Formation, Structure, Electronic, and Transport Properties of Nitrogen Defects in Graphene and Carbon Nanotubes
Abstract
:1. Introduction
2. Identification of Nitrogen Defects in Graphene and Carbon Nanotubes
2.1. X-ray Photoelectron Spectroscopy
2.2. Scanning Tunneling Microscopy
3. Electrical Conductivity of Nitrogen-Doped Graphene and Carbon Nanotubes
3.1. Electrical Transport of Graphene
3.2. Electrical Transport of Carbon Nanotubes
4. Hydrogen Storage
5. Molecular Sensors
6. Concluding Remarks and Future Perspectives
Funding
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Durkop, T.; Getty, S.A.; Cobas, E.; Fuhrer, M.S. Extraordinary Mobility in Semiconducting Carbon Nanotubes. Nano Lett. 2004, 4, 35. [Google Scholar] [CrossRef]
- Hamada, N.; Sawada, S.; Oshiyama, A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 1992, 68, 1579. [Google Scholar] [CrossRef]
- Franklin, A.D.; Hersam, M.C.; Philip Wong, H.-S. Carbon nanotube transistors: Making electronics from molecules. Science 2022, 378, 726–732. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Saito, S. Stacking and curvature-dependent behaviors of electronic transport and molecular adsorptions of graphene: A comparative study of bilayer graphene and carbon nanotube. Appl. Surf. Sci. Adv. 2020, 1, 100028. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, Z.; Xiao, M.; Yang, Y.; Zhong, D.; Peng, L.-M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276. [Google Scholar] [CrossRef]
- Brady, G.J.; Way, A.J.; Safron, N.S.; Evensen, H.T.; Gopalan, P.; Arnold, M.S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240. [Google Scholar] [CrossRef]
- Lin, Y.; Cao, Y.; Ding, S.; Zhang, P.; Xu, L.; Liu, C.; Hu, Q.; Jin, C.; Peng, L.-M.; Zhang, Z. Scaling aligned carbon nanotube transtors to a sub-10 nm node. Nat. Electron. 2023, 6, 506–515. [Google Scholar] [CrossRef]
- Bishop, M.D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.; Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M.M. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020, 3, 492–501. [Google Scholar] [CrossRef]
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z.; et al. Aligned high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef]
- Wang, X.R.; Li, X.L.; Zhang, L.; Yoon, Y.; Weber, P.K.; Wang, H.L.; Guo, J.; Dai, H.J. N-Doping of Graphene Through Electrothermal Reactions with Ammonia. Science 2009, 324, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, Y. Theoretical study on quantum transport of carbon nanotubes for detecting toxic molecules: The role of dopants. J. Electrochem. Sci. Eng. 2022, 12, 431–438. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Saito, S. Effects of gas adsorption on the stabilities, electronic structures, and scanning tunneling microscopy of graphene monolayers doped with B or N. Jpn. J. Appl. Phys. 2019, 58, 015005. [Google Scholar] [CrossRef]
- Tang, Y.-B.; Yin, L.-C.; Yang, Y.; Bo, X.-H.; Cao, Y.-L.; Wang, H.-E.; Zhang, W.-J.; Bello, I.; Lee, S.-T.; Cheng, H.-M.; et al. Tunable Band Gaps and p-Type Transport Properties of Boron-Doped Graphenes by Controllable Ion Doping Using Reactive Microwave Plasma. ACS Nano 2012, 6, 1970–1978. [Google Scholar] [CrossRef]
- Czerw, R.; Terrones, M.; Charlier, J.-C.; Blase, X.; Foley, B.; Kamalakaran, R.; Grobert, N.; Terrones, H.; Tekleab, D.; Ajayan, P.M.; et al. Identification of Electron Donor States in N-Doped Carbon Nanotubes. Nano Lett. 2001, 1, 457. [Google Scholar] [CrossRef]
- Jeong, H.M.; Lee, J.W.; Shin, W.H.; Choi, Y.J.; Shin, H.J.; Kang, J.K.; Choi, J.W. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Lett. 2011, 11, 2472. [Google Scholar] [CrossRef]
- Min, Y.S.; Bae, E.J.; Kim, U.J.; Lee, E.H.; Park, N.; Hwang, C.S.; Park, W. Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes. Appl. Phys. Lett. 2008, 93, 043113. [Google Scholar] [CrossRef]
