Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Association between Individual SNP and STS Risk
2.3. Association between GRS and STS Risk
2.4. Gender-Specific Association of LTL GRS with STS
2.5. Association of LTL GRS with Histologic Subtypes
3. Discussion
4. Materials and Methods
4.1. Study Population and Data Collection
4.2. Genotyping
4.3. Mendelian Randomization (MR) Analysis and GRS Construction
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clark, M.A.; Fisher, C.; Judson, I.; Thomas, J.M. Soft-tissue sarcomas in adults. N. Engl. J. Med. 2005, 353, 701–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burningham, Z.; Hashibe, M.; Spector, L.; Schiffman, J.D. The epidemiology of sarcoma. Clin. Sarcoma Res. 2012, 2, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, J.Y. Epidemiology and etiology of sarcomas. Surg. Clin. N. Am. 2016, 96, 901–914. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2016; National Cancer Institute: Bethesda, MD, USA, 2018. [Google Scholar]
- Lessler, J.; Chaisson, L.H.; Kucirka, L.M.; Bi, Q.; Grantz, K.; Salje, H.; Carcelen, A.C.; Ott, C.T.; Sheffield, J.S.; Ferguson, N.M.; et al. Assessing the global threat from Zika virus. Science 2016, 353, aaf8160. [Google Scholar] [CrossRef] [Green Version]
- Benna, C.; Simioni, A.; Pasquali, S.; De Boni, D.; Rajendran, S.; Spiro, G.; Colombo, C.; Virgone, C.; DuBois, S.G.; Gronchi, A.; et al. Genetic susceptibility to bone and soft tissue sarcomas: A field synopsis and meta-analysis. Oncotarget 2018, 9, 18607–18626. [Google Scholar] [CrossRef] [Green Version]
- Shammas, M.A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, E.H.; Greider, C.W.; Szostak, J.W. Telomeres and telomerase: The path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 2006, 12, 1133–1138. [Google Scholar] [CrossRef]
- Palm, W.; de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 2008, 42, 301–334. [Google Scholar] [CrossRef] [Green Version]
- Gasser, S.M. A sense of the end. Science 2000, 288, 1377–1379. [Google Scholar] [CrossRef]
- Blasco, M.A. Telomeres and human disease: Ageing, cancer and beyond. Nat. Rev. Genet. 2005, 6, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Hackett, J.A.; Greider, C.W. Balancing instability: Dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene 2002, 21, 619–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniali, L.; Benetos, A.; Susser, E.; Kark, J.D.; Labat, C.; Kimura, M.; Desai, K.; Granick, M.; Aviv, A. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat. Commun. 2013, 4, 1597. [Google Scholar] [CrossRef] [PubMed]
- Jeanclos, E.; Schork, N.J.; Kyvik, K.O.; Kimura, M.; Skurnick, J.H.; Aviv, A. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension 2000, 36, 195–200. [Google Scholar] [CrossRef]
- Slagboom, P.E.; Droog, S.; Boomsma, D.I. Genetic determination of telomere size in humans: A twin study of three age groups. Am. J. Hum. Genet. 1994, 55, 876–882. [Google Scholar]
- Aubert, G.; Lansdorp, P.M. Telomeres and aging. Physiol. Rev. 2008, 88, 557–579. [Google Scholar] [CrossRef]
- Lansdorp, P.M.; Verwoerd, N.P.; van de Rijke, F.M.; Dragowska, V.; Little, M.T.; Dirks, R.W.; Raap, A.K.; Tanke, H.J. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 1996, 5, 685–691. [Google Scholar] [CrossRef]
