A Micromachined Silicon-on-Glass Accelerometer with an Optimized Comb Finger Gap Arrangement
Abstract
:1. Introduction
2. Design and Modeling
2.1. Structure Design
2.2. Signal Sensing Circuit Design
2.3. Fabrication Process
3. Experimental Results
3.1. Mechanical Test
3.2. Quasi-Static Response Test
3.3. Noise Measurements
3.4. Zero-Bias Instability
4. Performance Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Liu, X. Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- El-Sheimy, N.; Youssef, A. Inertial sensors technologies for navigation applications: State of the art and future trends. Satell. Navig. 2020, 1, 2. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Scudero, S. A review of the capacitive MEMS for seismology. Sensors 2019, 19, 3093. [Google Scholar] [CrossRef] [PubMed]
- Algamili, A.S.; Khir, M.H.M. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res. Lett 2021, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Sato, K. Process development of an all-silicon capacitive accelerometer with a highly symmetrical spring-mass structure etched in TMAH + Triton-X-100. Sens. Actuators A 2014, 217, 105–110. [Google Scholar] [CrossRef]
- Qiu, S.; Zhao, H. Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Inform. Fusion 2022, 80, 241–265. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J. Design and experiment of pushpull MEMS resonant accelerometers. IEEE Sens. J. 2023, 23, 22233–22239. [Google Scholar] [CrossRef]
- Masihi, S.; Panahi, M. A highly sensitive capacitive based dual-axis accelerometer for wearable applications. In Proceedings of the 2020 IEEE International Conference on Electro-Information Technology, Chicago, IL, USA, 31 July–1 August 2020; pp. 557–561. [Google Scholar]
- Ma, Y.; Wang, S. Design and test of MEMS resonant accelerometer with a novel die-attach structure. In Proceedings of the 2023 IEEE Sensors, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar]
- Wang, Y.-Y.; Wu, G.-Y. Study of silicon-based MEMS technology and its standard process. Acta Electron. Sin. 2002, 30, 1577. [Google Scholar]
- Tez, S.; Akin, T. Fabrication of a sandwich type three axis capacitive MEMS accelerometer. In Proceedings of the 2013 IEEE Sensors, Baltimore, MD, USA, 3–6 November 2013; pp. 1863–1866. [Google Scholar]
- Chae, J.; Kulah, H. A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer. J. Micromech. Microeng. 2005, 15, 336–345. [Google Scholar] [CrossRef]
- Li, R.; Mohammed, Z. Design, modelling and characterization of comb drive MEMS gap-changeable differential capacitive accelerometer. Measurement 2021, 169, 108377. [Google Scholar] [CrossRef]
- Bansal, A.; Paul, B.C. An analytical fringe capacitance model for interconnects using conformal mapping. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 2006, 25, 2765–2774. [Google Scholar] [CrossRef]
- Jansen, H.V.; de Boer, M.J. Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: An in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment. J. Micromech. Microeng. 2009, 19, 033001. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Y. Research progress of lock-in amplifiers. Acta Phys. Sin. 2023, 72, 224206. [Google Scholar] [CrossRef]
- Dai, G.; Li, M. Thermal drift analysis using a multiphysics model of bulk silicon MEMS capacitive accelerometer. Sens. Actuators A 2011, 172, 369–378. [Google Scholar] [CrossRef]
- Vollenbroek, J.C.; Nieuwelink, A.-E. Droplet microreactor for high-throughput fluorescence-based measurements of single catalyst particle acidity. Microsyst. Nanoeng. 2023, 9, 39. [Google Scholar] [CrossRef]
