A Simulation of the Mechanical Testing of the Cell Membrane and Cytoskeleton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dissipative Particle Dynamics and Cell Model
2.1.1. Dissipative Particle Dynamics
2.1.2. Cell Membrane
2.1.3. Cytoskeleton
2.1.4. Particle-Tracking Rheology of Membrane
2.1.5. Bulk Rheology of Cytoskeleton
2.2. Cell Mechanics Models
2.2.1. Indentation Model
2.2.2. Cell Microinjection Model
2.3. Experiments
2.3.1. Cell Preparation
2.3.2. AFM Indentation
2.3.3. Cell Microinjection
3. Results
3.1. Particle-Tracking Rheology of Membrane
3.2. Bulk Rheology of the Cytoskeletal Network
3.3. Indentation Experiment
3.4. Microinjection Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Wang, X.; Liu, J.; Dai, C.; Sun, Y. Robotic micromanipulation: Fundamentals and applications. Annu. Rev. Control. Robot. Auton. Syst. 2019, 2, 181–203. [Google Scholar] [CrossRef]
- Gefen, A.; van Nierop, B.; Bader, D.L.; Oomens, C.W. Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury. J. Biomech. 2008, 41, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Peeters, E.A.G.; Oomens, C.W.J.; Bouten, C.V.C.; Bader, D.L.; Baaijens, F.P.T. Mechanical and failure properties of single attached cells under compression. J. Biomech. 2005, 38, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Gefen, A.; Weihs, D. Mechanical cytoprotection: A review of cytoskeleton-protection approaches for cells. J. Biomech. 2016, 49, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.-Z.; Liu, Y.-W.; Cui, M.-S.; Zhao, Q.-L.; Zhao, X.-F.; Zhang, Y.-D.; Huang, J.-J.; Lu, G.-Z.; Zhao, X. Intracellular Strain Evaluation-Based Oocyte Enucleation and Its Application in Robotic Cloning. Engineering 2022, 24, 73–83. [Google Scholar] [CrossRef]
- Yanez, L.Z.; Han, J.; Behr, B.B.; Pera, R.A.R.; Camarillo, D.B. Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nat. Commun. 2016, 7, 10809–10821. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Benet, E.; Sridhar, S.L.; Abadie, J.; Piat, E.; Vernerey, F.J. Separating the contributions of zona pellucida and cytoplasm in the viscoelastic response of human oocytes. Acta Biomater. 2019, 85, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Wassarman, P.M. Zona pellucida glycoproteins. J. Biol. Chem. 2008, 283, 24285–24289. [Google Scholar] [CrossRef] [PubMed]
- Valberg, P.A.; Feldman, H.A. Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys. J. 1987, 52, 551–561. [Google Scholar] [CrossRef]
- Pivkin, I.V.; Karniadakis, G.E. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 2008, 101, 118105. [Google Scholar] [CrossRef]
- Fu, S.P.; Peng, Z.; Yuan, H.; Kfoury, R.; Young, Y.N. Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS. Comput. Phys. Commun. 2017, 210, 193–203. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, S.; Cheng, D.; Liu, Y.; Sun, M.; Zhao, Q.; Cui, M.; Zhao, X. The full model of micropipette aspiration of cells: A mesoscopic simulation. Acta Biomater. 2023, 157, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, F.; Edwards, S.F. Viscoelastic properties of physically crosslinked networks. Part 1. Non-linear stationary viscoelasticity. J. Nonnewton. Fluid Mech. 1992, 43, 247–271. [Google Scholar] [CrossRef]