- Huda, N.; Tanaka, H.; Herbert, B.S.; Reed, T.; Gilley, D. Shared environmental factors associated with telomere length maintenance in elderly male twins. Aging Cell 2007, 6, 709–713. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Ni, N.; Bao, B.; Zhang, C.; Lu, L. High lead exposure is associated with telomere length shortening in Chinese battery manufacturing plant workers. Occup. Environ. Med. 2012, 69, 557–563. [Google Scholar] [CrossRef]
- Starkweather, A.R.; Alhaeeri, A.A.; Montpetit, A.; Brumelle, J.; Filler, K.; Montpetit, M.; Mohanraj, L.; Lyon, D.E.; Jackson-Cook, C.K. An integrative review of factors associated with telomere length and implications for biobehavioral research. Nurs. Res. 2014, 63, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Fasching, C.L. Telomere length measurement as a clinical biomarker of aging and disease. Crit. Rev. Clin. Lab. Sci. 2018, 55, 443–465. [Google Scholar] [CrossRef] [PubMed]
- Mons, U.; Muezzinler, A.; Schottker, B.; Dieffenbach, A.K.; Butterbach, K.; Schick, M.; Peasey, A.; De Vivo, I.; Trichopoulou, A.; Boffetta, P.; et al. Leukocyte telomere length and all-cause, cardiovascular disease, and cancer mortality: Results from individual-participant-data meta-analysis of 2 large prospective cohort studies. Am. J. Epidemiol. 2017, 185, 1317–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weischer, M.; Nordestgaard, B.G.; Cawthon, R.M.; Freiberg, J.J.; Tybjaerg-Hansen, A.; Bojesen, S.E. Short telomere length, cancer survival, and cancer risk in 47,102 individuals. J. Natl. Cancer Inst. 2013, 105, 459–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rode, L.; Nordestgaard, B.G.; Bojesen, S.E. Long telomeres and cancer risk among 95,568 individuals from the general population. Int. J. Epidemiol. 2016, 45, 1634–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhao, Q.; Zhu, W.; Liu, T.; Xie, S.H.; Zhong, L.X.; Cai, Y.Y.; Li, X.N.; Liang, M.; Chen, W.; et al. The association of telomere length in peripheral blood cells with cancer risk: A systematic review and meta-analysis of prospective studies. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1381–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telomeres Mendelian Randomization, C.; Haycock, P.C.; Burgess, S.; Nounu, A.; Zheng, J.; Okoli, G.N.; Bowden, J.; Wade, K.H.; Timpson, N.J.; Evans, D.M.; et al. Association between telomere length and risk of cancer and non-neoplastic diseases: A mendelian randomization study. JAMA Oncol. 2017, 3, 636–651. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.M.; Codd, V.; Rice, T.; Nelson, C.P.; Smirnov, I.V.; McCoy, L.S.; Hansen, H.M.; Elhauge, E.; Ojha, J.; Francis, S.S.; et al. Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget 2015, 6, 42468–42477. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.M.; Whitehead, T.P.; de Smith, A.J.; Smirnov, I.V.; Park, M.; Endicott, A.A.; Francis, S.S.; Codd, V.; Group, E.C.T.; Samani, N.J.; et al. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis 2016, 37, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Machiela, M.J.; Lan, Q.; Slager, S.L.; Vermeulen, R.C.; Teras, L.R.; Camp, N.J.; Cerhan, J.R.; Spinelli, J.J.; Wang, S.S.; Nieters, A.; et al. Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes. Hum. Mol. Genet. 2016, 25, 1663–1676. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.L.; Pilling, L.C.; Kuchel, G.A.; Ferrucci, L.; Melzer, D. Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. Aging Cell 2019, 18, e13017. [Google Scholar] [CrossRef] [Green Version]
