PLZF-RARα, NPM1-RARα, and Other Acute Promyelocytic Leukemia Variants: The PETHEMA Registry Experience and Systematic Literature Review
Abstract
:1. Introduction
2. Methods
2.1. Patients and Eligibility
2.2. Treatment
2.3. Response Assessment
2.4. Data Collection
2.5. Systematic Review: Search Strategy and Selection of Studies
3. Results
3.1. Patients and Eligibility
3.2. Treatment and Outcomes
3.3. Systematic Literature Review
3.3.1. PLZF-RARα APL
3.3.2. NPM1-RARα APL
3.3.3. Other Variant APL
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.-J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.; Nassiri, M. Acute Promyelocytic Leukemia: A Review and Discussion of Variant Translocations. Arch. Pathol. Lab. Med. 2015, 139, 1308–1313. [Google Scholar] [CrossRef] [Green Version]
- Grimwade, D.; Biondi, A.; Mozziconacci, M.J.; Hagemeijer, A.; Berger, R.; Neat, M.; Howe, K.; Dastugue, N.; Jansen, J.; Radford-Weiss, I.; et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): Results of the European Working Party. Groupe Français de Cytogénétique Hématologique, Groupe de Français d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies”. Blood 2000, 96, 1297–1308. [Google Scholar] [PubMed]
- Sainty, D.; Liso, V.; Cantù-Rajnoldi, A.; Head, D.; Mozziconacci, M.J.; Arnoulet, C.; Benattar, L.; Fenu, S.; Mancini, M.; Duchayne, E.; et al. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood 2000, 96, 1287–1296. [Google Scholar] [PubMed]
- Hussain, L.; Maimaitiyiming, Y.; Islam, K.; Naranmandura, H. Acute promyelocytic leukemia and variant fusion proteins: PLZF-RARα fusion protein at a glance. Semin. Oncol. 2019, 46, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhao, W.L.; Xiong, S.M.; Su, X.Y.; Zhao, M.; Wang, C.; Gao, Y.R.; Niu, C.; Cao, Q.; Gu, B.W.; et al. Molecular cytogenetic characterization and clinical relevance of additional, complex and/or variant chromosome abnormalities in acute promyelocytic leukemia. Leukemia 2001, 15, 1359–1368. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, J.; Zhang, L. Characterization of atypical acute promyelocytic leukaemia. Medicine 2019, 98, e15537. [Google Scholar] [CrossRef]
- Jovanovic, J.V.; Rennie, K.; Culligan, M.; Peniket, A.; Lennard, A.; Harrison, J.; Vyas, P.; Grimwade, D. Development of Real-Time Quantitative Polymerase Chain Reaction Assays to Track Treatment Response in Retinoid Resistant Acute Promyelocytic Leukemia. Front. Oncol. 2011, 1. [Google Scholar] [CrossRef] [Green Version]
- George, B.; Poonkuzhali, B.; Srivastava, V.M.; Chandy, M.; Srivastava, A. Hematological and molecular remission with combination chemotherapy in a patient with PLZF-RARalpha acute promyelocytic leukemia (APML). Ann Hematol. 2005, 84, 406–408. [Google Scholar] [CrossRef]
- Grimwade, D.; Gorman, P.; Duprez, E.; Howe, K.; Langabeer, S.; Oliver, F.; Walker, H.; Culligan, D.; Waters, J.; Pomfret, M.; et al. Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia. Blood 1997, 90, 4876–4885. [Google Scholar]
