A Novel High-Fidelity Simulation for Finishing Operations: Hybrid Image Mosaic and Wavelet Decomposition
Abstract
:1. Introduction
2. Image Mosaic
2.1. Image Feature Extraction
- (1)
- Harris corner feature extraction algorithm
- (2)
- SIFT feature extraction algorithm
2.2. Image Feature Matching
2.3. Image Fusion Algorithm
- (1)
- The average fusion method is used to directly add the corresponding height values of the overlapping areas after matching and take the average value. The calculation formula can be expressed as follows:
- (2)
- The gradual in and out method is also known as the linear transition fusion method, and its algorithm can be expressed as follows:
- (3)
- The wavelet fusion method is used to decompose the overlapping regions corresponding to a group of 3D topography images by a two-dimensional discrete wavelet. The morphology image is decomposed into low-frequency coefficients and high-frequency coefficients in three directions. The algorithm can be expressed by the following formula:
2.4. Splicing Effect Judgment
3. Wavelet Decomposition and Surface Reconstruction
3.1. Wavelet Decomposition of Detection Signals
3.2. Simplification and Reconstruction of Surface Model
3.3. Surface Model Deviation Judgement
4. Comparison with Experiments
4.1. Grinding Simulation in EDEM
4.2. Physical Experiment Results
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Harris Algorithm
Appendix B. Poisson Reconstruction in Meshlab
References
- Yip, W.S.; To, S.; Zhou, H. Current status, challenges and opportunities of sustainable ultra-precision manufacturing. J. Intell. Manuf. 2022, 33, 2193–2205. [Google Scholar] [CrossRef]
- Lotfi, M.; Akbari, J. Finite element simulation of ultrasonic-assisted machining: A review. Int. J. Adv. Manuf. Technol. 2021, 116, 2777–2796. [Google Scholar] [CrossRef]
- Euzenat, C.; Lavernhe, S.; Tournier, C. Simulation of finishing operations based on an implicit representation of surfaces. CIRP J. Manuf. Sci. Technol. 2020, 31, 78–90. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Li, X.; Yang, S.; Wu, F. Theoretical and simulation analysis of abrasive particles in centrifugal barrel finishing: Kinematics mechanism and distribution characteristics. Powder Technol. 2017, 318, 518–527. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Li, W.; Wang, Y. Vibratory finishing co-simulation based on ADAMS-EDEM with experimental validation. Int. J. Adv. Manuf. Technol. 2018, 96, 1175–1185. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, S.; Wang, Z.; Wang, S.; Ma, C.; Yang, B. Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: A case study in five-axis machining. J. Intell. Manuf. 2022, 33, 943–952. [Google Scholar] [CrossRef]
- Kadir, A.A.; Xu, X. Towards High-Fidelity Machining Simulation. J. Manuf. Syst. 2011, 30, 175–186. [Google Scholar] [CrossRef]
- ISO 25178-603; Geometrical Product Specifications(GPS)—Surface texture. 1st ed. ISO: Geneva, Switzerland, 2013.
- Catalanotti, G.; Sebaey, T.A. An algorithm for the generation of three-dimensional statistically Representative Volume Elements of unidirectional fibre-reinforced plastics: Focusing on the fibres waviness. Compos. Struct. 2019, 227, 111272. [Google Scholar] [CrossRef]
- Hu, N.; Li, S.; Gao, F. Multi-objective Hierarchical Optimal Control for Quadruped Rescue Robot. Int. J. Control. Autom. Syst. 2018, 16, 1866–1877. [Google Scholar] [CrossRef]
- Giannenas, A.E.; Laizet, S. A simple and scalable immersed boundary method for high-fidelity simulations of fixed and moving objects on a Cartesian mesh. Appl. Math. Model. 2021, 99, 606–627. [Google Scholar] [CrossRef]
- Nagawkar, J.; Leifsson, L. Multifidelity aerodynamic flow field prediction using random forest-based machine learning. Aerosp. Sci. Technol. 2022, 123, 107449. [Google Scholar] [CrossRef]
