A Novel Nano-Spherical Tip for Improving Precision in Elastic Modulus Measurements of Polymer Materials via Atomic Force Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. AFM Measurements
2.2.2. Data Processing
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seidlits, S.K.; Khaing, Z.Z.; Petersen, R.R.; Nickels, J.D.; Vanscoy, J.E.; Shear, J.B.; Schmidt, C.E. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 2010, 31, 3930–3940. [Google Scholar] [CrossRef] [PubMed]
- Kovalev, A.; Shulha, H.; Lemieux, M.; Myshkin, N.; Tsukruk, V.V. Nanomechanical Probing of Layered Nanoscale Polymer Films With Atomic Force Microscopy. J. Mater. Res. 2011, 19, 716–728. [Google Scholar] [CrossRef]
- Reggente, M.; Rossi, M.; Angeloni, L.; Tamburri, E.; Lucci, M.; Davoli, I.; Terranova, M.L.; Passeri, D. Atomic Force Microscopy Techniques for Nanomechanical Characterization: A Polymeric Case Study. Jom 2015, 67, 849–857. [Google Scholar] [CrossRef]
- Wu, P.H.; Aroush, D.R.; Asnacios, A.; Chen, W.C.; Dokukin, M.E.; Doss, B.L.; Durand-Smet, P.; Ekpenyong, A.; Guck, J.; Guz, N.V.; et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 2018, 15, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Liang, S. Review of the Design of Titanium Alloys with Low Elastic Modulus as Implant Materials. Adv. Eng. Mater. 2020, 22, 2000555. [Google Scholar] [CrossRef]
- Dolmat, M.; Kozlovskaya, V.; Kharlampieva, E. Atomic Force Microscopy for Teaching Polymer Crystals and Polymer Blends. J. Chem. Educ. 2023, 100, 4047–4055. [Google Scholar] [CrossRef]
- Isotta, E.; Peng, W.; Balodhi, A.; Zevalkink, A. Elastic Moduli: A Tool for Understanding Chemical Bonding and Thermal Transport in Thermoelectric Materials. Angew. Chem. Int. Ed. Engl. 2023, 62, e202213649. [Google Scholar] [CrossRef]
- Dimitriadis, E.K.; Horkay, F.; Maresca, J.; Kachar, B.; Chadwick, R.S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 2002, 82, 2798–2810. [Google Scholar] [CrossRef]
- Carl, P.; Schillers, H. Elasticity measurement of living cells with an atomic force microscope: Data acquisition and processing. Pflug. Arch. 2008, 457, 551–559. [Google Scholar] [CrossRef]
- Chyasnavichyus, M.; Young, S.L.; Geryak, R.; Tsukruk, V.V. Probing elastic properties of soft materials with AFM: Data analysis for different tip geometries. Polymer 2016, 102, 317–325. [Google Scholar] [CrossRef]
- Wang, X.; Lin, J.; Li, Z.; Ma, Y.; Zhang, X.; He, Q.; Wu, Q.; Yan, Y.; Wei, W.; Yao, X.; et al. Identification of an Ultrathin Osteochondral Interface Tissue with Specific Nanostructure at the Human Knee Joint. Nano Lett. 2022, 22, 2309–2319. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Putz, K.W.; Wood, C.D.; Brinson, L.C. Characterization of local elastic modulus in confined polymer films via AFM indentation. Macromol. Rapid Commun. 2015, 36, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- Monclus, M.A.; Young, T.J.; Di Maio, D. AFM indentation method used for elastic modulus characterization of interfaces and thin layers. J. Mater. Sci. 2010, 45, 3190–3197. [Google Scholar] [CrossRef]
- Kong, L.; Hadavimoghaddam, F.; Li, C.; Liu, K.; Liu, B.; Semnani, A.; Ostadhassan, M. AFM vs. Nanoindentation: Nanomechanical properties of organic-rich Shale. Mar. Pet. Geol. 2021, 132, 105229. [Google Scholar] [CrossRef]
- Kontomaris, S.V.; Malamou, A. Hertz model or Oliver & Pharr analysis? Tutorial regarding AFM nanoindentation experiments on biological samples. Mater. Res. Express 2020, 7, 033001. [Google Scholar] [CrossRef]
- Nguyen, L.T.P.; Liu, B.H. Machine learning approach for reducing uncertainty in AFM nanomechanical measurements through selection of appropriate contact model. Eur. J. Mech. A Solids 2022, 94, 104579. [Google Scholar] [CrossRef]