- Licht, J.; Chomienne, C.; Goy, A.; Chen, A.; Scott, A.; Head, D.R.; Michaux, J.; Wu, Y.; DeBlasio, A.; Miller, W.J. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 1995, 85, 1083–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, J.; De Ridder, M.C.; Geertsma, W.; Erpelinck, C.; Van Lom, K.; Smit, E.; Slater, R.; Reijden, B.V.; De Greef, G.; Sonneveld, P.; et al. Complete Remission of t(11;17) Positive Acute Promyelocytic Leukemia Induced by All-trans Retinoic Acid and Granulocyte Colony-Stimulating Factor. Blood 1999, 94, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassinat, B.; Guillemot, I.; Moluçon-Chabrot, C.; Zassadowski, F.; Fenaux, P.; Tournilhac, O.; Chomienne, C. Favourable outcome in an APL patient with PLZF/RARalpha fusion gene: Quantitative real-time RT-PCR confirms molecular response. Haematologica. 2006, 91 (Suppl. 12), ECR58. [Google Scholar]
- Rohr, S.S.; Pelloso, L.A.F.; Borgo, A.; De Nadai, L.C.; Yamamoto, M.; Rego, E.M.; Chauffaille, M.D.L.L.F. Acute promyelocytic leukemia associated with the PLZF-RARA fusion gene: Two additional cases with clinical and laboratorial peculiar presentations. Med. Oncol. 2011, 29, 2345–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strehl, S.; König, M.; Boztug, H.; Cooper, B.W.; Suzukawa, K.; Zhang, S.-J.; Chen, H.-Y.; Attarbaschi, A.; Dworzak, M.N. All-trans retinoic acid and arsenic trioxide resistance of acute promyelocytic leukemia with the variant STAT5B-RARA fusion gene. Leukemia 2012, 27, 1606–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Pan, J.; Yao, L.; Wu, L.; Zhu, J.; Wang, W.; Liu, C.; Han, Q.; Du, G.; Cen, J.; et al. Acute promyelocytic leukemia with a STAT5b-RARα fusion transcript defined by array-CGH, FISH, and RT-PCR. Cancer Genet. 2012, 205, 327–331. [Google Scholar] [CrossRef]
- Qiao, C.; Zhang, S.-J.; Chen, L.-J.; Miao, K.; Zhang, J.-F.; Wu, Y.-J.; Qiu, H.-R.; Li, J. Identification of the STAT5B-RAR? fusion transcript in an acute promyelocytic leukemia patient without FLT3, NPM1, c-Kit and C/EBP? mutation. Eur. J. Haematol. 2011, 86, 442–446. [Google Scholar] [CrossRef]
- Iwanaga, E.; Nakamura, M.; Nanri, T.; Kawakita, T.; Horikawa, K.; Mitsuya, H.; Asou, N. Acute promyelocytic leukemia harboring a STAT5B-RARA fusion gene and a G596V missense mutation in the STAT5B SH2 domain of the STAT5B-RARA. Eur. J. Haematol. 2009, 83, 499–501. [Google Scholar] [CrossRef]
- Kusakabe, M.; Suzukawa, K.; Nanmoku, T.; Obara, N.; Okoshi, Y.; Mukai, H.Y.; Hasegawa, Y.; Kojima, H.; Kawakami, Y.; Ninomiya, H.; et al. Detection of the STAT5B–RARA fusion transcript in acute promyelocytic leukemia with the normal chromosome 17 on G-banding. Eur. J. Haematol. 2008, 80, 444–447. [Google Scholar] [CrossRef]
- Arnould, C.; Philippe, C.; Bourdon, V.; Grégoire, M.J.; Berger, R.; Jonveaux, P. The Signal Transducer and Activator of Transcription STAT5b Gene Is a New Partner of Retinoic Acid Receptor in Acute Promyelocytic-Like Leukaemia. Hum. Mol. Genet. 1999, 8, 1741–1749. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, R.E.; Mak, B.S.; Paietta, E.; Cooper, B.; Ehmann, W.C.; Tallman, M.S. Identification of a Second Acute Promyelocytic Leukemia (APL) Patient with the STAT5b-RARα Fusion Gene among PML-RARα-Negative Eastern Cooperative Oncology Group (ECOG) APL Protocol Registrants. Blood 2004, 104, 3005. [Google Scholar] [CrossRef]
