Identification of Deregulated Pathways, Key Regulators, and Novel miRNA-mRNA Interactions in HPV-Mediated Transformation
Abstract
:1. Introduction
2. Results
2.1. Anchorage Independence Coincides with Marked Molecular Changes
2.2. Approximately One Third of Differentially Expressed Genes is Associated with Copy Number Changes
2.3. Pinpointing Key Regulators in Enriched Pathways
2.4. TGF-Beta Pathway
2.5. Identification of Potential miRNA-mRNA Target Interactions
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Clinical Specimens
4.2. RNA and DNA Isolation
4.3. Microarrays for DNA, mRNA, and miRNA Profiling
4.3.1. CGH Arrays
4.3.2. mRNA Arrays
4.3.3. miRNA Arrays
4.3.4. Expression Profiling on Tissue Specimens
4.4. Data Pre-Processing and Analysis
4.4.1. Pre-Processing and Matching
4.4.2. Cluster Analysis
4.4.3. Differential Expression Analysis
4.4.4. Network Modeling
4.5. Quantitative Reverse Transcription-PCR (qRT-PCR)
4.5.1. mRNA qRT-PCR
4.5.2. MiRNA qRT-PCR
4.6. Viral Transduction and Flow Cytometry
4.7. Protein Lysis and Western Blot Analysis
4.8. MiRNA Transfection and Luciferase Dual-Reporter Assays
4.9. MiRNA Transfection and Cell Viability Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Chow, L.T.; Broker, T.R.; Steinberg, B.M. The natural history of human papillomavirus infections of the mucosal epithelia. APMIS 2010, 118, 422–449. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, R.D.M.; Snijders, P.J.F.; Heideman, D.A.M.; Meijer, C.J.L.M. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat. Rev. Cancer 2014, 14, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.K.; Bermejo, J.L.; Vinokurova, S.; Jensen, K.; Bierkens, M.; Steenbergen, R.; Bergmann, M.; von Knebel Doeberitz, M.; Reuschenbach, M. Chromosomal gains and losses in human papillomavirus-associated neoplasia of the lower genital tract–A systematic review and meta-analysis. Eur. J. Cancer 2014, 50, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Sopov, I.; Sörensen, T.; Magbagbeolu, M.; Jansen, L.; Beer, K.; Kühne-Heid, R.; Kirchmayr, R.; Schneider, A.; Dürst, M. Detection of cancer-related gene expression profiles in severe cervical neoplasia. Int. J. Cancer 2004, 112, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.K.; Ahmad, A.; Zubair, H.; Miree, O.; Singh, S.; Rocconi, R.P.; Scalici, J.; Singh, A.P. MicroRNAs in gynecological cancers: Small molecules with big implications. Cancer Lett. 2017, 407, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, R.D.M.; Walboomers, J.M.; Meijer, C.J.L.M.; van der Raaij-Helmer, E.M.; Parker, J.N.; Chow, L.T.; Broker, T.R.; Snijders, P.J.F. Transition of human papillomavirus type 16 and 18 transfected human foreskin keratinocytes towards immortality: Activation of telomerase and allele losses at 3p, 10p, 11q and/or 18q. Oncogene 1996, 13, 1249–1257. [Google Scholar] [PubMed]
- Wilting, S.; Snijders, P.; Meijer, G.; Ylstra, B.; van den IJssel, P.; Snijders, A.; Albertson, D.; Coffa, J.; Schouten, J.; van de Wiel, M.; et al. Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix. J. Pathol. 2006, 209, 220–230. [Google Scholar] [CrossRef]