- Kopycinska-Muller, M.; Geiss, R.H.; Hurley, D.C. Contact mechanics and tip shape in AFM-based nanomechanical measurements. Ultramicroscopy 2006, 106, 466–474. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Chung, K.H. Effect of tip shape on nanomechanical properties measurements using AFM. Ultramicroscopy 2019, 202, 1–9. [Google Scholar] [CrossRef]
- Belikov, S.; Erina, N.; Huang, L.; Su, C.; Prater, C.; Magonov, S.; Ginzburg, V.; McIntyre, B.; Lakrout, H.; Meyers, G. Parametrization of atomic force microscopy tip shape models for quantitative nanomechanical measurements. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 984–992. [Google Scholar] [CrossRef]
- Passeri, D.; Bettucci, A.; Germano, M.; Rossi, M.; Alippi, A.; Orlanducci, S.; Terranova, M.; Ciavarella, M. Effect of tip geometry on local indentation modulus measurement via atomic force acoustic microscopy technique. Rev. Sci. Instrum. 2005, 76, 093904. [Google Scholar] [CrossRef]
- Kulkarni, S.G.; Perez-Dominguez, S.; Radmacher, M. Influence of cantilever tip geometry and contact model on AFM elasticity measurement of cells. J. Mol. Recognit. 2023, 36, e3018. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Tsui, O.K.; Zhang, Q.; He, T. Study of elastic modulus and yield strength of polymer thin films using atomic force microscopy. Langmuir 2001, 17, 3286–3291. [Google Scholar] [CrossRef]
- Almasi, D.; Sharifi, R.; Kadir, M.R.A.; Krishnamurithy, G.; Kamarul, T. Study on the AFM Force Curve Common Errors and Their Effects on the Calculated Nanomechanical Properties of Materials. J. Eng. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Kim, S.; Lee, Y.; Lee, M.; An, S.; Cho, S.J. Quantitative Visualization of the Nanomechanical Young’s Modulus of Soft Materials by Atomic Force Microscopy. Nanomater 2021, 11, 1593. [Google Scholar] [CrossRef]
- Park, S.; Duong, C.-T.; Lee, J.-H.; Lee, S.-S.; Son, K. Effect of tip geometry of atomic force microscope on mechanical responses of bovine articular cartilage and agarose gel. Int. J. Precis. Eng. Manuf. 2010, 11, 129–136. [Google Scholar] [CrossRef]
- Hu, H.; Shi, B.; Breslin, C.M.; Gignac, L.; Peng, Y. A Sub-Micron Spherical Atomic Force Microscopic Tip for Surface Measurements. Langmuir 2020, 36, 7861–7867. [Google Scholar] [CrossRef]
- Livengood, R.; Tan, S.; Greenzweig, Y.; Notte, J.; McVey, S. Subsurface damage from helium ions as a function of dose, beam energy, and dose rate. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 3244–3249. [Google Scholar] [CrossRef]
- Uzoma, P.C.; Ding, X.; Wen, X.; Zhang, L.; Penkov, O.V.; Hu, H. A wear-resistant silicon nano-spherical AFM probe for robust nanotribological studies. Phys. Chem. Chem. Phys. 2022, 24, 23849–23857. [Google Scholar]
- Liu, S.W.; Wang, H.P.; Xu, Q.; Ma, T.B.; Yu, G.; Zhang, C.; Geng, D.; Yu, Z.; Zhang, S.; Wang, W.; et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 2017, 8, 14029. [Google Scholar] [CrossRef]
- Radulovic, L.L.; Wojcinski, Z.W. PTFE (Polytetrafluoroethylene; Teflon®). In Encyclopedia of Toxicology; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 1133–1136. [Google Scholar]
- Maddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Liu, Y.; Sokolov, I.; Dokukin, M.E.; Xiong, Y. Can AFM be used to measure absolute values of Young’s modulus of nanocomposite materials down to the nanoscale? Nanoscale 2020, 12, 12432–12443. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Du, Y.C. Effect of surface topographies of PTFE and polyimide as characterized by atomic force microscopy on the heterogeneous nucleation of isotactic polypropylene. Mater. Chem. Phys. 1999, 58, 268–275. [Google Scholar] [CrossRef]