- Cahill, T.J.; Chowdhury, O.; Myerson, S.G.; Ormerod, O.; Herring, N.; Grimwade, D.; Littlewood, T.; Peniket, A. Myocardial Infarction with Intracardiac Thrombosis as the Presentation of Acute Promyelocytic Leukemia. Circulation 2011, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluk, M.J.; Abo, R.P.; Brown, R.D.; Kuo, F.C.; Cin, P.D.; Pozdnyakova, O.; Morgan, E.A.; Lindeman, N.I.; DeAngelo, D.J.; Aster, J.C. Myeloid neoplasm demonstrating a STAT5B-RARA rearrangement and genetic alterations associated with all-trans retinoic acid resistance identified by a custom next-generation sequencing assay. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.; Cai, X.; Qiang, P.; Duan, Q. Successful treatment of a patient with acute promyelocytic leukemia with a STAT5B/RARA fusion gene using decitabine. Leuk. Lymphoma 2017, 59, 763–765. [Google Scholar] [CrossRef] [PubMed]
- Culligan, D.J.; Stevenson, D.; Chee, Y.L.; Grimwade, D. Acute promyelocytic leukaemia with t(11;17)(q23;q12-21) and a good initial response to prolonged ATRA and combination chemotherapy. Br. J. Haematol. 1998, 100, 328–330. [Google Scholar] [CrossRef]
- Guidez, F.; Parks, S.; Wong, H.; Jovanovic, J.V.; Mays, A.; Gilkes, A.F.; Mills, K.I.; Guillemin, M.-C.; Hobbs, R.M.; Pandolfi, P.P.; et al. RAR -PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2007, 104, 18694–18699. [Google Scholar] [CrossRef] [Green Version]
- Koken, M.; Daniel, M.-T.; Gianni, M.; Zelent, A.; Licht, J.; Buzyn, A.; Minard, P.; Degos, L.; Varet, B.; De Thé, H. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARα fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(q23;q21) APL patient. Oncogene 1999, 18, 1113–1118. [Google Scholar] [CrossRef] [Green Version]
- Guidez, F.; Huang, W.; Tong, J.H.; Dubois, C.; Balitrand, N.; Waxman, S.; Michaux, J.L.; Martiat, P.; Degos, L.; Chen, Z. Poor response to all-trans retinoic acid therapy in a t(11;17) PLZF/RAR alpha patient. Leukemia 1994, 8, 312–317. [Google Scholar]
- Scott, A.A.; Head, D.R.; Kopecky, K.J.; Appelbaum, F.R.; Theil, K.S.; Grever, M.R.; Chen, I.M.; Whittaker, M.H.; Griffith, B.B.; Licht, J.D. HLA-DR-, CD33+, CD56+, CD16- myeloid/natural killer cell acute leukemia: A previously unrecognized form of acute leukemia potentially misdiagnosed as French-American-British acute myeloid leukemia-M3. Blood 1994, 84, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Rabade, N.; Raval, G.; Chaudhary, S.; Subramanian, P.; Kodgule, R.; Joshi, S.; Tembhare, P.; Hasan, S.K.; Jain, H.; Sengar, M.; et al. molecular Heterogeneity in ACUTE promyelocytic leukemia—A single centre experience from india. Mediterr. J. Hematol. Infect. Dis. 2018, 10, 2018002. [Google Scholar] [CrossRef] [Green Version]
- Han, S.B.; Lim, J.; Kim, Y.; Kim, H.-J.; Han, K. A variant acute promyelocytic leukemia with t(11;17) (q23;q12); ZBTB16-RARA showing typical morphology of classical acute promyelocytic leukemia. Korean J. Hematol. 2010, 45, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Langabeer, S.E.; Preston, L.; Kelly, J.; Goodyer, M.; Elhassadi, E.; Hayat, A. Molecular Profiling: A Case of ZBTB16-RARA Acute Promyelocytic Leukemia. Case Rep. Hematol. 2017, 2017, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechevalier, N.; Dulucq, S.; Bidet, A. A case of acute promyelocytic leukaemia with unusual cytological features and a ZBTB16-RARA fusion gene. Br. J. Haematol. 2016, 174, 502. [Google Scholar] [CrossRef] [PubMed]
- Dowse, R.T.; Ireland, R.M. Variant ZBTB16-RARA translocation: Morphological changes predict cytogenetic variants of APL. Blood 2017, 129, 2038. [Google Scholar] [CrossRef]
