Prognostic Value of Lymph Node-To-Primary Tumor Standardized Uptake Value Ratio in Esophageal Squamous Cell Carcinoma Treated with Definitive Chemoradiotherapy
Abstract
:1. Introduction
2. Results
2.1. Patient and Treatment Characteristics
2.2. Measurement of Cutoff Values for FDG-PET Parameters
2.3. Survival Analyses
2.4. Correlations between Parameters Evaluated by FDG-PET and Clinicopathological Features
2.5. Evaluation of Prognostic Factors of DMFS and OS
3. Discussion
4. Materials and Methods
4.1. Patient Selection
4.2. Treatment
4.3. FDG-PET/CT
4.4. Post-Therapy Surveillance and Clinical Endpoints
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rice, T.W.; Rusch, V.W.; Apperson-Hansen, C.; Allen, M.S.; Chen, L.Q.; Hunter, J.G.; Kesler, K.A.; Law, S.; Lerut, T.E.; Reed, C.E.; et al. Worldwide esophageal cancer collaboration. Dis. Esophagus 2009, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Epidemiology of esophageal cancer. World J. Gastroenterol. 2013, 19, 5598–5606. [Google Scholar] [CrossRef] [PubMed]
- Piessen, G.; Petyt, G.; Duhamel, A.; Mirabel, X.; Huglo, D.; Mariette, C. Ineffectiveness of (1)(8)F-fluorodeoxyglucose positron emission tomography in the evaluation of tumor response after completion of neoadjuvant chemoradiation in esophageal cancer. Ann. Surg. 2013, 258, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.; van Lanschot, J.J.B.; Hulshof, M.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial. Lancet. Oncol. 2015, 16, 1090–1098. [Google Scholar] [CrossRef]
- Van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; Richel, D.J.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [Green Version]
- Stahl, M.; Stuschke, M.; Lehmann, N.; Meyer, H.J.; Walz, M.K.; Seeber, S.; Klump, B.; Budach, W.; Teichmann, R.; Schmitt, M.; et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J. Clin. Oncol. 2005, 23, 2310–2317. [Google Scholar] [CrossRef] [Green Version]
- Stahl, M.; Wilke, H.; Lehmann, N.; Stuschke, M. Long-term results of a phase III study investigating chemoradiation with and without surgery in locally advanced squamous cell carcinoma (LA-SCC) of the esophagus. J. Clin. Oncol. 2008, 26, 4530. [Google Scholar] [CrossRef]
- Bedenne, L.; Michel, P.; Bouche, O.; Milan, C.; Mariette, C.; Conroy, T.; Pezet, D.; Roullet, B.; Seitz, J.F.; Herr, J.P.; et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J. Clin. Oncol. 2007, 25, 1160–1168. [Google Scholar] [CrossRef] [Green Version]
- Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet 2002, 359, 1727–1733. [CrossRef]
- Allum, W.H.; Stenning, S.P.; Bancewicz, J.; Clark, P.I.; Langley, R.E. Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. J. Clin. Oncol. 2009, 27, 5062–5067. [Google Scholar] [CrossRef]
- Ruhstaller, T.; Widmer, L.; Schuller, J.C.; Roth, A.; Hess, V.; Mingrone, W.; von Moos, R.; Borner, M.; Pestalozzi, B.C.; Balmermajno, S.; et al. Multicenter phase II trial of preoperative induction chemotherapy followed by chemoradiation with docetaxel and cisplatin for locally advanced esophageal carcinoma (SAKK 75/02). Ann. Oncol. 2009, 20, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; Xiao, L.; Roth, J.A.; Hofstetter, W.L.; Walsh, G.; Komaki, R.; Liao, Z.; Rice, D.C.; Vaporciyan, A.A.; Maru, D.M.; et al. A phase II randomized trial of induction chemotherapy versus no induction chemotherapy followed by preoperative chemoradiation in patients with esophageal cancer. Ann. Oncol. 2013, 24, 2844–2849. [Google Scholar] [CrossRef] [PubMed]