- Henken, F.E.; Wilting, S.M.; Overmeer, R.M.; van Rietschoten, J.G.I.; Nygren, A.O.H.; Errami, A.; Schouten, J.P.; Meijer, C.J.L.M.; Snijders, P.J.F.; Steenbergen, R.D.M. Sequential gene promoter methylation during HPV-induced cervical carcinogenesis. Br. J. Cancer 2007, 97, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Korzeniewski, N.; Spardy, N.; Duensing, A.; Duensing, S. Genomic instability and cancer: Lessons learned from human papillomaviruses. Cancer Lett. 2011, 305, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-M.M.; Pecoraro, G.; Defendi, V. Genetic Analysis of in Vitro Progression of Human Papillomavirus-transfected Human Cervical Cells. Cancer Res. 1993, 53, 1167–1171. [Google Scholar]
- Steenbergen, R.D.M.; de Wilde, J.; Wilting, S.M.; Brink, A.A.T.P.; Snijders, P.J.F.; Meijer, C.J.L.M. HPV-mediated transformation of the anogenital tract. J. Clin. Virol. 2005, 32, 25–33. [Google Scholar] [CrossRef]
- Moody, C.A.; Laimins, L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer 2010, 10, 550–560. [Google Scholar] [CrossRef]
- Freedman, V.H.; Shin, S.I.; Khan, P.M.; Bootsma, D.; Rygaard, J.; Wiener, F. Cellular tumorigenicity in nude mice: Correlation with cell growth in semi-solid medium. Cell 1974, 3, 355–359. [Google Scholar] [CrossRef]
- Mori, S.; Chang, J.T.; Andrechek, E.R.; Matsumura, N.; Baba, T.; Yao, G.; Kim, J.W.; Gatza, M.; Murphy, S.; Nevins, J.R. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene 2009, 28, 2796–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilting, S.M.; Miok, V.; Jaspers, A.; Boon, D.; Sørgård, H.; Lando, M.; Snoek, B.C.; van Wieringen, W.N.; Meijer, C.J.; Lyng, H.; et al. Aberrant methylation-mediated silencing of microRNAs contributes to HPV-induced anchorage independence. Oncotarget 2016, 7, 43805–43819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miok, V.; Wilting, S.M.; van de Wiel, M.A.; Jaspers, A.; van Noort, P.I.; Brakenhoff, R.H.; Snijders, P.J.F.; Steenbergen, R.D.M.; van Wieringen, W.N. tigaR: Integrative significance analysis of temporal differential gene expression induced by genomic abnormalities. BMC Bioinform. 2014, 15, 327. [Google Scholar] [CrossRef] [Green Version]
- Paoli, P.; Giannoni, E.; Chiarugi, P. Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta-Mol. Cell Res. 2013, 1833, 3481–3498. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Luo, H.; Shen, Z.; Hu, X.; Sun, L.; Zhu, X. Transforming growth factor-β1 in carcinogenesis, progression, and therapy in cervical cancer. Tumor Biol. 2016, 37, 7075–7083. [Google Scholar] [CrossRef]
- Wei, Q.; Adelstein, R.S. Pitx2a Expression Alters Actin-Myosin Cytoskeleton and Migration of HeLa Cells through Rho GTPase Signaling. Mol. Biol. Cell 2002, 13, 683–697. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q. Pitx2a Binds to Human Papillomavirus Type 18 E6 Protein and Inhibits E6-mediated P53 Degradation in HeLa Cells. J. Biol. Chem. 2005, 280, 37790–37797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, K.C.; Huynh, T.; Tay, Y.; Ang, Y.-S.; Tam, W.-L.; Thomson, A.M.; Lim, B.; Rigoutsos, I. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell 2006, 126, 1203–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, N.; Wang, X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015, 43, D146–D152. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Guadamillas, M.C.; Cerezo, A.; del Pozo, M.A. Overcoming anoikis—Pathways to anchorage-independent growth in cancer. J. Cell Sci. 2011, 124, 3189–3197. [Google Scholar] [CrossRef] [Green Version]