- Okazuka, K.; Masuko, M.; Seki, Y.; Hama, H.; Honma, N.; Furukawa, T.; Toba, K.; Kishi, K.; Aizawa, Y. Successful all-trans retinoic acid treatment of acute promyelocytic leukemia in a patient with NPM/RAR fusion. Int. J. Hematol. 2007, 86, 246–249. [Google Scholar] [CrossRef]
- Otsubo, K.; Horie, S.; Nomura, K.; Miyawaki, T.; Abe, A.; Kanegane, H. Acute promyelocytic leukemia following aleukemic leukemia cutis harboring NPM/RARA fusion gene. Pediatr. Blood Cancer 2012, 59, 959–960. [Google Scholar] [CrossRef]
- Redner, R.; Rush, E.; Faas, S.; Rudert, W.; Corey, S. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996, 87, 882–886. [Google Scholar] [CrossRef] [Green Version]
- Kikuma, T.; Nakamachi, Y.; Noguchi, Y.; Okazaki, Y.; Shimomura, D.; Yakushijin, K.; Yamamoto, K.; Matsuoka, H.; Minami, H.; Itoh, T.; et al. A new transcriptional variant and small azurophilic granules in an acute promyelocytic leukemia case with NPM1/RARA fusion gene. Int. J. Hematol. 2015, 102, 713–718. [Google Scholar] [CrossRef]
- Nicci, C.; Ottaviani, E.; Luatti, S.; Grafone, T.; Tonelli, M.; Motta, M.R.; Malagola, M.; Marzocchi, G.; Martinelli, G.; Baccarani, M.; et al. Molecular and cytogenetic characterization of a new case of t(5;17)(q35;q21) variant acute promyelocytic leukemia. Leukemia 2005, 19, 470–472. [Google Scholar] [CrossRef] [Green Version]
- Corey, S.J.; Locker, J.; Oliveri, D.R.; Shekhter-Levin, S.; Redner, R.L.; Penchansky, L.; Gollin, S.M. A non-classical translocation involving 17q12 (retinoic acid receptor alpha) in acute promyelocytic leukemia (APML) with atypical features. Leukemia 1994, 8, 1350–1353. [Google Scholar]
- Hummel, J.L.; A Wells, R.; Dubé, I.D.; Licht, J.D.; Kamel-Reid, S. Deregulation of NPM and PLZF in a variant t(5;17) case of acute promyelocytic leukemia. Oncogene 1999, 18, 633–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xu, J.; Chu, L.; Yu, L.; Zhang, Y.; Ma, L.; Wang, W.; Zhang, Y.; Xu, Y.; Liu, R. A rare case of acute promyelocytic leukemia with ider(17)(q10)t(15;17)(q22;q21) and favorable outcome. Mol. Cytogenet. 2020, 13, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Osumi, T.; Watanabe, A.; Okamura, K.; Nakabayashi, K.; Yoshida, M.; Tsujimoto, S.; Uchiyama, M.; Takahashi, H.; Tomizawa, D.; Hata, K.; et al. Acute promyelocytic leukemia with a cryptic insertion of RARA into TBL1XR1. Genes Chromosomes Cancer 2019, 58, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.; Land, M.G.P.; Heller, A.; Abdelhay, E.; Pombo-De-Oliveira, M.S.; Ribeiro, R.; Alves, G.; Lerner, D.; Liehr, T. New rearrangement t(3;17)(q26.3;q12) in an AML patient with a poor outcome. Oncol. Rep. 2005, 14, 663–666. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Zhou, C.; Li, C.; Ru, K.; Rao, Q.; Xing, H.; Tian, Z.; Tang, K.; Mi, Y.; et al. TBLR1 fuses to retinoid acid receptor α in a variant t(3;17)(q26;q21) translocation of acute promyelocytic leukemia. Blood 2014, 124, 936–945. [Google Scholar] [CrossRef] [Green Version]
- Redner, R.L.; Contis, L.C.; Craig, F.; Evans, C.; E Sherer, M.; Shekhter-Levin, S. A novel t(3;17)(p25;q21) variant translocation of acute promyelocytic leukemia with rearrangement of the RARA locus. Leukemia 2005, 20, 376–379. [Google Scholar] [CrossRef]