- Tian, Y.; Qu, X.; Liu, P.; Yan, S. Platform for Transport Aircraft Wing—Body Parametric Modeling and High-Lift System Design. J. Areospace Eng. 2017, 30, 06017004. [Google Scholar] [CrossRef]
- Jin, G.Q.; Li, W.D.; Gao, L.; Popplewell, K. A hybrid and adaptive tool-path generation approach of rapid prototyping and manufacturing for biomedical models. Comput. Ind. 2013, 64, 336–349. [Google Scholar] [CrossRef]
- Valencia, E.; Alulema, V.; Hidalgo, V.; Rodriguez, D. A CAD-free methodology for volume and mass properties computation of 3-D lifting surfaces and wing-box structures. Aerosp. Sci. Technol. 2021, 108, 106378. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, W.L.; Zhang, L.; Beaucamp, A. Region adaptive scheduling for time-dependent processes with optimal use of machine dynamics. Int. J. Mach. Tools Manuf. 2020, 156, 103589. [Google Scholar] [CrossRef]
- Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Skin Model Shapes: A new paradigm shift for geometric variations modelling in mechanical engineering. Comput. Aided Des. 2014, 50, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Machine learning surface roughnesses in turning processes of brass metals. Int. J. Adv. Manuf. Technol. 2022, 121, 2437–2444. [Google Scholar] [CrossRef]
- Navarro-Jiménez, J.M.; Aguado, J.V.; Bazin, G.; Albero, V.; Borzacchiello, D. Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes. J. Intell. Manuf. 2022, 34, 2345–2358. [Google Scholar] [CrossRef]
- Sizemore, N.E.; Nogueira, M.L.; Greis, N.P.; Davies, M.A. Application of machine learning for improved surface quality classification in ultra-precision machining of germanium. J. Manuf. Syst. 2022, 65, 296–316. [Google Scholar] [CrossRef]
- Gaikwad, A.; Chang, T.; Giera, B.; Watkins, N.; Mukherjee, S.; Pascall, A.; Stobbe, D.; Rao, P. In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning. J. Intell. Manuf. 2022, 33, 2093–2117. [Google Scholar] [CrossRef]
- Zhang, M.; Anwer, N.; Stockinger, A.; Mathieu, L.; Wartzack, S. Discrete shape modeling for skin model representation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 672–680. [Google Scholar] [CrossRef]
- Xiong, R.; Zhang, X.; Ma, X.; Li, L.; Qi, L.; Wang, J.; Jiang, X. Full-Dimensional Surface Characterization Based on Polarized Coherent Coded Aperture Correlation Holography. IEEE Photonics J. 2022, 14, 1–7. [Google Scholar] [CrossRef]
- Firman, R.; Xun, X. Development of a surface roughness predictive model for STEP-compliant machining optimisation. Int. J. Comput. Aided Eng. Technol. 2012, 4, 206–228. [Google Scholar]
- Liu, S.; Bao, J.; Lu, Y.; Li, J.; Lu, S.; Sun, X. Digital twin modeling method based on biomimicry for machining aerospace components. J. Manuf. Syst. 2021, 58, 180–195. [Google Scholar] [CrossRef]
- Xin, Y.; Chen, Y.; Li, W.; Li, X.; Wu, F. Refined Simulation Method for Computer-Aided Process Planning Based on Digital Twin Technology. Micromachines 2022, 13, 620. [Google Scholar] [CrossRef]
- Botkina, D.; Hedlind, M.; Olsson, B.; Henser, J.; Lundholm, T. Digital Twin of a Cutting Tool. Procedia CIRP 2018, 72, 215–218. [Google Scholar] [CrossRef]
- Xie, Y.; Lian, K.; Liu, Q.; Zhang, C.; Liu, H. Digital twin for cutting tool: Modeling, application and service strategy. J. Manuf. Syst. 2021, 58, 305–312. [Google Scholar] [CrossRef]
- Wang, J.; Niu, X.; Gao, R.X.; Huang, Z.; Xue, R. Digital twin-driven virtual commissioning of machine tool. Robot. Cim-Int. Manuf. 2023, 81, 102499. [Google Scholar] [CrossRef]
- Wei, Y.; Hu, T.; Zhou, T.; Ye, Y.; Luo, W. Consistency retention method for CNC machine tool digital twin model. J. Manuf. Syst. 2021, 58, 313–322. [Google Scholar] [CrossRef]
- Levy, B.; El Mansori, M.; El Hadrouz, M.; Mezghani, S.; Beaudonnet, A.L.; Cabrero, J. Smart tribo-peening process for surface functionalization through digital twin concept. Int. J. Adv. Manuf. Technol. 2021, 114, 3695–3717. [Google Scholar] [CrossRef]