- Ortner, H.M.; Xu, H.H.; Dahmen, J.; Englert, K.; Opfermann, H.; Görtz, W. Surface characterization of fluorinated polymers (PTFE, PVDF, PFA) for use in ultratrace analysis. Fresenius’ J. Anal. Chem. 1996, 355, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Beach, E.R.; Tormoen, G.W.; Drelich, J.; Han, R. Pull-off force measurements between rough surfaces by atomic force microscopy. J. Colloid. Interface Sci. 2002, 247, 84–99. [Google Scholar] [CrossRef]
- Lin, Y.J.; Dias, P.; Chum, S.; Hiltner, A.; Baer, E. Surface roughness and light transmission of biaxially oriented polypropylene films. Polym. Eng. Sci. 2007, 47, 1658–1665. [Google Scholar] [CrossRef]
- Paik, P.; Kar, K.K. Surface roughness and morphology of polypropylene nanospheres: Effects of particles size. Surf. Eng. 2008, 24, 341–349. [Google Scholar] [CrossRef]
- Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Endoo, S.M.; Cleveland, J.P.; Jarvis, S.P. Noninvasive determination of optical lever sensitivity in atomic force microscopy. Rev. Sci. Instrum. 2006, 77, 013701. [Google Scholar] [CrossRef]
- Hertz, H. Ueber die Berührung fester elastischer Körper. J. Für Die Reine Und Angew. Math. (Crelles J.) 1882, 156–171. [Google Scholar] [CrossRef]
- Johnson, K.L. One hundred years of Hertz contact. Proc. Inst. Mech. Eng. 1982, 196, 363–378. [Google Scholar] [CrossRef]
- Kontomaris, S.-V.; Malamou, A. Revisiting the theory behind AFM indentation procedures. Exploring the physical significance of fundamental equations. Eur. J. Phys. 2021, 43, 015010. [Google Scholar] [CrossRef]
- Sirghi, L. Atomic force microscopy indentation of living cells. Microsc. Sci. Technol. Appl. Educ. Formatex Badajoz 2010, 1, 433–440. [Google Scholar]
- Lekka, M.; Laidler, P.; Gil, D.; Lekki, J.; Stachura, Z.; Hrynkiewicz, A.Z. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 1999, 28, 312–316. [Google Scholar] [CrossRef]
- Crick, S.L.; Yin, F.C. Assessing micromechanical properties of cells with atomic force microscopy: Importance of the contact point. Biomech. Model. Mechanobiol. 2007, 6, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Benitez, R.; Moreno-Flores, S.; Bolos, V.J.; Toca-Herrera, J.L. A new automatic contact point detection algorithm for AFM force curves. Microsc. Res. Tech. 2013, 76, 870–876. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Clifford, C.A.; Seah, M.P. Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation. Appl. Surf. Sci. 2005, 252, 1915–1933. [Google Scholar] [CrossRef]
- Moeller, G. AFM nanoindentation of viscoelastic materials with large end-radius probes. J. Polym. Sci. Part. B Polym. Phys. 2009, 47, 1573–1587. [Google Scholar] [CrossRef]
- Jee, A.-Y.; Lee, M. Comparative analysis on the nanoindentation of polymers using atomic force microscopy. Polym. Test. 2010, 29, 95–99. [Google Scholar] [CrossRef]
- Yan, Y.; Xue, B.; Hu, Z.; Zhao, X. AFM tip characterization by using FFT filtered images of step structures. Ultramicroscopy 2016, 160, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Orji, N.G.; Itoh, H.; Wang, C.; Dixson, R.G.; Walecki, P.S.; Schmidt, S.W.; Irmer, B. Tip characterization method using multi-feature characterizer for CD-AFM. Ultramicroscopy 2016, 162, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Boonpuek, P.; Felts, J.R. Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function. Beilstein J. Nanotechnol. 2023, 14, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Kontomaris, S.V.; Stylianou, A.; Chliveros, G.; Malamou, A. A New Elementary Method for Determining the Tip Radius and Young’s Modulus in AFM Spherical Indentations. Micromachines 2023, 14, 1716. [Google Scholar] [CrossRef] [PubMed]