- Min, Y.-S.; Bae, E.J.; Asanov, I.P.; Kim, U.J.; Park, W. Growth and characterization of nitrogen-doped single-walled carbon nanotubes by water-plasma chemical vapour deposition. Nanotechnology 2007, 18, 285601. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Teng, P.-Y.; Yeh, C.-H.; Koshino, M.; Chiu, P.-W.; Suenaga, K. Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene. Nano Lett. 2015, 15, 7408–7413. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; He, R.; Rim, K.T.; Schiros, T.; Kim, K.S.; Zhou, H.; Gutiérrez, C.; Chockalingam, S.P.; Arguello, C.J.; Pálová, L.; et al. Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science 2011, 333, 999. [Google Scholar] [CrossRef] [PubMed]
- Susi, T.; Pichler, T.; Ayala, P. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 2015, 6, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Ayala, P.; Arenal, R.; Loiseau, A.; Rubio, A.; Pichler, T. The physical and chemical properties of heteronanotubes. Rev. Mod. Phys. 2010, 82, 1843. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, W.J.; Lee, W.J.; Kim, S.O.; Kim, Y.-H. Theory, Synthesis, and Oxygen Reduction Catalysis of Fe-Porphyrin-Like Carbon Nanotube. Phys. Rev. Lett. 2011, 106, 175502. [Google Scholar] [CrossRef]
- Khabushev, E.M.; Krasnikov, D.V.; Sainio, J.; Novikov, I.V.; Goldt, A.E.; Fedotov, S.S.; Kallio, T.; Nasibulin, A.G. High-temperature adsorption of nitrogen dioxide for stable, efficient, and scalable doping of carbon nanotubes. Carbon 2024, 224, 119082. [Google Scholar] [CrossRef]
- Cai, H.; Xiong, L.; Wang, B.; Zhu, D.; Hao, H.; Yu, X.; Li, C.; Yang, S. N-doped CNT as electron transport promoter by bridging CoP and carbon cloth toward enhanced alkaline hydrogen evolution. Chem. Eng. J. 2022, 430, 132824. [Google Scholar] [CrossRef]
- Li, B.; Zhang, S.; Cui, C.; Qian, W.; Jin, Y. Comprehensive Review on Nitrogen-Doped Graphene: Structure Characterization, Growth Strategy, and Capacitive Energy Storage. Energy Fuels 2023, 37, 902–918. [Google Scholar] [CrossRef]
- He, J.; Anouar, A.; Primo, A.; García, H. Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H2 Generation. Nanomaterials 2019, 9, 895. [Google Scholar] [CrossRef]
- Chang, Y.S.; Chen, F.K.; Tsai, D.C.; Kuo, B.H.; Shieu, F.S. N-doped reduced graphene oxide for room-temperature NO gas sensors. Sci. Rep. 2021, 11, 20719. [Google Scholar] [CrossRef]
- Jung, J.-S.; Jella, V.; Ippili, S.; Kim, Y.-H.; Ly, T.T.; Kim, J.; Eom, J.-H.; Yang, H.; Yoon, S.-G. Transfer-free robust n-type graphene field-effect transistors for digital logic electronic devices. Carbon 2024, 225, 119126. [Google Scholar] [CrossRef]
- Kwon, B.; Bae, H.; Lee, H.; Kim, S.; Hwang, J.; Lim, H.; Lee, J.H.; Cho, K.; Ye, J.; Lee, S.; et al. Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping. ACS Nano 2022, 16, 2176–2187. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Liang, Y.; Wen, R.; Jiang, Z.; Wang, Y.; Shao, Q. Theoretical and experimental investigations of enhanced carbon nanotube-gold interface conductivity through nitrogen doping. Nanoscale 2024, 16, 249. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Saito, S. Detection of Environmentally Toxic Molecules Using Carbon Nanotubes: A First-Principles Theoretical Study. J. Electrochem. Soc. 2022, 169, 037512. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Saito, S. Electronic structures and stabilities of bilayer graphene doped with boron and nitrogen. Surf. Sci. 2015, 634, 57. [Google Scholar] [CrossRef]