- Stiekema, J.; Vermeulen, D.; Vegt, E.; Voncken, F.E.; Aleman, B.M.; Sanders, J.; Boot, H.; van Sandick, J.W. Detecting interval metastases and response assessment using 18F-FDG PET/CT after neoadjuvant chemoradiotherapy for esophageal cancer. Clin. Nucl. Med. 2014, 39, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Brücher, B.L.; Weber, W.; Bauer, M.; Fink, U.; Avril, N.; Stein, H.J.; Werner, M.; Zimmerman, F.; Siewert, J.R.; Schwaiger, M. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann. Sur. 2001, 233, 300. [Google Scholar] [CrossRef]
- Flamen, P.; Van Cutsem, E.; Lerut, A.; Cambier, J.P.; Haustermans, K.; Bormans, G.; De Leyn, P.; Van Raemdonck, D.; De Wever, W.; Ectors, N.; et al. Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann. Oncol. 2002, 13, 361–368. [Google Scholar] [CrossRef]
- Kim, M.K.; Ryu, J.S.; Kim, S.B.; Ahn, J.H.; Kim, S.Y.; Park, S.I.; Kim, Y.H.; Song, H.Y.; Shin, J.H.; Jung, H.Y.; et al. Value of complete metabolic response by (18)F-fluorodeoxyglucose-positron emission tomography in oesophageal cancer for prediction of pathologic response and survival after preoperative chemoradiotherapy. Eur. J. Cancer 2007, 43, 1385–1391. [Google Scholar] [CrossRef]
- Javeri, H.; Xiao, L.; Rohren, E.; Lee, J.H.; Liao, Z.; Hofstetter, W.; Maru, D.; Bhutani, M.S.; Swisher, S.G.; Macapinlac, H.; et al. The higher the decrease in the standardized uptake value of positron emission tomography after chemoradiation, the better the survival of patients with gastroesophageal adenocarcinoma. Cancer 2009, 115, 5184–5192. [Google Scholar] [CrossRef]
- Sasaki, K.; Uchikado, Y.; Okumura, H.; Omoto, I.; Kita, Y.; Arigami, T.; Uenosono, Y.; Owaki, T.; Maemura, K.; Natsugoe, S. Role of (18)F-FDG-PET/CT in Esophageal Squamous Cell Carcinoma After Neoadjuvant Chemoradiotherapy. Anticancer Res. 2017, 37, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Dewan, A.; Sharma, S.K.; Dewan, A.K.; Khurana, R.; Gupta, M.; Pahuja, A.; Srivastava, H.; Sinha, R. Impact on Radiological and Pathological Response with Neoadjuvant Chemoradiation and Its Effect on Survival in Squamous Cell Carcinoma of Thoracic Esophagus. J. Gastrointest. Cancer 2017, 48, 42–49. [Google Scholar] [CrossRef]
- Yap, W.K.; Chang, Y.C.; Tseng, C.K.; Hsieh, C.H.; Chao, Y.K.; Su, P.J.; Hou, M.M.; Yang, C.K.; Pai, P.C.; Lin, C.R.; et al. Predictive value of nodal maximum standardized uptake value of pretreatment [18F]fluorodeoxyglucose positron emission tomography imaging in patients with esophageal cancer. Dis. Esophagus 2017, 30, 1–10. [Google Scholar] [CrossRef]
- Yap, W.K.; Chang, Y.C.; Hsieh, C.H.; Chao, Y.K.; Chen, C.C.; Shih, M.C.; Hung, T.M. Favorable versus unfavorable prognostic groups by post-chemoradiation FDG-PET imaging in node-positive esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Kaira, K.; Endo, M.; Asakura, K.; Tsuya, A.; Nakamura, Y.; Naito, T.; Murakami, H.; Takahashi, T.; Yamamoto, N. Ratio of standardized uptake value on PET helps predict response and outcome after chemotherapy in advanced non-small cell lung cancer. Ann. Nucl. Med. 2010, 24, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Seo, M.; Nah, Y.W.; Park, H.W.; Park, S.H. Clinical impact of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic cancer: diagnosing lymph node metastasis and predicting survival. Nucl. Med. Commun. 