- Frisch, S.M.; Schaller, M.; Cieply, B. Mechanisms that link the oncogenic epithelial–mesenchymal transition to suppression of anoikis. J. Cell Sci. 2013, 126, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Hou, F.; Li, Z.; Ma, D.; Zhang, W.; Zhang, Y.; Zhang, T.; Kong, B.; Cui, B. Distribution of Th17 cells and Foxp3-expressing T cells in tumor-infiltrating lymphocytes in patients with uterine cervical cancer. Clin. Chim. Acta 2012, 413, 1848–1854. [Google Scholar] [CrossRef]
- Fan, D.-M.; Tian, X.-Y.; Wang, R.-F.; Yu, J.-J. The prognosis significance of TGF-β1 and ER protein in cervical adenocarcinoma patients with stage Ib~IIa. Tumor Biol. 2014, 35, 11237–11242. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ in Cancer. Cell 2008, 134, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Burk, R.D.; Chen, Z.Z.; Saller, C.; Tarvin, K.; Carvalho, A.L.; Scapulatempo-Neto, C.; Silveira, H.C.; Fregnani, J.H.; Creighton, C.J. Integrated genomic and molecular characterization of cervical cancer. Nature 2017, 543, 378–384. [Google Scholar]
- Nindl, I.; Steenbergen, R.D.M.; Schurek, J.O.; Meijer, C.J.L.M.; van der Valk, P.; Snijders, P.J.F. Assessment of TGF-beta1-mediated growth inhibition of HPV-16- and HPV-18-transfected foreskin keratinocytes during and following immortalization. Arch. Dermatol. Res. 2003, 295, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Creek, K.E.; Geslani, G.; Batova, A.; Pirisi, L. Progressive Loss of Sensitivity to Growth Control by Retinoic Acid and Transforming Growth Factor-Beta at Late Stages of Human Papillomavirus Type 16-Initiated Transformation of Human Keratinocytes. Adv. Exp. Med. Biol. 1995, 375, 117–135. [Google Scholar] [PubMed]
- Mi, Y.; Borger, D.R.; Fernandes, P.R.; Pirisi, L.; Creek, K.E. Loss of Transforming Growth Factor-β (TGF-β) Receptor Type I Mediates TGF-β Resistance in Human Papillomavirus Type 16-Transformed Human Keratinocytes at Late Stages of in Vitro Progression. Virology 2000, 270, 408–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowli, S.; Velidandla, R.; Creek, K.E.; Pirisi, L. TGF-β regulation of gene expression at early and late stages of HPV16-mediated transformation of human keratinocytes. Virology 2013, 447, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Klimentová, J.; Göckel-Krzikalla, E.; Ly, R.; Gmelin, N.; Hotz-Wagenblatt, A.; Řehulková, H.; Stulík, J.; Rösl, F.; Niebler, M. Combined Transcriptome and Proteome Analysis of Immortalized Human Keratinocytes Expressing Human Papillomavirus 16 (HPV16) Oncogenes Reveals Novel Key Factors and Networks in HPV-Induced Carcinogenesis. mSphere 2019, 4, e0129-19. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Florez, S.; Amen, M.; Huynh, T.; Skobe, Z.; Baldini, A.; Amendt, B.A. Tbx1 regulates progenitor cell proliferation in the dental epithelium by modulating Pitx2 activation of p21. Dev. Biol. 2010, 347, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Heldring, N.; Joseph, B.; Hermanson, O.; Kioussi, C. Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells. CNS Neurol. Disord. Drug Targets 2012, 11, 884–892. [Google Scholar] [CrossRef]
- Bhat, S.; Kabekkodu, S.P.; Varghese, V.K.; Chakrabarty, S.; Mallya, S.P.; Rotti, H.; Pandey, D.; Kushtagi, P.; Satyamoorthy, K. Aberrant gene-specific DNA methylation signature analysis in cervical cancer. Tumor Biol. 2017, 39, 101042831769457. [Google Scholar] [CrossRef] [Green Version]