- Yin, C.C.; Jain, N.; Mehrotra, M.; Zhagn, J.; Protopopov, A.; Zuo, Z.; Pemmaraju, N.; DiNardo, C.; Hirsch-Ginsberg, C.; Wang, S.A.; et al. Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia. J. Natl. Compr. Cancer Netw. 2015, 13, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, Y.; Mitsui, H.; Yamashita, Y.; Kamae, T.; Kanai, A.; Matsui, H.; Ishibashi, T.; Tanimura, A.; Shibayama, H.; Oritani, K.; et al. New variant of acute promyelocytic leukemia with IRF2BP2–RARA fusion. Cancer Sci. 2016, 107, 1165–1168. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, J.V.; Chillón, M.C.; Vincent-Fabert, C.; Dillon, R.; Voisset, E.; Gutiérrez, N.C.; García-Sanz, R.; Lopez, A.A.M.; Morgan, Y.G.; Lok, J.; et al. The cryptic IRF2BP2-RARA fusion transforms hematopoietic stem/progenitor cells and induces retinoid-sensitive acute promyelocytic leukemia. Leukemia 2016, 31, 747–751. [Google Scholar] [CrossRef]
- Mazharuddin, S.; Chattopadhyay, A.; Levy, M.Y.; Redner, R.L. IRF2BP2-RARAt(1;17)(q42.3;q21.2) APL blasts differentiate in response to all-trans retinoic acid. Leuk. Lymphoma 2018, 59, 2246–2249. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, F.; Hu, H.; Wen, J.; Su, J.; Zhou, Q.; Qu, W. A rare case of acute promyelocytic leukemia with IRF2BP2-RARA fusion; and literature review. Oncotargets 2019, 12, 6157–6163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, T.; Mori, A.; Darmanin, S.; Hashino, S.; Tanaka, J.; Asaka, M. The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica 2008, 93, 1414–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, J.; Acquadro, F.; de la Villa, C.P.P.; Garcia-Sanchez, F.; Alvarez, S.; Cigudosa, J.C. FIP1L1/RARA with breakpoint at FIP1L1 intron 13: A variant translocation in acute promyelocytic leukemia. Haematologica 2011, 96, 1565–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, L.; Wen, L.; Wang, N.; Liu, T.; Xu, Y.; Ruan, C.; Wu, D.; Chen, S. Identification of novel recurrent STAT3-RARA fusions in acute promyelocytic leukemia lacking t(15;17)(q22;q12)/PML-RARA. Blood 2018, 131, 935–939. [Google Scholar] [CrossRef]
- Ichikawa, S.; Ichikawa, S.; Ishikawa, I.; Takahashi, T.; Fujiwara, T.; Harigae, H. Successful treatment of acute promyelocytic leukemia with a t(X;17)(p11.4;q21) and BCOR-RARA fusion gene. Cancer Genet. 2015, 208, 162–163. [Google Scholar] [CrossRef]
- Li, J.; Zhong, H.-Y.; Zhang, Y.; Xiao, L.; Bai, L.-H.; Liu, S.-F.; Zhou, G.; Zhang, G.-S. GTF2I-RARA is a novel fusion transcript in a t(7;17) variant of acute promyelocytic leukaemia with clinical resistance to retinoic acid. Br. J. Haematol. 2014, 168, 904–908. [Google Scholar] [CrossRef]
- A Wells, R.; Hummel, J.L.; De Koven, A.; Zipursky, A.; Kirby, M.; Dubé, I.; Kamel-Reid, S. A new variant translocation in acute promyelocytic leukaemia: Molecular characterization and clinical correlation. Leukemia 1996, 10, 735–740. [Google Scholar]
- Yamamoto, Y.; Tsuzuki, S.; Tsuzuki, M.; Handa, K.; Inaguma, Y.; Emi, N. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010, 116, 4274–4283. [Google Scholar] [CrossRef] [Green Version]
- Catalano, A.; Dawson, M.A.; Somana, K.; Opat, S.; Schwarer, A.; Campbell, L.J.; Iland, H. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood 2007, 110, 4073–4076. [Google Scholar] [CrossRef] [Green Version]