2018, 39, 691–698. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, H.J.; Kim, Y.; Kim, B.S. Axillary Lymph Node-to-Primary Tumor Standard Uptake Value Ratio on Preoperative (18)F-FDG PET/CT: A Prognostic Factor for Invasive Ductal Breast Cancer. J. Breast Cancer 2015, 18, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, H.H.; Cheon, G.J.; Kim, J.W.; Park, N.H.; Song, Y.S. Prognostic value of lymph node-to-primary tumor standardized uptake value ratio in endometrioid endometrial carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 47–55. [Google Scholar] [CrossRef]
- Chung, H.H.; Cheon, G.J.; Kim, J.W.; Park, N.H.; Song, Y.S. Prognostic importance of lymph node-to-primary tumor standardized uptake value ratio in invasive squamous cell carcinoma of uterine cervix. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1862–1869. [Google Scholar] [CrossRef]
- Vatcheva, K.P.; Lee, M.; McCormick, J.B.; Rahbar, M.H. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiology 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Lordick, F.; Mariette, C.; Haustermans, K.; Obermannova, R.; Arnold, D. Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v50–v57. [Google Scholar] [CrossRef]
- Luo, L.L.; Xi, M.; Yang, Y.D.; Li, Q.Q.; Zhao, L.; Zhang, P.; Liu, S.L.; Liu, M.Z. Comparative Outcomes of Induction Chemotherapy Followed By Definitive Chemoradiotherapy versus Chemoradiotherapy Alone In Esophageal Squamous Cell Carcinoma. J. Cancer 2017, 8, 3441–3447. [Google Scholar] [CrossRef] [Green Version]
- Stahl, M.; Budach, W. Definitive chemoradiotherapy. J. Thorac. Dis. 2017, 9, S792–s798. [Google Scholar] [CrossRef] [Green Version]
- Hui, E.P.; Ma, B.B.; Leung, S.F.; King, A.D.; Mo, F.; Kam, M.K.; Yu, B.K.; Chiu, S.K.; Kwan, W.H.; Ho, R.; et al. Randomized phase II trial of concurrent cisplatin-radiotherapy with or without neoadjuvant docetaxel and cisplatin in advanced nasopharyngeal carcinoma. J. Clin. Oncol. 2009, 27, 242–249. [Google Scholar] [CrossRef]
- Minsky, B.D.; Neuberg, D.; Kelsen, D.P.; Pisansky, T.M.; Ginsberg, R.J.; Pajak, T.; Salter, M.; Benson, A.B., 3rd. Final report of Intergroup Trial 0122 (ECOG PE-289, RTOG 90-12): Phase II trial of neoadjuvant chemotherapy plus concurrent chemotherapy and high-dose radiation for squamous cell carcinoma of the esophagus. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 517–523. [Google Scholar] [CrossRef]
- Michel, P.; Adenis, A.; Di Fiore, F.; Boucher, E.; Galais, M.P.; Dahan, L.; Mirabel, X.; Hamidou, H.; Raoul, J.L.; Jacob, J.H.; et al. Induction cisplatin-irinotecan followed by concurrent cisplatin-irinotecan and radiotherapy without surgery in oesophageal cancer: multicenter phase II FFCD trial. Br. J. Cancer 2006, 95, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Satake, H.; Tahara, M.; Mochizuki, S.; Kato, K.; Hara, H.; Yokota, T.; Kiyota, N.; Kii, T.; Chin, K.; Zenda, S.; et al. A prospective, multicenter phase I/II study of induction chemotherapy with docetaxel, cisplatin and fluorouracil (DCF) followed by chemoradiotherapy in patients with unresectable locally advanced esophageal carcinoma. Cancer Chemother Pharmacol. 2016, 78, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, D.H.; Jang, G.; Kim, J.H.; Kim, Y.H.; Kim, J.Y.; Kim, H.R.; Jung, H.Y.; Lee, G.H.; Song, H.Y.; Cho, K.J.; et al. Randomized phase 2 trial of S1 and oxaliplatin-based chemoradiotherapy with or without induction chemotherapy for esophageal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 489–496. [Google Scholar] [CrossRef]