- Schricker, G.; Napieralski, R.; Noske, A.; Piednoir, E.; Manner, O.; Schüren, E.; Lauber, J.; Perkins, J.; Magdolen, V.; Schmitt, M.; et al. Clinical performance of an analytically validated assay in comparison to microarray technology to assess PITX2 DNA-methylation in breast cancer. Sci. Rep. 2018, 8, e16861. [Google Scholar] [CrossRef]
- Sailer, V.; Eva Holmes, E.; Gevensleben, H.; Goltz, D.; Dröge, F.; de Vos, L.; Franzen, A.; Schröck, F.; Bootz, F.; Kristiansen, G.; et al. PITX2 and PANCR DNA methylation predicts overall survival in patients with head and neck squamous cell carcinoma. Oncotarget 2016, 7, 75827–75838. [Google Scholar] [CrossRef]
- Uhl, B.; Gevensleben, H.; Tolkach, Y.; Sailer, V.; Majores, M.; Jung, M.; Meller, S.; Stein, J.; Ellinger, J.; Dietrich, D.; et al. PITX2 DNA Methylation as Biomarker for Individualized Risk Assessment of Prostate Cancer in Core Biopsies. J. Mol. Diagn. 2017, 19, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henken, F.E.; De-Castro Arce, J.; Rösl, F.; Bosch, L.; Meijer, C.J.L.M.; Snijders, P.J.F.; Steenbergen, R.D.M. The functional role of Notch signaling in HPV-mediated transformation is dose-dependent and linked to AP-1 alterations. Cell. Oncol. 2012, 35, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, U.; Denk, C.; Finzer, P.; Hutter, K.J.; zur Hausen, H.; Rösl, F. Genetic complementation to non-tumorigenicity in cervical-carcinoma cells correlates with alterations in AP-1 composition. Int. J. Cancer 2000, 86, 811–817. [Google Scholar] [CrossRef]
- Xiang, G.; Cheng, Y. MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. Reprod. Biol. 2018, 18, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Snellenberg, S.; Cillessen, S.A.G.M.; van Criekinge, W.; Bosch, L.; Meijer, C.J.L.M.; Snijders, P.J.F.; Steenbergen, R.D.M. Methylation-mediated repression of PRDM14 contributes to apoptosis evasion in HPV-positive cancers. Carcinogenesis 2014, 35, 2611–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zeeburg, H.J.T.; Snijders, P.J.F.; Pals, G.; Hermsen, M.A.J.A.; Rooimans, M.A.; Bagby, G.; Soulier, J.; Gluckman, E.; Wennerberg, J.; Leemans, C.R.; et al. Generation and Molecular Characterization of Head and Neck Squamous Cell Lines of Fanconi Anemia Patients. Cancer Res. 2005, 65, 1271–1276. [Google Scholar] [CrossRef] [Green Version]
- Wilting, S.M.; Snijders, P.J.F.; Verlaat, W.; Jaspers, A.; van de Wiel, M.A.; van Wieringen, W.N.; Meijer, G.A.; Kenter, G.G.; Yi, Y.; le Sage, C.; et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 2013, 32, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Olshen, A.B.; Venkatraman, E.S.; Lucito, R.; Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 2004, 5, 557–572. [Google Scholar] [CrossRef]
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Huber, W.; von Heydebreck, A.; Sültmann, H.; Poustka, A.; Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002, 18, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Van Wieringen, W.N.; Unger, K.; Leday, G.G.R.; Krijgsman, O.; de Menezes, R.X.; Ylstra, B.; van de Wiel, M.A. Matching of array CGH and gene expression microarray features for the purpose of integrative genomic analyses. BMC Bioinform. 2012, 13, e80. [Google Scholar] [CrossRef] [Green Version]