- Muskens, I.S.; Hansen, H.M.; Smirnov, I.V.; Molinaro, A.M.; Bondy, M.L.; Schildkraut, J.M.; Wrensch, M.; Wiemels, J.L.; Claus, E.B. Longer genotypically-estimated leukocyte telomere length is associated with increased meningioma risk. J. Neurooncol. 2019, 142, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hansen, H.M.; Semmes, E.C.; Gonzalez-Maya, J.; Morimoto, L.; Wei, Q.; Eward, W.C.; DeWitt, S.B.; Hurst, J.H.; Metayer, C.; et al. Common genetic variation and risk of osteosarcoma in a multi-ethnic pediatric and adolescent population. Bone 2020, 130, 115070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Doherty, J.A.; Burgess, S.; Hung, R.J.; Lindstrom, S.; Kraft, P.; Gong, J.; Amos, C.I.; Sellers, T.A.; Monteiro, A.N.; et al. Genetic determinants of telomere length and risk of common cancers: A Mendelian randomization study. Hum. Mol. Genet. 2015, 24, 5356–5366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, B.L.; Kraft, P.; Zhang, C. Mendelian randomization studies of cancer risk: A literature review. Curr. Epidemiol. Rep. 2018, 5, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Kachuri, L.; Saarela, O.; Bojesen, S.E.; Davey Smith, G.; Liu, G.; Landi, M.T.; Caporaso, N.E.; Christiani, D.C.; Johansson, M.; Panico, S.; et al. Mendelian Randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers. Int. J. Epidemiol. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machiela, M.J.; Hofmann, J.N.; Carreras-Torres, R.; Brown, K.M.; Johansson, M.; Wang, Z.; Foll, M.; Li, P.; Rothman, N.; Savage, S.A.; et al. Genetic variants related to longer telomere length are associated with increased risk of renal cell carcinoma. Eur. Urol. 2017, 72, 747–754. [Google Scholar] [CrossRef]
- Xie, H.; Wu, X.; Wang, S.; Chang, D.; Pollock, R.E.; Lev, D.; Gu, J. Long telomeres in peripheral blood leukocytes are associated with an increased risk of soft tissue sarcoma. Cancer 2013, 119, 1885–1891. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ 2018, 362, k601. [Google Scholar] [CrossRef] [Green Version]
- Pooley, K.A.; Bojesen, S.E.; Weischer, M.; Nielsen, S.F.; Thompson, D.; Amin Al Olama, A.; Michailidou, K.; Tyrer, J.P.; Benlloch, S.; Brown, J.; et al. A genome-wide association scan (GWAS) for mean telomere length within the COGS project: Identified loci show little association with hormone-related cancer risk. Hum. Mol. Genet. 2013, 22, 5056–5064. [Google Scholar] [CrossRef] [Green Version]
- Mangino, M.; Hwang, S.J.; Spector, T.D.; Hunt, S.C.; Kimura, M.; Fitzpatrick, A.L.; Christiansen, L.; Petersen, I.; Elbers, C.C.; Harris, T.; et al. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum. Mol. Genet. 2012, 21, 5385–5394. [Google Scholar] [CrossRef] [Green Version]