- Mattes, M.D.; Moshchinsky, A.B.; Ahsanuddin, S.; Rizk, N.P.; Foster, A.; Wu, A.J.; Ashamalla, H.; Weber, W.A.; Rimner, A. Ratio of Lymph Node to Primary Tumor SUV on PET/CT Accurately Predicts Nodal Malignancy in Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2015, 16, e253–e258. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bryant, A.S. Ratio of the maximum standardized uptake value on FDG-PET of the mediastinal (N2) lymph nodes to the primary tumor may be a universal predictor of nodal malignancy in patients with nonsmall-cell lung cancer. Ann. Thorac. Surg. 2007, 83, 1826–1829. [Google Scholar] [CrossRef]
- Park, J.; Byun, B.H.; Noh, W.C.; Lee, S.S.; Kim, H.A.; Kim, E.K.; Choi, C.W.; Lim, S.M. Lymph node to primary tumor SUV ratio by 18F-FDG PET/CT and the prediction of axillary lymph node metastases in breast cancer. Clin. Nucl. Med. 2014, 39, e249–e253. [Google Scholar] [CrossRef]
- Atsumi, K.; Nakamura, K.; Abe, K.; Hirakawa, M.; Shioyama, Y.; Sasaki, T.; Baba, S.; Isoda, T.; Ohga, S.; Yoshitake, T.; et al. Prediction of outcome with FDG-PET in definitive chemoradiotherapy for esophageal cancer. J. Radiat. Res. 2013, 54, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Hamberg, L.M.; Hunter, G.J.; Alpert, N.M.; Choi, N.C.; Babich, J.W.; Fischman, A.J. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J. Nucl. Med. 1994, 35, 1308–1312. [Google Scholar]
- Keyes, J.W., Jr. SUV: Standard uptake or silly useless value? J. Nucl. Med. 1995, 36, 1836–1839. [Google Scholar] [PubMed]
- Huang, S.C. Anatomy of SUV. Standardized uptake value. Nucl. Med. Biol. 2000, 27, 643–646. [Google Scholar] [CrossRef]
- Rice, T.W.; Blackstone, E.H.; Rusch, V.W. 7th edition of the AJCC Cancer Staging Manual: esophagus and esophagogastric junction. Ann. Surg. Oncol. 2010, 17, 1721–1724. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.G.; Bradburn, M.J.; Love, S.B.; Altman, D.G. Survival analysis part I: basic concepts and first analyses. Br. J. Cancer 2003, 89, 232–238. [Google Scholar] [CrossRef]
- Blanche, P.; Dartigues, J.F.; Jacqmin-Gadda, H. Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring. Biom. J. 2013, 55, 687–704. [Google Scholar] [CrossRef]
Characteristics | Patients | % |
---|---|---|
Median age, years (IQR) | 56 (50–62) | |
Male sex | 109 | 97.3 |
ECOG | ||
0 | 20 | 17.9 |
1 | 89 | 79.5 |
2 | 3 | 2.7 |
Tumor location | ||
Upper | 52 | 46.4 |
Middle | 50 | 44.6 |
Lower | 10 | 8.9 |
cT classification a | ||
T1 | 2 | 1.8 |
T2 | 10 | 8.9 |
T3 | 48 | 42.9 |
T4 | 52 | 46.4 |
cN classification a | ||
N1 | 19 | 17.0 |
N2 | 55 | 49.1 |
N3 | 38 | 33.9 |
cStagea | ||
IIB | 3 | 2.7 |
IIIA | 13 | 11.6 |
IIIB | 25 | 22.3 |
IIIC | 71 | 63.4 |
Median tumor length, cm (IQR) | 6.0 (4.9–8.0) | |
Median SUVTumor (IQR) | 17.7 (14.2–23.9) | |
Median SUVLN (IQR) | 9.9 (4.2–15.3) | |
Median SUVLN/SUVTumor (IQR) | 0.59 (0.25–0.78) | |
Chemotherapy | ||
Carboplatin/Paclitaxel | 63 | 56.2 |
Cisplatin/5-FU | 46 | 41.1 |
Cisplatin/Paclitaxel | 3 | 2.7 |
Median total RT dose, cGy (IQR) | 6000 (4500–6480) |
Characteristics | SUVLN/SUVTumor | |
---|---|---|
Correlation Coefficient a | P-Value | |
Age | −0.023 | 0.810 |
Tumor location | −0.090 | 0.344 |
cT classification b | −0.123 | 0.198 |