- Van Wieringen, W.N.; van de Wiel, M.A.; Ylstra, B. Weighted clustering of called array CGH data. Biostatistics 2008, 9, 484–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Miok, V.; Wilting, S.M.; van Wieringen, W.N. Ridge estimation of the VAR(1) model and its time series chain graph from multivariate time-course omics data. Biom. J. 2017, 59, 172–191. [Google Scholar] [CrossRef]
- Miok, V.; Wilting, S.M.; van Wieringen, W.N. Ridge estimation of network models from time-course omics data. Biom. J. 2019, 61, 391–405. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Weber, K.; Bartsch, U.; Stocking, C.; Fehse, B. A Multicolor Panel of Novel Lentiviral “Gene Ontology” (LeGO) Vectors for Functional Gene Analysis. Mol. Ther. 2008, 16, 698–706. [Google Scholar] [CrossRef]
Time Point | FK16A | FK16B | FK18A | FK18B |
---|---|---|---|---|
T1 | p18 | p21 | p19 | p17 |
T2 | p22 | p22 | p21 | p18 |
T3 | p39 | p45 | p47 | p40 |
T4 | p52 | p51 | p60 | p52 |
T5 | p109 | p89 | p92 | p90 |
T6 | p115 | p102 | p99 | p98 |
T7 | p206 | p140 | p148 | p146 |
T8 | p222 | p169 | p160 | p164 |
(a) Focal Adhesion | (b) mTOR Signaling | ||||
---|---|---|---|---|---|
Regulator | Number of Regulated Genes | Regulated Genes in Pathway (%) | Regulator | Number of Regulated Genes | Regulated Genes in Pathway (%) |
TNN | 72 | 36.0 | RPS6KA2 | 18 | 34.6 |
LAMA4 | 40 | 20.0 | IGF1 | 16 | 30.8 |
COL5A3 | 32 | 16.0 | HIF1A | 12 | 23.1 |
MYLPF | 30 | 15.0 | PRKAA2 | 4 | 7.7 |
MYL10 | 26 | 13.0 | DDIT4 | 3 | 5.8 |
FYN | 24 | 12.0 | STK11 | 3 | 5.8 |
PDGFD | 22 | 11.0 | EIF4B | 3 | 5.8 |
ITGA4 | 21 | 10.5 | PIK3CD | 2 | 3.8 |
COMP | 17 | 8.5 | PIK3R3 | 2 | 3.8 |
LAMA3 | 16 | 8.0 | VEGFC | 2 | 3.8 |
(c) TGF-Beta Signaling | |||||
Regulator | Number of Regulated Genes | Regulated Genes in Pathway (%) | |||
PITX2 | 45 | 52.9 | |||
ID4 | 34 | 40.0 | |||
LEFTY2 | 24 | 28.2 | |||
INHBA | 22 | 25.9 | |||
BMP4 | 19 | 22.4 | |||
ID1 | 18 | 21.2 | |||
FST | 15 | 17.6 | |||
AMHR2 | 10 | 11.8 | |||
COMP | 10 | 11.8 | |||
TGFB2 | 7 | 8.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babion, I.; Miok, V.; Jaspers, A.; Huseinovic, A.; Steenbergen, R.D.M.; van Wieringen, W.N.; Wilting, S.M. Identification of Deregulated Pathways, Key Regulators, and Novel miRNA-mRNA Interactions in HPV-Mediated Transformation. Cancers 2020, 12, 700. https://doi.org/10.3390/cancers12030700
Babion I, Miok V, Jaspers A, Huseinovic A, Steenbergen RDM, van Wieringen WN, Wilting SM. Identification of Deregulated Pathways, Key Regulators, and Novel miRNA-mRNA Interactions in HPV-Mediated Transformation. Cancers. 2020; 12(3):700. https://doi.org/10.3390/cancers12030700
Chicago/Turabian StyleBabion, Iris, Viktorian Miok, Annelieke Jaspers, Angelina Huseinovic, Renske D. M. Steenbergen, Wessel N. van Wieringen, and Saskia M. Wilting. 2020. "Identification of Deregulated Pathways, Key Regulators, and Novel miRNA-mRNA Interactions in HPV-Mediated Transformation" Cancers 12, no. 3: 700. https://doi.org/10.3390/cancers12030700
APA StyleBabion, I., Miok, V., Jaspers, A., Huseinovic, A., Steenbergen, R. D. M., van Wieringen, W. N., & Wilting, S. M. (2020). Identification of Deregulated Pathways, Key Regulators, and Novel miRNA-mRNA Interactions in HPV-Mediated Transformation. Cancers, 12(3), 700. https://doi.org/10.3390/cancers12030700