- Won, D.; Shin, S.Y.; Park, C.-J.; Jang, S.; Chi, H.-S.; Lee, K.-H.; Lee, J.-O.; Seo, E.-J. OBFC2A/RARA: A novel fusion gene in variant acute promyelocytic leukemia. Blood 2013, 121, 1432–1435. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.K.; Wang, A.Z.; Wong, T.H.Y.; Wan, T.S.; Cheung, J.S.; Raghupathy, R.; Chan, N.P.H.; Ng, M.H.L. FNDC3B is another novel partner fused to RARA in the t(3;17)(q26;q21) variant of acute promyelocytic leukemia. Blood 2017, 129, 2705–2709. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.L.; Cheng, H.; Xu, P.; You, H.; Wang, M.; Wang, L.; Ho, H.H. TFG-RARA: A novel fusion gene in acute promyelocytic leukemia that is responsive to all-trans retinoic acid. Leuk. Res. 2018, 74, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Zelent, A.; Tong, J.H.; Yu, H.Q.; Wang, Z.Y.; Derre, J.; Berger, R.; Waxman, S.; Chen, Z. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J. Clin. Investig. 1993, 91, 2260–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, M.A.; Montesinos, P.; Vellenga, E.; Rayon, C.; de la Serna, J.; Parody, R.; Bergua, J.M.; León, A.; Negri, S.; González, M. Risk adapted treatment of acute promyelocytic leukemia with all trans retinoic acid and anthracycline monochemotherapy: A multicenter study by the PETHEMA group. Blood 2004, 103, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.A.; Grimwade, D.; Tallman, M.S.; Lowenberg, B.; Fenaux, P.; Estey, E.H.; Naoe, T.; Lengfelder, E.; Buchner, T.; Döhner, H.; et al. Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2009, 113, 1875–1891. [Google Scholar] [CrossRef]
- Montesinos, P.; Rayón, C.; Vellenga, E.; Brunet, S.; González, J.; González, M.; Holowiecka, A.; Esteve, J.; Bergua, J.; Hernández-Rivas, J.M.; et al. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood 2011, 117, 1799–1805. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.A.; Montesinos, P.; Rayón, C.; Holowiecka, A.; De La Serna, J.; Milone, G.; De Lisa, E.; Brunet, S.; Rubio, V.; Ribera, J.M.; et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: Further improvements in treatment outcome. Blood 2010, 115, 5137–5146. [Google Scholar] [CrossRef]
- Cheson, B.D.; Bennett, J.M.; Kopecky, K.J.; Büchner, T.; Willman, C.L.; Estey, E.; Schiffer, C.A.; Doehner, H.; Tallman, M.S.; Lister, T.A.; et al. Revised Recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J. Clin. Oncol. 2003, 21, 4642–4649. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- De La Serna, J.; Fernández, P.M.; Vellenga, E.; Rayón, C.; Parody, R.; León, A.; Esteve, J.; Bergua, J.M.; Milone, G.; Debén, G.; et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood 2008, 111, 3395–3402. [Google Scholar] [CrossRef] [Green Version]
- Rego, E.M.; He, L.Z.; Warrell, R.P.; Wang, Z.G.; Pandolfi, P.P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc. Natl. Acad. Sci. USA 2000, 97, 10173–10178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.Z.; Guidez, F.; Tribioli, C.; Peruzzi, D.; Ruthardt, M.; Zelent, A.; Pandolfi, P.P. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat. Genet. 