- Codd, V.; Nelson, C.P.; Albrecht, E.; Mangino, M.; Deelen, J.; Buxton, J.L.; Hottenga, J.J.; Fischer, K.; Esko, T.; Surakka, I.; et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 2013, 45, 422–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Amos, C.I.; Zhu, Y.; Zhao, H.; Grossman, B.H.; Shay, J.W.; Luo, S.; Hong, W.K.; Spitz, M.R. Telomere dysfunction: A potential cancer predisposition factor. J. Natl. Cancer Inst. 2003, 95, 1211–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Zhou, Z.; Wei, S.; Liu, Z.; Pooley, K.A.; Dunning, A.M.; Svenson, U.; Roos, G.; Hosgood, H.D., III; Shen, M.; et al. Shortened telomere length is associated with increased risk of cancer: A meta-analysis. PLoS ONE 2011, 6, e20466. [Google Scholar] [CrossRef] [PubMed]
- Wentzensen, I.M.; Mirabello, L.; Pfeiffer, R.M.; Savage, S.A. The association of telomere length and cancer: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1238–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, L.; Zhang, X.; Gawron, A.J.; Liu, J. Surrogate tissue telomere length and cancer risk: Shorter or longer? Cancer Lett. 2012, 319, 130–135. [Google Scholar] [CrossRef]
- Gu, J.; Chen, M.; Shete, S.; Amos, C.I.; Kamat, A.; Ye, Y.; Lin, J.; Dinney, C.P.; Wu, X. A genome-wide association study identifies a locus on chromosome 14q21 as a predictor of leukocyte telomere length and as a marker of susceptibility for bladder cancer. Cancer Prev. Res. (Phila) 2011, 4, 514–521. [Google Scholar] [CrossRef] [Green Version]
- Bau, D.T.; Lippman, S.M.; Xu, E.; Gong, Y.; Lee, J.J.; Wu, X.; Gu, J. Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Cancer 2013, 119, 4277–4283. [Google Scholar] [CrossRef]
- Sanchez-Espiridion, B.; Chen, M.; Chang, J.Y.; Lu, C.; Chang, D.W.; Roth, J.A.; Wu, X.; Gu, J. Telomere length in peripheral blood leukocytes and lung cancer risk: A large case-control study in Caucasians. Cancer Res. 2014, 74, 2476–2486. [Google Scholar] [CrossRef] [Green Version]
- Pooley, K.A.; Sandhu, M.S.; Tyrer, J.; Shah, M.; Driver, K.E.; Luben, R.N.; Bingham, S.A.; Ponder, B.A.; Pharoah, P.D.; Khaw, K.T.; et al. Telomere length in prospective and retrospective cancer case-control studies. Cancer Res. 2010, 70, 3170–3176. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Wu, X. Re: Short telomere length, cancer survival, and cancer risk in 47,102 individuals. J. Natl. Cancer Inst. 2013, 105, 1157. [Google Scholar] [CrossRef] [Green Version]
- Seow, W.J.; Cawthon, R.M.; Purdue, M.P.; Hu, W.; Gao, Y.T.; Huang, W.Y.; Weinstein, S.J.; Ji, B.T.; Virtamo, J.; Hosgood, H.D., III; et al. Telomere length in white blood cell DNA and lung cancer: A pooled analysis of three prospective cohorts. Cancer Res. 2014, 74, 4090–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePinho, R.A. The age of cancer. Nature 2000, 408, 248–254. [Google Scholar] [CrossRef]