- Briscoe, B.; Sebastian, K.; Adams, M. The effect of indenter geometry on the elastic response to indentation. J. Phys. D Appl. Phys. 1994, 27, 1156. [Google Scholar] [CrossRef]
- Hermanowicz, P.; Sarna, M.; Burda, K.; Gabryś, H. AtomicJ: An open source software for analysis of force curves. Rev. Sci. Instrum. 2014, 85, 063703. [Google Scholar] [CrossRef]
- Rico, F.; Roca-Cusachs, P.; Gavara, N.; Farré, R.; Rotger, M.; Navajas, D. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2005, 72, 021914. [Google Scholar] [CrossRef]
- Piglionico, S.S.; Varga, B.; Pall, O.; Romieu, O.; Gergely, C.; Cuisinier, F.; Levallois, B.; Panayotov, I.V. Biomechanical characterization of a fibrinogen-blood hydrogel for human dental pulp regeneration. Biomater. Sci. 2023, 11, 6919–6930. [Google Scholar] [CrossRef]
- Jung, Y.-G.; Lawn, B.R.; Martyniuk, M.; Huang, H.; Hu, X.Z. Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 2004, 19, 3076–3080. [Google Scholar] [CrossRef]
- Donnelly, E.; Baker, S.P.; Boskey, A.L.; van der Meulen, M.C. Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J. Biomed. Mater. Res. Part A 2006, 77, 426–435. [Google Scholar] [CrossRef]
- Ding, X.; Qiao, B.; Chen, H.; Uzoma, P.C.; Xu, Y.; Hu, H. Damage-Free Cleaning of 2D van der Waals Heterostructures with Nano-Spherical AFM Probes. In Proceedings of the 2023 IEEE 23rd International Conference on Nanotechnology (NANO), Jeju Island, Republic of Korea, 2–5 July 2023; pp. 899–903. [Google Scholar]
- Kim, S.; Shafiei, F.; Ratchford, D.C.; Li, X. Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 2011, 22, 115301. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zheng, Z.; Xu, Y.; Hu, H. Fabrication and Optimization of Single Nanowire Optoelectronic Devices Based on Atomic Force Microscope. In Proceedings of the 2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Chengdu, China, 31 July–4 August 2023; pp. 171–175. [Google Scholar]
Material | Elastic Modulus (GPa) | Standard Deviation |
---|---|---|
PTFE | 1.862 | 0.092 |
PP | 0.850 | 0.224 |
Elastic Modulus (GPa) | PTFE | PP | ||||
---|---|---|---|---|---|---|
Tip | Mean | SD | RSD | Mean | SD | RSD |
Sharp Flat-ended Spherical | 0.85919 0.12972 0.38651 | 0.4857 0.0122 0.0423 | 0.565 0.144 0.109 | 0.85350 0.17817 0.40010 | 0.45970 0.0217 0.0884 | 0.539 0.124 0.211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, T.; Uzoma, P.C.; Ding, X.; Wu, P.; Penkov, O.; Hu, H. A Novel Nano-Spherical Tip for Improving Precision in Elastic Modulus Measurements of Polymer Materials via Atomic Force Microscopy. Micromachines 2024, 15, 1175. https://doi.org/10.3390/mi15091175
Fu T, Uzoma PC, Ding X, Wu P, Penkov O, Hu H. A Novel Nano-Spherical Tip for Improving Precision in Elastic Modulus Measurements of Polymer Materials via Atomic Force Microscopy. Micromachines. 2024; 15(9):1175. https://doi.org/10.3390/mi15091175
Chicago/Turabian StyleFu, Tianyu, Paul C. Uzoma, Xiaolei Ding, Pengyuan Wu, Oleksiy Penkov, and Huan Hu. 2024. "A Novel Nano-Spherical Tip for Improving Precision in Elastic Modulus Measurements of Polymer Materials via Atomic Force Microscopy" Micromachines 15, no. 9: 1175. https://doi.org/10.3390/mi15091175
APA StyleFu, T., Uzoma, P. C., Ding, X., Wu, P., Penkov, O., & Hu, H. (2024). A Novel Nano-Spherical Tip for Improving Precision in Elastic Modulus Measurements of Polymer Materials via Atomic Force Microscopy. Micromachines, 15(9), 1175. https://doi.org/10.3390/mi15091175