- Li, Y.F.; Zhou, Z.; Wang, L.B. CNx nanotubes with pyridinelike structures: P-type semiconductors and Li storage materials. J. Chem. Phys. 2008, 129, 104703. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.T.; Liu, Y.; Baek, J.B.; Dai, L.M. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 3, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.J.; Kim, H.S.; Im, H.; Myung, Y.; Jung, G.B.; Lee, C.W.; Park, J.; Park, M.H.; Cho, J.; Kang, H.S. Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes. J. Phys. Chem. C 2011, 115, 9451–9457. [Google Scholar] [CrossRef]
- Xue, Y.Z.; Wu, B.; Jiang, L.; Guo, Y.L.; Huang, L.P.; Chen, J.Y.; Tan, J.H.; Geng, D.H.; Luo, B.R.; Hu, W.P.; et al. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 2012, 134, 11060–11063. [Google Scholar] [CrossRef]
- Kwon, O.S.; Park, S.J.; Hong, J.Y.; Han, A.R.; Lee, J.S.; Oh, J.H.; Jang, J. Flexible FET-Type VEGF Aptasensor Based on Nitrogen-Doped Graphene Converted from Conducting Polymer. ACS Nano 2012, 6, 1486–1493. [Google Scholar] [CrossRef]
- Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 2009, 9, 1752. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, K.; Sato, Y.; Yamamoto, M.; Nishida, T.; Motomiya, K.; Tohji, K.; Sato, Y. Work function, carrier type, and conductivity of nitrogen-doped single-walled carbon nanotube catalysts prepared by annealing via defluorination and efficient oxygen reduction reaction. Carbon 2019, 142, 518–527. [Google Scholar] [CrossRef]
- Yamada, Y.; Tanaka, H.; Kubo, S.; Sato, S. Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy. Nano Lett. 2012, 12, 4025–4031. [Google Scholar] [CrossRef]
- Lazar, P.; Mach, R.; Otyepka, M. Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyridinic, and Chemisorbed Nitrogen in N-Doped Graphene. J. Phys. Chem. C 2019, 123, 10695–10702. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Saito, S. Formation, stabilities, and electronic properties of nitrogen defects in graphene. Phys. Rev. B 2011, 84, 245446. [Google Scholar] [CrossRef]
- Ayala, P.; Gruneis, A.; Gemming, T.; Grimm, D.; Kramberger, C.; Rummeli, M.H.; Freire, F.L., Jr.; Kuzmany, H. Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock. J. Phys. Chem. C 2007, 111, 2879–2884. [Google Scholar] [CrossRef]
- Fang, W.-C. RuO2 nanoparticles dispersed on carbon nanotubes with high electrochemical activity using N incorporation. Nanotechnology 2008, 19, 165705. [Google Scholar] [CrossRef]
- Hong, S.; Lee, D.-M.; Park, M.; Wee, J.-H.; Jeong, H.S.; Ku, B.-C.; Yang, C.-M.; Lee, D.S.; Terrones, M.; Kim, Y.A.; et al. Controlled synthesis of N-type single-walled carbon nanotubes with 100% of quaternary nitrogen. Carbon 2020, 167, 881–887. [Google Scholar] [CrossRef]
- Lim, J.; Maiti, U.N.; Kim, N.-Y.; Narayan, R.; Lee, W.J.; Choi, D.S.; Oh, Y.; Lee, J.M.; Lee, G.Y.; Kang, S.H. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. Nat. Commun. 2016, 7, 10364. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Shang, P.; Li, Y.; Chen, Z.; Xu, Q. N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance super-capacitors. Chem. Commun. 2014, 50, 12091–12094. [Google Scholar] [CrossRef]
- Zhao, L.; Levendorf, M.; Goncher, S.; Schiros, T.; Pálová, L.; Zabet-Khosousi, A.; Rim, K.T.; Gutiérrez, C.; Nordlund, D.; Jaye, C.; et al. Local atomic and electronic structure of boron chemical doping in monolayer graphene. Nano Lett. 2013, 13, 4659. [Google Scholar] [CrossRef]
- Tison, Y.; Lagoute, J.; Repain, V.; Chacon, C.; Girard, Y.; Rousset, S.; Joucken, F.; Sharma, D.; Henrard, L.; Amara, H.; et al. Electronic Interaction between Nitrogen Atoms in Doped Graphene. ACS Nano 2015, 9, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Seo, J.A.; Yoon, T.; Cha, Y.; Park, J.; Shin, B.G.; Heinrich, A.J.; Kim, H.W.; Chae, J.; Song, Y.J. Defect Identification of Nitrogen-Doped Graphene on Pt (111) Using Atomic Force Microscopy and Scanning Tunneling Microscopy. J. Phys. Chem. C 2023, 127, 20742–20748. [Google Scholar] [CrossRef]