- Hosnijeh, F.S.; Matullo, G.; Russo, A.; Guarrera, S.; Modica, F.; Nieters, A.; Overvad, K.; Guldberg, P.; Tjonneland, A.; Canzian, F.; et al. Prediagnostic telomere length and risk of B-cell lymphoma-results from the EPIC cohort study. Int. J. Cancer 2014, 135, 2910–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, P.; Benhattar, J.; Coindre, J.M.; Guillou, L. Telomerase activity and hTERT mRNA expression can be heterogeneous and does not correlate with telomere length in soft tissue sarcomas. Int. J. Cancer 2002, 98, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Campa, D.; Barrdahl, M.; Santoro, A.; Severi, G.; Baglietto, L.; Omichessan, H.; Tumino, R.; Bueno-de-Mesquita, H.B.A.; Peeters, P.H.; Weiderpass, E.; et al. Mitochondrial DNA copy number variation, leukocyte telomere length, and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Breast Cancer Res. 2018, 20, 29. [Google Scholar] [CrossRef] [Green Version]
- Samavat, H.; Xun, X.; Jin, A.; Wang, R.; Koh, W.P.; Yuan, J.M. Association between prediagnostic leukocyte telomere length and breast cancer risk: The Singapore Chinese health study. Breast Cancer Res. 2019, 21, 50. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, L.; Zhao, L.; Wu, X.; Gu, J. Association of leukocyte telomere length in peripheral blood leukocytes with endometrial cancer risk in Caucasian Americans. Carcinogenesis 2015, 36, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Kyo, S.; Takakura, M.; Kanaya, T.; Zhuo, W.; Fujimoto, K.; Nishio, Y.; Orimo, A.; Inoue, M. Estrogen activates telomerase. Cancer Res. 1999, 59, 5917–5921. [Google Scholar]
- Misiti, S.; Nanni, S.; Fontemaggi, G.; Cong, Y.S.; Wen, J.; Hirte, H.W.; Piaggio, G.; Sacchi, A.; Pontecorvi, A.; Bacchetti, S.; et al. Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Mol. Cell. Biol. 2000, 20, 3764–3771. [Google Scholar] [CrossRef] [Green Version]
- Boggess, J.F.; Zhou, C.; Bae-Jump, V.L.; Gehrig, P.A.; Whang, Y.E. Estrogen-receptor-dependent regulation of telomerase activity in human endometrial cancer cell lines. Gynecol. Oncol. 2006, 103, 417–424. [Google Scholar] [CrossRef]
- Hapangama, D.K.; Turner, M.A.; Drury, J.A.; Quenby, S.; Saretzki, G.; Martin-Ruiz, C.; Von Zglinicki, T. Endometriosis is associated with aberrant endometrial expression of telomerase and increased telomere length. Hum. Reprod. 2008, 23, 1511–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.C.; Im, J.A.; Kim, J.H.; Lee, H.R.; Shim, J.Y. Effect of long-term hormone therapy on telomere length in postmenopausal women. Yonsei Med. J. 2005, 46, 471–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Forer, L.; Schonherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Cases n = 821 | Controls n = 851 | p Value |
---|---|---|---|
Age, years (mean, SD) | 56.39 (11.58) | 57.00 (8.62) | 0.22 |
Gender, n (%) | |||
Male | 388 (47.26) | 406 (47.71) | |
Female | 433 (52.74) | 445 (52.29) | 0.85 |
Histology, n (%) | |||
Leiomyosarcoma | 272 (33.1) | ||
GIST * | 220 (26.8) | ||
Liposarcoma | 181 (22.0) | ||
Angiosarcoma | 60 (7.3) | ||
Other | 88 (10.7) |
SNP ID | Chr. | Position | Gene | Allele * | β * | EAF Case | EAF Control | OR ** (95% CI) | p Value |
---|---|---|---|---|---|---|---|---|---|
rs11125529 | 2 | 54475866 | ACYP2 | A/C | 0.065 | 0.131 | 0.129 | 1.01 (0.82–1.24) | 0.922 |
rs6772228 | 3 | 58376019 | PXK | T/A | 0.041 | 0.942 | 0.948 | 0.9 (0.67–1.2) | 0.472 |
rs10936599 | 3 | 169492101 | TERC | C/T | 0.1 | 0.756 | 0.737 | 1.11 (0.94–1.3) | 0.216 |
rs7675998 | 4 | 164007820 | NAF1 | G/A | 0.048 | 0.8 | 0.766 | 1.21 (1.02–1.43) | 0.026 |