1998, 18, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, R.; Pandolfi, P.P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 2007, 8, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Liu, Y.; Zhang, M.; Wang, X.; Xi, J.; Wu, D.; Li, J.; Cao, Y. Interferon-γ enhances promyelocytic leukemia protein expression in acute promyelocytic cells and cooperates with all-trans-retinoic acid to induce maturation of NB4 and NB4-R1 cells. Exp. Med. 2012, 3, 776–780. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, K.; Hoshi, S.; Koike, M.; Kiyoi, H.; Saito, H.; Naoe, T. Histone deacetylase inhibitor but not arsenic trioxide differentiates acute promyelocytic leukaemia cells with t(11;17) in combination with all-trans retinoic acid. Br. J. Haematol. 2000, 108, 696–702. [Google Scholar] [CrossRef]
- Côté, S.; Rosenauer, A.; Bianchini, A.; Seiter, K.; Vandewiele, J.; Nervi, C.; Miller, W.H. Response to histone deacetylase inhibition of novel PML/RARα mutants detected in retinoic acid–resistant APL cells. Blood 2002, 100, 2586–2596. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, J.-W.; Zhu, H.-Q.; Shen, Y.-L.; Flexor, M.; Jia, P.-M.; Yu, Y.; Cai, X.; Waxman, S.; Lanotte, M.; et al. Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subtends a novel signaling cross-talk. Blood 2002, 99, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Jiao, B.; Ren, Z.-H.; Liu, P.; Chen, L.-J.; Shi, J.-Y.; Dong, Y.; Ablain, J.; Shi, L.; Gao, L.; Hu, J.-P.; et al. 8-CPT-cAMP/all-trans retinoic acid targets t(11;17) acute promyelocytic leukemia through enhanced cell differentiation and PLZF/RARα degradation. Proc. Natl. Acad. Sci. USA 2013, 110, 3495–3500. [Google Scholar] [CrossRef] [Green Version]
- Sanford, D.; Lo-Coco, F.; Sanz, M.A.; Di Bona, E.; Coutre, S.; Altman, J.K.; Wetzler, M.; Allen, S.; Ravandi, F.; Kantarjian, H.; et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide. Br. J. Haematol. 2015, 171, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Tallman, M.S.; Kim, H.T.; Montesinos, P.; Appelbaum, F.R.; De La Serna, J.; Bennett, J.M.; Deben, G.; Bloomfield, C.D.; Gonzalez, J.; Feusner, J.H.; et al. Does microgranular variant morphology of acute promyelocytic leukemia independently predict a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood 2010, 116, 5650–5659. [Google Scholar] [CrossRef]
Sex/Age (Years) | WBC × 109/L | Therapy-Related APL | Coagulo-Pathy | CD56 % | Karyotype & Rearrangement by PCR | Front-Line Therapy | Induction Response | Relapse | Salvage Therapy | AlloHSCT (Type) | Survival in Months (Status) |
---|---|---|---|---|---|---|---|---|---|---|---|
PLZF-RARα patients | |||||||||||
M/31 | NA | No | NA | NA | t(11;17)(q23;q21) PLZF-RARα | Induction AIDA (PETHEMA 99), Consolidation, Maintenance 6-MP/MTX/ATRA | CR | YES (isolated CNS sarcoma) at 58 months | ATRA + ATO + TIT—CR2, RTH, consolidation HD-Ara-C + IDA; maintenance 6-MP/MTX | NO | 101+ |
F/50 | 2.9 | Yes: MTX for arthritis | YES | 100 | t(11;17)(q23;q21) PLZF-RARα | Induction ATRA + IDICE, Consolidation Ara-C/MTZ/ATRA (×2), alloHSCT | CR | NO | - | YES (MUD) | 36+ |
M/76 | 21.4 | Yes: chemotherapy for colon cancer | YES | NA | t(11;17)(q23;q21) PLZF-RARα | Induction AIDA (PETHEMA2012) | Death | - | - | - | 0.3 (death) |
M/67 | 53 | No | YES | 47 | t(11;17)(q23;q21) PLZF-RARα | Induction AIDA (PETHEMA 2012), Consolidations 1st: IDA/Ara-C/ATRA, 2nd:MTZ/ATRA, 3rd: IDA/Ara-C/ATRA Maintenance 6-MP/MTX/ATRA (2 years) | CR | YES (bone marrow) 1st at 40 months 2nd at 52 months 3rd at 60 months | ATRA + ATO—CR2 2nd relapse: MTZ + Ara-C—CR3 consolidation Mylotarg (×2) 3rd relapse: untreated | NO | 60 (death) |
