Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Electrical Generation of Stress
References
- Hassan, O.; Faria, R.; Camsari, K.Y.; Sun, J.Z.; Datta, S. Low barrier magnet design for efficient hardware binary stochastic neurons. IEEE Magn. Lett. 2019, 10, 4502805. [Google Scholar] [CrossRef]
- Hassan, O.; Datta, S.; Camsari, K.Y. Quantitative evaluation of hardware binary stochastic neurons. Phys. Rev. Appl. 2021, 15, 064046. [Google Scholar] [CrossRef]
- Khilwani, D.; Moghe, V.; Saraswat, V.; Kumbhare, P.; Baghini, M.J.; Jandhyala, S.; Subramoney, S.; Ganguly, U. PrxCa1-xMnO3 based neuron for Boltzmann machine to solve “maximum cut” problem. APL Mater. 2019, 7, 091112. [Google Scholar] [CrossRef]
- Borders, W.A.; Pervaiz, A.Z.; Fukami, S.; Camsari, K.Y.; Ohno, H.; Datta, S. Integer factorization using stochastic magnetic tunnel junctions. Nature 2019, 573, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Finocchio, G.; Bandyopadhyay, S.; Lin, P.; Pan, G.; Yang, J.J.; Tomasello, R.; Panagopoulos, C.; Carpentieri, M.; Puliafito, V.; Åkerman, J.; et al. Roadmap for unconventional computing with nanotechnology. Nano Futures 2024, 8, 012001. [Google Scholar] [CrossRef]
- Ganguly, S.; Camsari, K.Y.; Ghosh, A.W. Analog signal processing using stochastic magnets. IEEE Access 2021, 9, 92640–92650. [Google Scholar] [CrossRef]
- Morshed, M.G.; Ganguly, S.; Ghosh, A.W. Choose your tools carefully: A comparative evaluation of deterministic vs. stochastic and binary vs. analog neuron models for implementing emerging computing paradigms. Front. Nanotechnol. 2023, 5, 1146852. [Google Scholar] [CrossRef]
- Nasrin, S.; Drobitch, J.L.; Bandyopadhyay, S.; Trivedi, A.R. Low-power restricted Boltzmann machine using mixed mode magneto-tunneling junctions. IEEE Trans. Electron Dev. 2019, 40, 345–348. [Google Scholar] [CrossRef]
- Rahman, R.; Ganguly, S.; Bandyopadhyay, S. Reconfigurable stochastic neurons based on strain engineered low barrier nanomagnets. Nanotechnology 2024, 35, 325205. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S. Magnetic straintronics for ultra-energy-efficient unconventional computing: A review. IEEE Trans. Magn. 2024; early access. [Google Scholar] [CrossRef]
- Galati, G.; Pavan, G.; Wasserzier, C. Signal design and processing for noise radar. EURASIP J. Adv. Signal Process. 2022, 2022, 52. [Google Scholar] [CrossRef]
- Lukin, K.; Zemlyanyi, O.; Lukin, S. Generation of chaotic and random signals for noise radar-brief overview. In Proceedings of the 23rd International Radar Symposium (IRS), Gdansk, Poland, 12–14 September 2022. [Google Scholar]
- Brown, J.; Zhang, J.F.; Zhou, B.; Mehzabeen, M.; Freitas, P.; Marsland, J.; Ji, Z. Random-telegraph-noise-enabled true random number generator for hardware security. Sci. Rep. 2020, 10, 17210. [Google Scholar] [CrossRef] [PubMed]
- Petrie, C.S.; Connelly, J.A. A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 615. [Google Scholar] [CrossRef]
- Santan, R.; Coelho, R. Low-frequency ambient noise generator with application to automatic speaker classification. EURASIP J. Adv. Signal Process. 2012, 2012, 175. [Google Scholar] [CrossRef]
- Mohsen Nia, A.; Jha, N.K. A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 2016, 5, 586–602. [Google Scholar] [CrossRef]
- Beirami, A.; Nejati, H.; Massoud, Y. A performance metric for discrete-time chaos-based truly random number generators. Midwest Symp. Circuits Syst. 2008, 77005, 133–136. [Google Scholar]
- Soucarros, M.; Clediere, J.; Dumas, C.; Elbaz-Vincent, P. Fault analysis and evaluation of a true random number generator embedded in a processor. J. Electron. Test. 2013, 29, 367–381. [Google Scholar] [CrossRef]
- Yang, B.; Rozic, V.; Mentens, N.; Verbauwhede, I. On-the-fly tests for non-ideal true random number generators. Proc.—IEEE Int. Symp. Circuits Syst. 2015, 2015, 2017–2020. [Google Scholar]
- Rahman, R.; Bandyopadhyay, S. The strong sensitivity of the characteristics of binary stochastic neurons employing low barrier nanomagnets to small geometrical variations. IEEE Trans. Nanotechnol. 2023, 22, 112–119. [Google Scholar] [CrossRef]
- Rahman, R.; Bandyopadhyay, S. Increasing flips per second and speed of p-computers by using dilute magnetic semiconductors. IEEE Magn. Lett. 2023, 14, 4500604. [Google Scholar] [CrossRef]
- Miller, S.; Childers, D.G. Probability and Random Processes: With Applications to Signal Processing and Communications; Elsevier-Academic Press: Cambridge, MA, USA, 2004; Chapter 10. [Google Scholar]
- Sutton, B.; Faria, R.; Ghantasala, L.A.; Jaiswal, R.; Camsari, K.Y.; Datta, S. Autonomous probabilistic coprocessing with petaflips per second. IEEE Access 2020, 8, 157238–157252. [Google Scholar] [CrossRef]
Stress (MPa) | (MHz) | FWHM (s) |
---|---|---|
0 | 2.67 | 0.200 |
2 | 3.68 | 0.070 |
5 | 5.41 | 0.025 |
6 | 5.41 | 0.009 |
Stress (MPa) | (Arb. Units) |
---|---|
0 | 0.2090 |
2 | 0.2149 |
5 | 0.1983 |
6 | 0.1836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, R.; Bandyopadhyay, S. Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons. Micromachines 2024, 15, 1174. https://doi.org/10.3390/mi15091174
Rahman R, Bandyopadhyay S. Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons. Micromachines. 2024; 15(9):1174. https://doi.org/10.3390/mi15091174
Chicago/Turabian StyleRahman, Rahnuma, and Supriyo Bandyopadhyay. 2024. "Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons" Micromachines 15, no. 9: 1174. https://doi.org/10.3390/mi15091174
APA StyleRahman, R., & Bandyopadhyay, S. (2024). Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons. Micromachines, 15(9), 1174. https://doi.org/10.3390/mi15091174