cN classification b | 0.362 | < 0.001 |
Tumor length | 0.004 | 0.968 |
Chemotherapy | 0.032 | 0.739 |
SUVTumor | −0.223 | 0.018 |
SUVLN | 0.744 | < 0.001 |
DMFS | OS | |||||||
---|---|---|---|---|---|---|---|---|
Predictive Variables | Univariate Analysis | Multivariate Analysis a | Univariate Analysis | Multivariate Analysis a | ||||
HR (95% CI) | P-Value | HR (95% CI) | P-Value | HR (95% CI) | P-Value | HR (95% CI) | P-Value | |
Age, years | 0.97 (0.94–1.01) | 0.092 | 0.96 (0.92–0.99) | 0.020 | 1.01 (0.98–1.03) | 0.589 | ||
ECOG | ||||||||
0 vs. 1/2 (ref) | 1.02 (0.52–2.00) | 0.948 | 0.83 (0.49–1.42) | 0.499 | ||||
Tumor location | ||||||||
Upper vs. | 0.93 (0.53–1.63) | 0.806 | 0.83 (0.54–1.27) | 0.393 | ||||
Middle/Lower (ref) | ||||||||
Initial T-Stage b | ||||||||
cT4 vs. cT1–3 (ref) | 1.11 (0.63–1.94) | 0.720 | 1.45 (0.94–2.22) | 0.094 | 1.66 (1.06–2.60) | 0.028 | ||
Initial N-Stage b | ||||||||
cN3 vs. cN1–2 (ref) | 2.60 (1.48–4.56) | 0.001 | 2.21 (1.18–4.14) | 0.013 | 1.51 (0.97–2.36) | 0.067 | 1.32 (0.82–2.14) | 0.252 |
Tumor length, cm | 1.04 (0.94–1.16) | 0.450 | 1.04 (0.95–1.13) | 0.424 | ||||
SUVTumor | 1.06 (1.02–1.09) | 0.001 | 1.08 (1.04–1.12) | < 0.001 | 1.01 (0.98–1.04) | 0.488 | ||
SUVLN | 1.10 (1.06–1.14) | < 0.001 | 1.04 (1.02–1.07) | 0.003 | ||||
SUVLN/SUVTumor | 1.99 (1.29–3.05) | 0.002 | 2.24 (1.34–3.75) | 0.002 | 1.57 (1.06–2.35) | 0.026 | 1.61 (1.03–2.53) | 0.037 |
Chemotherapy | ||||||||
Paclitaxel/Cisplatin or Carboplatin | 1.22 (0.69–2.15) | 0.495 | 0.96 (0.62–1.49) | 0.848 | ||||
Cisplatin/5-FU (ref) | ||||||||
Radiotherapy | 0.533 | 0.321 | ||||||
Initial dose < 5000 cGy without consolidative boost | 1.47 (0.70–3.09) | 0.315 | 1.54 (0.86–2.76) | 0.145 | ||||
Initial dose < 5000 cGy with consolidative boost | 1.04 (0.54–2.00) | 0.918 | 1.13 (0.67–1.91) | 0.640 | ||||
Initial dose ≥ 5000 cGy (ref) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-H.; Hung, T.-M.; Chang, Y.-C.; Hsieh, C.-H.; Shih, M.-C.; Huang, S.-M.; Yang, C.-K.; Chang, C.-F.; Chan, S.-C.; Yap, W.-K. Prognostic Value of Lymph Node-To-Primary Tumor Standardized Uptake Value Ratio in Esophageal Squamous Cell Carcinoma Treated with Definitive Chemoradiotherapy. Cancers 2020, 12, 607. https://doi.org/10.3390/cancers12030607
Lin C-H, Hung T-M, Chang Y-C, Hsieh C-H, Shih M-C, Huang S-M, Yang C-K, Chang C-F, Chan S-C, Yap W-K. Prognostic Value of Lymph Node-To-Primary Tumor Standardized Uptake Value Ratio in Esophageal Squamous Cell Carcinoma Treated with Definitive Chemoradiotherapy. Cancers. 2020; 12(3):607. https://doi.org/10.3390/cancers12030607
Chicago/Turabian StyleLin, Chia-Hsin, Tsung-Min Hung, Yu-Chuan Chang, Chia-Hsun Hsieh, Ming-Chieh Shih, Shih-Ming Huang, Chan-Keng Yang, Ching-Fu Chang, Sheng-Chieh Chan, and Wing-Keen Yap. 2020. "Prognostic Value of Lymph Node-To-Primary Tumor Standardized Uptake Value Ratio in Esophageal Squamous Cell Carcinoma Treated with Definitive Chemoradiotherapy" Cancers 12, no. 3: 607. https://doi.org/10.3390/cancers12030607
APA StyleLin, C. -H., Hung, T. -M., Chang, Y. -C., Hsieh, C. -H., Shih, M. -C., Huang, S. -M., Yang, C. -K., Chang, C. -F., Chan, S. -C., & Yap, W. -K. (2020). Prognostic Value of Lymph Node-To-Primary Tumor Standardized Uptake Value Ratio in Esophageal Squamous Cell Carcinoma Treated with Definitive Chemoradiotherapy. Cancers, 12(3), 607. https://doi.org/10.3390/cancers12030607