- Guillaume, S.-O.; Zheng, B.; Charlier, J.-C.; Henrard, L. Electronic properties and STM images of doped bilayer graphene. Phys. Rev. B 2012, 85, 035444. [Google Scholar] [CrossRef]
- Arjmand, M.; Chizari, K.; Krause, B.; Potschke, P.; Sundararaj, U. Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon 2016, 98, 358–372. [Google Scholar] [CrossRef]
- Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J.R. Controllable N-Doping of Graphene. Nano Lett. 2010, 10, 4975–4980. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of Individual Gas Molecules Adsorbed on Graphene. Natute Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lin, C.-Y.; Chiu, P.W. Controllable graphene N dopeing with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110. [Google Scholar] [CrossRef]
- Lu, Y.-F.; Lo, S.-T.; Lin, J.-C.; Zhang, W.; Lu, J.-Y.; Liu, F.-H.; Tseng, C.-M.; Lee, Y.-H.; Liang, C.-T.; Li, L.-J. Nitrogen-Doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport. ACS Nano 2013, 7, 6522–6532. [Google Scholar] [CrossRef]
- Jin, Z.; Yao, J.; Kittrell, C.; Tour, J.M. Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets. ACS Nano 2011, 5, 4112–4117. [Google Scholar] [CrossRef]
- Chang, D.W.; Lee, E.K.; Park, E.Y.; Yu, H.; Choi, H.-J.; Jeon, I.-Y.; Sohn, G.-J.; Shin, D.; Park, N.; Oh, J.H.; et al. Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. J. Am. Chem. Soc. 2013, 135, 8981–8988. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, Y.; Saito, S. Hydrogen adsorption and anomalous electronic properties of nitrogen-doped graphene. J. Appl. Phys. 2014, 115, 153701. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, Q.; Li, W.; Calizo, I.; Yan, R.; Zhang, Q.; Li, W.; Calizo, I.; Shen, T.; Richter, C.A.; et al. Determination of graphene work function and graphene-insulator-semiconductor band alignment by internal photoemission spectroscopy. Appl. Phys. Lett. 2012, 101, 022105. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Saito, S. Energetics and electronic structures of pyridine-type defects in nitrogen-doped carbon nanotubes. Phys. E 2011, 43, 677. [Google Scholar] [CrossRef]
- Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L.; Kim, K.S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C.; et al. Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Lett. 2012, 12, 4025–4031. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Kumar, A.; Li, G.; Itkis, M.E.; Wong, B.M.; Bekyarova, E. Covalent Atomic Bridges Enable Unidirectional Enhancement of Electronic Transport in Aligned Carbon Nanotubes. ACS Appl. Mater. Interfaces 2019, 11, 19315–19323. [Google Scholar] [CrossRef]
- Li, E.Y.; Marzari, N. Improving the Electrical Conductivity of Carbon Nanotube Networks: A First-Principles Study. ACS Nano 2011, 5, 9726–9736. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Schlapbach, L. Hydrogen-fuelled vehicles. Nature 2009, 460, 809–811. [Google Scholar] [CrossRef]
- Morandé, A.; Lillo, P.; Blanco, E.; Pazo, C.; Dongil, A.B.; Zarate, X.; Saavedra-Torres, M.; Schott, E.; Canales, R.; Videla, A.; et al. Modification of a commercial activated carbon with nitrogen and boron: Hydrogen storage application. J. Energy Storage 2023, 64, 107193. [Google Scholar] [CrossRef]
- Kim, G.; Jhi, S.-H.; Park, N. Effective metal dispersion in pyridinelike nitrogen doped graphenes for hydrogen storage. Appl. Phys. Lett. 2008, 92, 013106. [Google Scholar] [CrossRef]
- Choi, W.I.; Jhi, S.-H.; Kim, K.; Kim, Y.-H. Divacancy-nitrogen-assisted transition metal dispersion and hydrogen adsorption in defective graphene: A first-principles study. Phys. Rev. B 2010, 81, 085441. [Google Scholar] [CrossRef]
- Yildirim, T.; Ciraci, S. Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium. Phys. Rev. Lett. 2005, 94, 175501. [Google Scholar] [CrossRef] [PubMed]