- Nieuwelink, A.-E.; Vollenbroek, J.C. High-throughput activity screening and sorting of single catalyst particles with a droplet microreactor using dielectrophoresis. Nat. Catal. 2021, 4, 1070–1079. [Google Scholar] [CrossRef]
- Qu, H.Z. Development of DRIE CMOS-MEMS Process and Integrated Accelerometers. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2006. [Google Scholar]
- Kuehnel, W. Modelling of the mechanical behaviour of a differential capacitor acceleration sensor. Sens. Actuators A 1995, 48, 101–108. [Google Scholar] [CrossRef]
- Fang, D.Z. Low-Noise and Low-Power Interface Circuits Design for Integrated CMOS-MEMS Inertial Sensors. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2006. [Google Scholar]
- Gabrielson, T.B. Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans. Electron Devices 1993, 40, 903–909. [Google Scholar] [CrossRef]
- Li, J.; Fang, J. Not fully overlapping allan variance and total variance for inertial sensor stochastic error analysis. IEEE Trans. Instrum. Meas. 2013, 62, 2659–2672. [Google Scholar] [CrossRef]
- He, J.; Xie, J. Analytical study and compensation for temperature drifts of a bulk silicon MEMS capacitive accelerometer. Sens. Actuators A 2016, 239, 174–184. [Google Scholar] [CrossRef]
- Wang, C.; Hao, Y. Design of a capacitive MEMS accelerometer with softened beams. Micromachines 2022, 13, 459. [Google Scholar] [CrossRef] [PubMed]
Gap ratio D/d | 2 | 2.5 | 5 | 10 | 12 | 15 |
Sc (F/g) | 5.78 × 10−15 | 5.97 × 10−15 | 5.24 × 10−15 | 5.18 × 10−15 | 5.16 × 10−15 | 5.13 × 10−15 |
Parameter | Symbol | Values |
---|---|---|
Overall sensor size | As | 1000 μm × 950 μm |
Thickness of the structure | T | 45 μm |
Comb finger gap/anti-finger gap | d/D | 3 μm/7.5 μm |
Sensing fingers | Lfinger × Wfinger | 120 μm × 4 μm |
Number of comb finger | N | 42 |
Proof mass size | Lmass × Wmass | 750 μm × 560 μm |
Spring dimension | Lspring × Wspring | 410 μm × 4 μm |
Procedure | Cavity Pressure | ICP Power | LF Power | C4F8 | SF6 | Time |
---|---|---|---|---|---|---|
mtorr | W | W | sccm | sccm | s | |
Passivation | 30 | 1800 | 0 | 150 | 0 | 2 |
Etching-1 | 60 | 2200 | 300 | 0 | 200 | 1 |
Etching-2 | 60 | 2200 | 60 | 0 | 200 | 3 |
References | Sensor Area (mm2) | Comb Finger Gap (μm) | Capacitive Sensitivity (fF/g) | Resonant Frequency (Hz) | Electrical Sensitivity (mV/g) | Noise Floor (μg/√Hz) | Zero-Bias Instability (g) | CSPA |
---|---|---|---|---|---|---|---|---|
This work | 0.95 | 3 | 5.4 | 2050 | 532 | 28 | 4.4 × 10−4 | 51.15 |
Li et al. [13] | 2.48 | 1 | 80 | 4270 | 35.93 | NA | NA | 32.25 |
Wang et al. [26] | 77.44 | 4 | 178 | 400 | 3..47 | 40 | 8.24 × 10−6 | 36.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Feng, R.; Wang, X.; Cao, H.; Gong, K.; Xie, H. A Micromachined Silicon-on-Glass Accelerometer with an Optimized Comb Finger Gap Arrangement. Micromachines 2024, 15, 1173. https://doi.org/10.3390/mi15091173
Li J, Feng R, Wang X, Cao H, Gong K, Xie H. A Micromachined Silicon-on-Glass Accelerometer with an Optimized Comb Finger Gap Arrangement. Micromachines. 2024; 15(9):1173. https://doi.org/10.3390/mi15091173
Chicago/Turabian StyleLi, Jiacheng, Rui Feng, Xiaoyi Wang, Huiliang Cao, Keru Gong, and Huikai Xie. 2024. "A Micromachined Silicon-on-Glass Accelerometer with an Optimized Comb Finger Gap Arrangement" Micromachines 15, no. 9: 1173. https://doi.org/10.3390/mi15091173
APA StyleLi, J., Feng, R., Wang, X., Cao, H., Gong, K., & Xie, H. (2024). A Micromachined Silicon-on-Glass Accelerometer with an Optimized Comb Finger Gap Arrangement. Micromachines, 15(9), 1173. https://doi.org/10.3390/mi15091173