- Shiu, S.; Tang, K.; Liu, C. Digital twin-driven centering process optimization for high-precision glass lens. J. Manuf. Syst. 2023, 67, 122–131. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, G.; Xu, Q.; Wei, Z.; Han, C.; Wang, Z. A digital twin defined autonomous milling process towards the online optimal control of milling deformation for thin-walled parts. Int. J. Adv. Manuf. Technol. 2023, 124, 2847–2861. [Google Scholar] [CrossRef]
- Lou, S.; Tang, D.; Zeng, W.; Zhang, T.; Gao, F.; Muhamedsalih, H.; Jiang, X.; Scott, P.J. Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces. IEEE Trans. Instrum. Meas. 2020, 69, 6509–6517. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, B.; Ma, J.; Zhang, D. Chatter identification of the milling process considering dynamics of the thin-walled workpiece. Int. J. Adv. Manuf. Technol. 2017, 89, 1765–1773. [Google Scholar] [CrossRef]
- Si, Z.; Bai, X.F.; Qian, L.; Chen, P. Principle and Control of Active Engine Mount Based on Magnetostrictive Actuator. Chin. J. Mech. Eng. 2022, 35, 146. [Google Scholar] [CrossRef]
- He, J.; Sun, Y.; Yin, C.; He, Y.; Wang, Y. Cross-domain adaptation network based on attention mechanism for tool wear prediction. J. Intell. Manuf. 2022, 34, 3365–3387. [Google Scholar] [CrossRef]
- Seid Ahmed, Y.; Arif, A.F.M.; Veldhuis, S.C. Application of the wavelet transform to acoustic emission signals for built-up edge monitoring in stainless steel machining. Measurement 2020, 154, 107478. [Google Scholar] [CrossRef]
- Miao, Y.; Jeon, J.Y.; Park, G. An image processing-based crack detection technique for pressed panel products. J. Manuf. Syst. 2020, 57, 287–297. [Google Scholar] [CrossRef]
- Tootooni, M.S.; Liu, C.; Roberson, D.; Donovan, R.; Rao, P.K.; Kong, Z.J.; Bukkapatnam, S.T. Online non-contact surface finish measurement in machining using graph theory-based image analysis. J. Manuf. Syst. 2016, 41, 266–276. [Google Scholar] [CrossRef]
- Chris, H.; Mike, S. A combined corner and edge detector. Alvey Vis. Conf. 1988, 15, 147–151. [Google Scholar]
- Dg, L. Object recognition from local scale-invariant features. Proc. Int. Conf. Comput. Vis. 1999, 2, 1150–1157. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Tang, G.; Liu, Z.; Xiong, J. Distinctive image features from illumination and scale invariant keypoints. Multimed. Tools Appl. 2019, 78, 23415–23442. [Google Scholar] [CrossRef]
- Yoo, J.; Han, T.H. Fast Normalized Cross-Correlation. Circuits Syst. Signal Process. 2009, 28, 819–843. [Google Scholar] [CrossRef]
- Vallejos, R.; Mancilla, D.; Acosta, J. Image Similarity Assessment Based on Coefficients of Spatial Association. J. Math. Imaging Vis. 2016, 1, 77–98. [Google Scholar] [CrossRef]
- Kong, L. MATLAB Wavelet Analysis Super Learning Manual; People’s Post and Telecommunications Press: Beijing, China, 2014; pp. 101–120. [Google Scholar]
- Yao, F. Research on Laser Micromachining 3d Topography Based on Wavelet Analysis; Harbin Engineering University: Harbin, China, 2016. [Google Scholar]
- Naeini, S.E.; Spelt, J.K. Two-dimensional discrete element modeling of a spherical steel media in a vibrating bed. Powder Technol. 2009, 195, 83–90. [Google Scholar] [CrossRef]
NO. | Image | Algorithm | Feature Points p | pm | pr | t (s) | r | P | R |
---|---|---|---|---|---|---|---|---|---|
1 (10% overlapping area) | S1, S2 | Harris | 3112 | 100 | 92 | 15.92 | 0.058 | 0.920 | 0.030 |
SIFT | 3009 | 83 | 83 | 4.76 | 0.210 | 1.000 | 0.028 | ||
S3, S4 | Harris | 3160 | 106 | 100 | 14.18 | 0.067 | 0.943 | 0.032 | |
SIFT | 3218 | 98 | 98 | 5.12 | 0.195 | 1.000 | 0.030 | ||
2 (20% overlapping area) | S1, S2 | Harris | 3506 | 240 | 237 | 18.92 | 0.052 | 0.988 | 0.068 |
SIFT | 3367 | 258 | 258 | 5.34 | 0.187 | 1.000 | 0.077 | ||
