Albishi, A.M.; Mirjahanmardi, S.H.; Ali, A.M.; Nayyeri, V.; Wasly, S.M.; Ramahi, O.M. Intelligent Sensing Using Multiple Sensors for Material Characterization. Sensors 2019, 19, 4766. [Google Scholar] [CrossRef] [PubMed]
- Ayres, L.B.; Gomez, F.J.V.; Linton, J.R.; Silva, M.F.; Garcia, C.D. Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Anal. Chim. Acta 2021, 1161, 338403. [Google Scholar] [CrossRef]
- Debus, B.; Parastar, H.; Harrington, P.; Kirsanov, D. Deep learning in analytical chemistry. TrAC Trends Anal. Chem. 2021, 145, 116459. [Google Scholar] [CrossRef]
- Jung, H.-T. The Present and Future of Gas Sensors. ACS Sens. 2022, 7, 912–913. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.; Gaffney, K.J.; Gregoire, J.; Hung, L.; Ourmazd, A.; Schrier, J.; Sethian, J.A.; Toma, F.M. The case for data science in experimental chemistry: Examples and recommendations. Nat. Rev. Chem. 2022, 6, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Bharath, B.N.; Ghosh, R. CuO Nanowires-Based Resistive Sensor for Accurate Classification of Multiple Vapors. IEEE Sens. J. 2023, 23, 10293–10300. [Google Scholar] [CrossRef]
- Wei, G.; Li, G.; Zhao, J.; He, A. Development of a LeNet-5 Gas Identification CNN Structure for Electronic Noses. Sensors 2019, 19, 217. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Zhao, X.; Pan, X.; Ye, W. Gas Classification Using Deep Convolutional Neural Networks. Sensors 2018, 18, 157. [Google Scholar] [CrossRef]
- Kim, E.; Lee, S.; Kim, J.; Kim, C.; Byun, Y.; Kim, H.; Lee, T. Pattern Recognition for Selective Odor Detection with Gas Sensor Arrays. Sensors 2012, 12, 16262–16273. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Zarifi, M.H.; Pedrycz, W.; Daneshmand, M. Robust Ultra-High Resolution Microwave Planar Sensor Using Fuzzy Neural Network Approach. IEEE Sens. J. 2017, 17, 323–332. [Google Scholar] [CrossRef]
- Park, K.; Choi, S.; Chae, H.Y.; Park, C.S.; Lee, S.; Lim, Y.; Shin, H.; Kim, J.J. An Energy-Efficient Multimode Multichannel Gas-Sensor System With Learning-Based Optimization and Self-Calibration Schemes. IEEE Trans. Ind. Electron. 2020, 67, 2402–2410. [Google Scholar] [CrossRef]
- Zhang, J.; Srivatsa, P.; Ahmadzai, F.H.; Liu, Y.; Song, X.; Karpatne, A.; Kong, Z.; Johnson, B.N. Improving biosensor accuracy and speed using dynamic signal change and theory-guided deep learning. Biosens. Bioelectron. 2024, 246, 115829. [Google Scholar] [CrossRef]
- Ghommem, M.; Puzyrev, V.; Najar, F. Deep learning for simultaneous measurements of pressure and temperature using arch resonators. Appl. Math. Model. 2021, 93, 728–744. [Google Scholar] [CrossRef]
- Alattar, B.; Ghommem, M.; Puzyrev, V. Deep Learning for Nonlinear Characterization of Electrostatic Vibrating Beam MEMS. Int. J. Bifurc. Chaos 2023, 33, 2330038. [Google Scholar] [CrossRef]
- Ghommem, M.; Alattar, B.; Lherbette, M.; Elhady, A.; Abdel-Rahman, E. Motion Measurement Methods for Nonlinear Analysis of Electrostatic MEMS Resonators. In Proceedings of the IEEE EUROCON 2023-20th International Conference on Smart Technologies, Torino, Italy, 6–8 July 2023; pp. 632–637. [Google Scholar]
- Ghommem, M.; Puzyrev, V.; Najar, F. Fluid sensing using microcantilevers: From physics-based modeling to deep learning. Appl. Math. Model. 2020, 88, 224–237. [Google Scholar] [CrossRef]
- Ghommem, M.; Puzyrev, V.; Sabouni, R.; Najar, F. Deep learning for gas sensing using MOFs coated weakly-coupled microbeams. Appl. Math. Model. 2022, 105, 711–728. [Google Scholar] [CrossRef]
- Heringhaus, M.E.; Muller, J.; Messner, D.; Zimmermann, A. Transfer Learning for Test Time Reduction of Parameter Extraction in MEMS Accelerometers. J. Microelectromechanical Syst. 2021, 30, 401–410. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Kazemi, N.; Nayyeri, V.; Martin, F. AI-Assisted Ultra-High-Sensitivity/Resolution Active-Coupled CSRR-Based Sensor with Embedded Selectivity. Sensors 2023, 23, 6236. [Google Scholar] [CrossRef]
- Mosavirik, T.; Hashemi, M.; Soleimani, M.; Nayyeri, V.; Ramahi, O.M. Accuracy-Improved and Low-Cost Material Characterization Using Power Measurement and Artificial Neural Network. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Kazemi, N.; Musilek, P. Resolution enhancement of microwave sensors using super-resolution generative adversarial network. Expert Syst. Appl. 2023, 213, 119252. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics–Informed Neural Networks: Where we are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
NN Model | Assisted Algorithm | Device | Dataset | Ref. |
---|---|---|---|---|
BPNN | - | Gyroscope | Bias and T | [104,105,106] |
BPNN | - | Flow sensor | Output and T | [107] |
BPNN | GA | Accelerometer | Output and T | [108] |
BPNN | B-spline | Gyroscope | Bias and T | [109] |
BPNN | AGA | Accelerometer | Output and T | [112] |
BPNN | GA | Weight sensor | Output and T | [114] |
BPNN | Cuckoo search | Pressure sensor | Output and T | [115] |
BPNN | IIF and ISSA | Laser methane sensor | Output and T | [116] |
BPNN | IFA | Accelerometer | Output and T | [117] |
LSTM | - | FOG | Output | [122] |
LSTM | - | FOG | Output and T | [123] |
LSTM+CNN | PSO-SVM | Gyroscope | Bias and T | [124] |
Deep LSTM | ISSA | Accelerometer | Bias and T | [121] |
LSTM | SVM-DBN | Gyroscope | Output, T and T CR | [125] |
LSTM | - | FOG | Output and T CR | [126] |
GRNN | EEMD | Accelerometer | Bias with error | [130] |
Deep BPNN | SGD | NO2 sensor | Output, T and H | [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ping, M.; Han, J.; Cheng, X.; Qin, H.; Wang, W. Neural Network Methods in the Development of MEMS Sensors. Micromachines 2024, 15, 1368. https://doi.org/10.3390/mi15111368
Liu Y, Ping M, Han J, Cheng X, Qin H, Wang W. Neural Network Methods in the Development of MEMS Sensors. Micromachines. 2024; 15(11):1368. https://doi.org/10.3390/mi15111368
Chicago/Turabian StyleLiu, Yan, Mingda Ping, Jizhou Han, Xiang Cheng, Hongbo Qin, and Weidong Wang. 2024. "Neural Network Methods in the Development of MEMS Sensors" Micromachines 15, no. 11: 1368. https://doi.org/10.3390/mi15111368
APA StyleLiu, Y., Ping, M., Han, J., Cheng, X., Qin, H., & Wang, W. (2024). Neural Network Methods in the Development of MEMS Sensors. Micromachines, 15(11), 1368. https://doi.org/10.3390/mi15111368