rs2736100 | 5 | 1286516 | TERT | C/A | 0.085 | 0.487 | 0.48 | 1.02 (0.89–1.18) | 0.730 |
rs9420907 | 10 | 105676465 | OBFC1 | C/A | 0.142 | 0.164 | 0.13 | 1.31 (1.08–1.59) | 0.007 |
rs3027234 | 17 | 8136092 | CTC1 | C/T | 0.103 | 0.784 | 0.762 | 1.14 (0.96–1.34) | 0.127 |
rs8105767 | 19 | 22215441 | ZNF208 | G/A | 0.064 | 0.317 | 0.283 | 1.18 (1.02–1.37) | 0.030 |
rs412658 | 19 | 22359440 | ZNF676 | T/C | 0.086 | 0.382 | 0.344 | 1.18 (1.02–1.36) | 0.025 |
rs6028466 | 20 | 38129002 | DHX35 | A/G | 0.058 | 0.066 | 0.059 | 1.13 (0.85–1.5) | 0.393 |
rs755017 | 20 | 62421622 | ZBTB46 | G/A | 0.019 | 0.134 | 0.132 | 1.02 (0.84–1.25) | 0.832 |
LTL GRS | Control n (%) | Case n (%) | OR * (95% CI) | p Value | p for Trend |
---|---|---|---|---|---|
Dichotomize | |||||
Short | 410 (56.47) | 316 (43.53) | 1 (reference) | ||
Long | 403 (47.30) | 449 (52.70) | 1.44 (1.18–1.75) | 3.63 × 10−4 | |
Tertile | |||||
Shortest | 280 (58.09) | 202 (41.91) | 1 (reference) | ||
Medium | 262 (50.58) | 256 (49.42) | 1.35 (1.05–1.73) | 0.019 | |
Longest | 271 (46.89) | 307 (53.11) | 1.56 (1.22–1.99) | 3.85 × 10−4 | 4.36 × 10−4 |
Quartile | |||||
1 (shortest) | 207 (59.31) | 142 (40.69) | 1 (reference) | ||
2 | 203 (53.85) | 174 (46.15) | 1.25 (0.93–1.68) | 0.139 | |
3 | 200 (50.38) | 197 (49.62) | 1.43 (1.07–1.92) | 0.015 | |
4 (longest) | 203 (44.62) | 252 (55.38) | 1.79 (1.35–2.38) | 5.25 × 10−5 | 3.20 × 10−5 |
LTL GRS | Control n (%) | Case n (%) | OR * (95% CI) | p Value |
---|---|---|---|---|
Male | ||||
Short | 175 (52.87) | 156 (47.13) | 1 (reference) | |
Long | 209 (49.76) | 211 (50.24) | 1.14 (0.85–1.53) | 0.39 |
Female | ||||
Short | 235 (59.49) | 160 (40.51) | 1 (reference) | |
Long | 194 (44.91) | 238 (55.09) | 1.68 (1.26–2.23) | 3.54 × 10−4 |
LTL GRS | Control n (%) | Case n (%) | OR * (95% CI) | p Value |
---|---|---|---|---|
Leiomyosarcoma | ||||
Short | 410 (78.85) | 110 (21.15) | 1 (reference) | |
Long | 403 (74.22) | 140 (25.78) | 1.36 (1.02–1.83) | 0.038 |
GIST | ||||
Short | 410 (86.68) | 63 (13.32) | 1 (reference) | |
Long | 403 (74.63) | 137 (25.37) | 2.20 (1.58–3.06) | 3.03 × 10−6 |
Liposarcoma | ||||
Short | 410 (83.33) | 82 (16.67) | 1 (reference) | |
Long | 403 (81.91) | 89 (18.09) | 1.05 (0.75–1.47) | 0.772 |
Angiosarcoma | ||||
Short | 410 (93.82) | 27 (6.18) | 1 (reference) | |
Long | 403 (92.64) | 32 (7.36) | 1.19 (0.7–2.02) | 0.528 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Xu, J.; Chancoco, H.; Huang, M.; Torres, K.E.; Gu, J. Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study. Cancers 2020, 12, 594. https://doi.org/10.3390/cancers12030594
Xu Y, Xu J, Chancoco H, Huang M, Torres KE, Gu J. Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study. Cancers. 2020; 12(3):594. https://doi.org/10.3390/cancers12030594
Chicago/Turabian StyleXu, Yifan, Junfeng Xu, Haidee Chancoco, Maosheng Huang, Keila E. Torres, and Jian Gu. 2020. "Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study" Cancers 12, no. 3: 594. https://doi.org/10.3390/cancers12030594
APA StyleXu, Y., Xu, J., Chancoco, H., Huang, M., Torres, K. E., & Gu, J. (2020). Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study. Cancers, 12(3), 594. https://doi.org/10.3390/cancers12030594