S3, S4 | Harris | 3521 | 241 | 239 | 19.87 | 0.050 | 0.992 | 0.068 | |
SIFT | 3578 | 291 | 291 | 5.71 | 0.175 | 1.000 | 0.081 | ||
3 (30% overlapping area) | S1, S2 | Harris | 4331 | 605 | 605 | 25.98 | 0.038 | 1.000 | 0.140 |
SIFT | 4186 | 679 | 679 | 6.70 | 0.149 | 1.000 | 0.162 | ||
S3, S4 | Harris | 4330 | 614 | 613 | 26.20 | 0.038 | 0.998 | 0.142 | |
SIFT | 4304 | 693 | 693 | 6.97 | 0.144 | 1.000 | 0.161 |
Images | Methods | SSIM |
---|---|---|
S1, S2 | The average fusion method | 0.927 |
The gradual in and out method | 0.979 | |
The wavelet fusion method | 0.933 | |
S3, S4 | The average fusion method | 0.937 |
The gradual in and out method | 0.980 | |
The wavelet fusion method | 0.937 | |
S12, S34 | The average fusion method | 0.917 |
The gradual in and out method | 0.977 | |
The wavelet fusion method | 0.928 |
Z-Axis/μm | X-Axis/μm | Y-Axis/μm |
---|---|---|
2.3635 | 0 | 0 |
2.3177 | 0.8148 | 0 |
2.28 | 1.6296 | 0 |
2.2279 | 2.4444 | 0 |
2.3975 | 0 | 0.8148 |
2.3824 | 0.8148 | 0.8148 |
2.3354 | 1.6296 | 0.8148 |
2.2645 | 2.4444 | 0.8148 |
··· | ··· | ··· |
0.1451 | 832.7409 | 834.3706 |
0.1949 | 833.5557 | 834.3706 |
0.2917 | 834.3706 | 834.3706 |
Wavelet Basis | RMSE (×10−19) | |
---|---|---|
Daubechies | db2 | 2.6299 |
db3 | 32.379 | |
db4 | 5.8918 | |
db5 | 9.7226 | |
db6 | 6.5075 | |
Symlet | sym4 | 2.3910 |
sym5 | 0.85669 | |
sym7 | 4.0252 | |
sym8 | 1.1052 | |
Coiflet | coif2 | 46.183 |
coif3 | 2.5555 | |
coif4 | 124.44 |
Equipment | Performance | Value |
---|---|---|
Magnification | 1–50 | |
Measurement array | 1024 × 1024, 512 × 512, 256 × 256, 1024 × 160 | |
Transverse scan travel | 100 × 100 mm | |
Longitudinal scanning stroke | ≤20 mm | |
Surface topography | <0.15 nm | |
RMS repeatability | 0.01 nm | |
Optical resolution | 0.52 μm | |
Scanning speed | ≤73 μm/s |
Sample Location | Sa/μm | Sq/μm | SZ/μm | Maximum Relative Error | |
---|---|---|---|---|---|
Part surface | 1.272 | 1.624 | 15.262 | 0.659 | |
High-fidelity surface | 1.280 | 1.633 | 14.603 | ||
Relative error | 0.08 | 0.009 | 0.659 | ||
Part surface | 1.678 | 2.186 | 17.907 | 0.157 | |
High-fidelity surface | 1.672 | 2.180 | 17.750 | ||
Relative error | 0.006 | 0.006 | 0.157 | ||
Part surface | 1.350 | 1.708 | 33.460 | 0.909 | |
High-fidelity surface | 1.358 | 1.715 | 32.551 | ||
Relative error | 0.008 | 0.007 | 0.909 | ||
Part surface | 1.901 | 2.408 | 20.371 | 0.236 | |
High-fidelity surface | 1.889 | 2.398 | 20.135 | ||
Relative error | 0.012 | 0.010 | 0.236 |
Grinding Block | Part | Roller | |
---|---|---|---|
Material | Al2O3 | Aluminium alloy | Photosensitive resin |
Poisson ratio | 0.36 | 0.33 | 0.4 |
Elastic modulus/Pa | 1.26 × 107 | 2.632 × 1010 | 9.246 × 108 |
Density/(kg∙m−3) | 2675 | 2700 | 1150 |
Grinding Blocks | Part-Grinding Block | Roller-Grinding Block | |
---|---|---|---|
Rebound coefficient | 0.35 | 0.5 | 0.35 |
Static coefficient | 0.15 | 0.45 | 0.3 |
Dynamic coefficient | 0.46 | 0.15 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Li, W.; Xu, X.; Culler, D. A Novel High-Fidelity Simulation for Finishing Operations: Hybrid Image Mosaic and Wavelet Decomposition. Micromachines 2024, 15, 834. https://doi.org/10.3390/mi15070834
Xin Y, Li W, Xu X, Culler D. A Novel High-Fidelity Simulation for Finishing Operations: Hybrid Image Mosaic and Wavelet Decomposition. Micromachines. 2024; 15(7):834. https://doi.org/10.3390/mi15070834
Chicago/Turabian StyleXin, Yupeng, Wenhui Li, Xun Xu, and David Culler. 2024. "A Novel High-Fidelity Simulation for Finishing Operations: Hybrid Image Mosaic and Wavelet Decomposition" Micromachines 15, no. 7: 834. https://doi.org/10.3390/mi15070834
APA StyleXin, Y., Li, W., Xu, X., & Culler, D. (2024). A Novel High-Fidelity Simulation for Finishing Operations: Hybrid Image Mosaic and Wavelet Decomposition. Micromachines, 15(7), 834. https://doi.org/10.3390/mi15070834