- Parambhath, V.B.; Nagar, R.; Ramaprabhu, S. Effect of Nitrogen Doping on Hydrogen Storage Capacity of Palladium Decorated Graphene. Langmuir 2012, 28, 7826–7833. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.; Gao, L.; Komatsu, T.; Yagai, N.; Arai, K.; Yamazaki, T.; Matsuishi, K.; Matsumoto, T.; Nakamura, J. Atomic Hydrogen Storage in Carbon Nanotubes Promoted by Metal Catalysts. J. Phys. Chem. B 2004, 108, 18903–18907. [Google Scholar] [CrossRef]
- Campesi, R.; Cuevas, F.; Gadiou, R.; Leroy, E.; Hirscher, M.; Vix-Guterl, C.; Latroche, M. Hydrogen storage properties of Pd nanoparticle/carbon template composites. Carbon 2008, 46, 206–214. [Google Scholar] [CrossRef]
- Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube Molecular Wires as Chemical Sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef]
- Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801. [Google Scholar] [CrossRef]
- Zanolli, Z.; Charlier, J.-C. Defective carbon nanotubes for single-molecule sensing. Phys. Rev. B 2009, 80, 155447. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, C.; Wei, S.-H. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Adjizian, J.-J.; Leghrib, R.; Koos, A.A.; Suarez-Martinez, I.; Crossley, A.; Wagner, P.; Grobert, N.; Llobet, E.; Ewels, C.P. Boron- and nitrogen-doped multi-wall carbon nanotubes for gas detection. Carbon 2014, 66, 662–673. [Google Scholar] [CrossRef]
- Battie, Y.; Ducloux, O.; Thobois, P.; Susi, T.; Kauppinen, E.I.; Loiseau, A. Selective differential ammonia gassensor based on N-doped SWCNT films. Phys. Status Solidi B 2011, 248, 2462–2466. [Google Scholar] [CrossRef]
- Dai, J.; Yuan, J.; Giannozzi, P. Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study. Appl. Phys. Lett. 2009, 95, 232105. [Google Scholar] [CrossRef]
- Travlou, N.A.; Ushay, C.; Seredych, M.; Rodríguez-Castellon, E.; Bandosz, T.J. Nitrogen-Doped Activated Carbon-Based Ammonia Sensors: Effect of Specific Surface Functional Groups on Carbon Electronic Properties. ACS Sens. 2016, 1, 591–599. [Google Scholar] [CrossRef]
- Rocha, A.R.; Rossi, M.; Fazzio, A.; da Silva, A.J.R. Designing Real Nanotube-Based Gas Sensors. Phys. Rev. Lett. 2008, 100, 176803. [Google Scholar] [CrossRef]
- Rocha, A.R.; Rossi, M.; da Silva, A.J.R.; Fazzio, A. Realistic calculations of carbon-based disordered systems. J. Phys. D Appl. Phys. 2010, 43, 374002. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.; Choi, H.; Yoo, D.S.; Chung, Y.-C. Effect of nitrogen induced defects in Li dispersed graphene on hydrogen storage. Int. J. Hydrog. Energy 2013, 38, 4611–4617. [Google Scholar] [CrossRef]
- Han, Y.; Ni, Y.; Guo, X.; Jiao, T. Insights into the mechanism of electric field regulating hydrogen adsorption on Li-functionalized N-doped defective graphene: A first-principles perspective. Fuel 2024, 357, 129655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujimoto, Y. Formation, Structure, Electronic, and Transport Properties of Nitrogen Defects in Graphene and Carbon Nanotubes. Micromachines 2024, 15, 1172. https://doi.org/10.3390/mi15091172
Fujimoto Y. Formation, Structure, Electronic, and Transport Properties of Nitrogen Defects in Graphene and Carbon Nanotubes. Micromachines. 2024; 15(9):1172. https://doi.org/10.3390/mi15091172
Chicago/Turabian StyleFujimoto, Yoshitaka. 2024. "Formation, Structure, Electronic, and Transport Properties of Nitrogen Defects in Graphene and Carbon Nanotubes" Micromachines 15, no. 9: 1172. https://doi.org/10.3390/mi15091172
APA StyleFujimoto, Y. (2024). Formation, Structure, Electronic, and Transport Properties of Nitrogen Defects in Graphene and Carbon Nanotubes. Micromachines, 15(9), 1172. https://doi.org/10.3390/mi15091172