- Gong, B.; Lin, J.; Wei, X.; Qian, J.; Lin, Y. Cross-linked biopolymer networks with active motors: Mechanical response and intra-network transport. J. Mech. Phys. Solid 2019, 127, 80–93. [Google Scholar] [CrossRef]
- Svetina, S.; Kokot, G.; Kebe, T.Š.; Žekš, B.; Waugh, R.E. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation. Biomech. Model. Mechanobiol. 2016, 15, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Fedosov, D.A. Multiscale Modeling of Blood Flow and Soft Matter. Ph.D. Thesis, Brown University, Providence, RI, USA, 2010. [Google Scholar]
- Bell, G. Models for the specific adhesion of cells to cells: A theoretical framework for adhesion mediated by reversible bonds between cell surface molecules. Science 1978, 200, 618–627. [Google Scholar] [CrossRef]
- Hammer, D.; Apte, S. Simulation of cell rolling and adhesion on surfaces in shear flow: General results and analysis of selectin-mediated neutrophil adhesion. Biophys. J. 1992, 63, 35–57. [Google Scholar] [CrossRef]
- Li, G.; Qiang, Y.; Li, H.; Li, X.; Dao, M.; Karniadakis, G.E. In silico and in vitro study of the adhesion dynamics of erythrophagocytosis in sickle cell disease. Biophys. J. 2023, 122, 2590–2604. [Google Scholar] [CrossRef]
- Li, G.; Qiang, Y.; Li, H.; Li, X.; Buffet, P.A.; Dao, M.; Karniadakis, G.E. A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease. PLoS Comput. Biol. 2023, 19, e1011223. [Google Scholar] [CrossRef]
- Ye, T.; Zhang, X.; Li, G.; Wang, S. Biomechanics in thrombus formation from direct cellular simulations. Phys. Rev. E 2020, 102, 042410. [Google Scholar] [CrossRef]
- Lykov, K. Cell Mechanics in Flow: Algorithms and Applications. Ph.D. Thesis, Università della Svizzera Italiana, Ticino, Switzerland, 2017. [Google Scholar]
- Lykov, K.; Nematbakhsh, Y.; Shang, M.; Lim, C.T.; Pivkin, I.V. Probing eukaryotic cell mechanics via mesoscopic simulations. PLoS Comput. Biol. 2017, 13, e1005726. [Google Scholar] [CrossRef] [PubMed]
- Lykov, K.; Li, X.; Lei, H.; Pivkin, I.V.; Karniadakis, G.E. Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees. PLoS Comput. Biol. 2015, 11, e1004410. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Hwang, W.; Lee, H.; Kamm, R.D. Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Comput. Biol. 2009, 5, e1000439. [Google Scholar] [CrossRef]
- Yamada, S.; Wirtz, D.; Kuo, S.C. Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 2000, 78, 1736–1747. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Viasnoff, V.; Wirtz, D. Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy. Rheol. Acta 1998, 37, 387–398. [Google Scholar] [CrossRef]
- Mason, T.G.; Ganesan, K.; van Zanten, J.H.; Wirtz, D.; Kuo, S.C. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 1997, 79, 3282. [Google Scholar] [CrossRef]
- Liu, F.; Wu, D.; Wu, X.; Chen, K. Analyses of the cell mechanical damage during microinjection. Soft Matter 2015, 11, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Gardel, M.L.; Kasza, K.E.; Brangwynne, C.P.; Liu, J.; Weitz, D.A. Mechanical response of cytoskeletal networks. Methods Cell Biol. 2008, 89, 487–519. [Google Scholar]
- Shimizu, F.; Ogata, S.; Li, J. Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 2007, 48, 2923–2927. [Google Scholar] [CrossRef]
- Falk, M.L.; Langer, J.S. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 1998, 57, 7192. [Google Scholar] [CrossRef]
- Deng, L.; Trepat, X.; Butler, J.P.; Millet, E.; Morgan, K.G.; Weitz, D.A.; Fredberg, J.J. Fast and slow dynamics of the cytoskeleton. Nat. Mater. 2006, 5, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Mofrad, M.R. Rheology of the cytoskeleton. Annu. Rev. Fluid Mech. 2009, 41, 433–453. [Google Scholar] [CrossRef]
- Wen, Q.; Janmey, P.A. Polymer physics of the cytoskeleton. Curr. Opin. Solid State Mater. Sci. 2011, 15, 177–182. [Google Scholar] [CrossRef]
- Gittes, F.; MacKintosh, F. Dynamic shear modulus of a semiflexible polymer network. Phys. Rev. E 1998, 58, R1241. [Google Scholar] [CrossRef]
- Du, Y.; Chen, Y.; Zhang, S.; Cheng, D.; Liu, Y.; Zhao, Q.; Sun, M.; Cui, M.; Zhao, X. Mechanical Characterization and Modelling of Subcellular Components of Oocytes. Micromachines 2022, 13, 1087. [Google Scholar] [CrossRef] [PubMed]
Notation | Parameter | Physical Value | Simulation Value | Source |
---|---|---|---|---|
Cell radius | 120 μm | 8 | [12] | |
Energy scale | 4.1164 × 10−21 J | 1 | [12] | |
Volume constant | - | 7.5 × 103 | [12,22,23,24] | |
Area constant | - | 7.5 × 103 | [12,22,23,24] | |
Local area constant | - | 300 | [12,16] | |
Actin number | - | 2698 | - | |
Filament length | - | 0.5–2.5 | - | |
Actin number on filament | - | 3–11 | - | |
Filament spring constant | 0.092 N/m | 8 × 104 | [12,22,23] | |
Filament bending stiffness | 4.025 × 10−16 J | 350 | [12,22,23] | |
ACP number | - | 1000 | - | |
ACP spring constant | 0.0092 N/m | 8 × 103 | [12,22,23,25] | |
ACP–filament bending stiffness | 6.325 × 10−16 J | 550 | [12,16,22,23] | |
ACP–filament torsion stiffness | 4.7 × 10−16 J | 470 | [12,16,22,23] | |
Zero-force unbinding rate | 78 s−1 | 26 × 10−4 | [12,16,23] | |
Binding distance | - | 0.25 | [12,23] | |
Unbinding distance | - | 0.25 | [12,23] | |
Switch strength for cytoskeleton | 3.5 × 10−4 μm | 3.5 × 10−4 | [12] | |
Switch strength for cell | 10−4 μm | 10−4 | [12] |
Membrane | Actin | ACP | Probe | Substrate | Holding Micropipette | Microinjection Micropipette | |
---|---|---|---|---|---|---|---|
1 | 100/45/0.5 | 100/45/0.5 | 100/45/0.5 | 100/65/0.25 | 100/65/0.25 | 30/65/0.5 | 100/65/0.25 |
2 | - | 100/65/0.25 | 100/65/0.25 | 100/65/0.25 | 100/65/0.25 | 100/65/0.5 | 100/65/0.25 |
3 | - | - | 100/65/0.25 | 100/65/0.25 | 100/65/0.25 | 100/65/0.5 | 100/65/0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Cheng, D.; Yang, Z.; Liu, Y.; Zhao, Q.; Sun, M.; Li, H.; Zhao, X. A Simulation of the Mechanical Testing of the Cell Membrane and Cytoskeleton. Micromachines 2024, 15, 431. https://doi.org/10.3390/mi15040431
Du Y, Cheng D, Yang Z, Liu Y, Zhao Q, Sun M, Li H, Zhao X. A Simulation of the Mechanical Testing of the Cell Membrane and Cytoskeleton. Micromachines. 2024; 15(4):431. https://doi.org/10.3390/mi15040431
Chicago/Turabian StyleDu, Yue, Dai Cheng, Zhanli Yang, Yaowei Liu, Qili Zhao, Mingzhu Sun, Haifeng Li, and Xin Zhao. 2024. "A Simulation of the Mechanical Testing of the Cell Membrane and Cytoskeleton" Micromachines 15, no. 4: 431. https://doi.org/10.3390/mi15040431
APA StyleDu, Y., Cheng, D., Yang, Z., Liu, Y., Zhao, Q., Sun, M., Li, H., & Zhao, X. (2024). A Simulation of the Mechanical Testing of the Cell Membrane and Cytoskeleton. Micromachines, 15(4), 431. https://doi.org/10.3390/mi15040431