M/43 | 16.8 | No | YES | 0 | t(11;17)(q23;q21) PLZF-RARα | Induction AIDA (PETHEMA 2012) | Death | - | - | - | 0.2 (death) |
M/40 | 9.6 | No | YES | 0 | t(11;17)(q23;q21) PLZF-RARα | Induction ATRA + IA 3+7, Consolidation HD-Ara-C (×1), alloHSCT | CR | NO | YES (MUD) | 47+ | |
M/3 months | 56.4 | No | YES | NA | t(11;17)(q23;q21) PLZF-RARα | Induction ATRA + AIE + ithAra-C, Consolidation ATRA + AI + ithAra-C (×1) ATRA + HAM + ithAra-C (×1), Intensification: ATRA + HAE + ithAra-C, Maintenance: ATRA + 6-TG Ara-C s.c. + ithAra-C + RTH CNS | CR | NO | - | NO | 48+ |
M/33 | 248 | No | NA | NA | t(11;17)(q23;q21) PLZF-RARα | Induction DA 3+7, Consolidation DA 3+7 | CR | YES (isolated CNS) 1st at 24 months 2nd at 34 months 3rd at 50 months | HD-Ara-C + TIT (×8)—CR2, alloHSCT 2nd relapse: Ara-C + MTZ + TIT (×7) plus radiotherapy—CR3 3rd relapse: ATRA + FLAG-IDA—CR4 consolidation ATRA + ATO | YES (MRD) | 62+ |
M/62 | 1.1 | No | NA | 0 | t(11;17)(q23;q21) PLZF-RARα | Induction IA 3+7 (×2), Consolidation HD-Ara-C (×2) | CR | NO | - | NO | 8+ |
NPM1-RARα patients | |||||||||||
F/7 | 100 | No | NA | NA | t(5;15;17) NPM1-RARα | Induction AIDA (PETHEMA 2017), Consolidation: 1st: IDA/Ara-C/ATRA, 2nd: MTZ/ATRA, 3rd: IDA/Ara-C/ATRA | CR | YES (CNS + bone marrow) at 9 months | ATRA + ATO + TIT—CR2, alloHSCT planned | planned (haplo-identical) | 11+ |
M/74 | 1.7 | No | NO | 0 | t(5;17)(q35;q21) NPM1-RARα | Induction FLUGA → RES 2nd line AIDA → PR 3rd line IA 2+5 → CR, Consolidation intermediate-dose Ara-C (×2) | RES | NO | - | NO | 24+ |
Cases/First Reference | Karyotype | Sex/Age (Years) | WBC (×109/L) | Response to ATRA-Containing Regimen | Response to ATO-Containing Regimen | Induction(s) and Response(s) | Relapse (Months) Salvage Therapy | AlloHSCT | Survival in Months (Status) |
---|---|---|---|---|---|---|---|---|---|
ATRA monotherapy induction | |||||||||
[63] | 46,XY,t(11;17)(q23;q21) | M/67 | 4.1 | Differentiation | - | Induction ATRA—ED | - | - | 0.7 (death) |
[11] | 46,XY,t(11;17)(q23;q21) | F/81 | 7.6 | Differentiation | - | Induction ATRA—ED | - | - | 0.6 (death, cerebral bleeding) |
46,XY,t(11;17)(q23;q21) | M/67 | 4.1 | Not evaluable | - | Induction ATRA—ED | - | - | 0.5 (death) | |
[7] | 46,XX,t(11;17)(q23;q21);47,idem,+22 | F/48 | 42.5 | Not evaluable | - | Induction ATRA—ED | - | - | 0.3 (death by cerebral bleeding) |
[34] | 46,XY, t(11;17)(q23;q21) with del(5)(q22q35) | M/53 | 15.4 | NO | - | Induction ATRA—RES, DNR + Ara-C—CR | NA | NA | NA |
ATRA + chemotherapy-based induction | |||||||||
[12] | 46,XY,t(11;17)(q23;q21) | M/31 | 69.5 | YES | - | Induction ATRA + Ara-C + IDA (3+7)—CR, Consolidation Ara-C + amsacrine, ETO + MTZ | YES (11) ATRA—CR2, consolidation HD-Ara-C, alloHSCT | YES in CR2 | 51+ |
[13] | 46,XY,t(11;17)(q23;q21) | M/83 | NA | YES | - | Induction: ATRA + DNR—CR Consolidation DNR + Ara-C × 2, Maintenance ATRA +6-MP + MTX | NO | NO | 24+ |
[49] | 47,XY,+8/47,XY,+8,t(11;17)(q23;q21) | M/62 | 1.2 | YES | - | Induction ATRA + ADE—CR | YES (7) NA | NO | 17+ |
[10] | 46,XY,t(11;17)(q23;q21)/46,XY | M/53 | 4.5 | YES | - | Induction ATRA + ADE—CR, Consolidation ADE, MACE, MiDAC | YES (45) FLAG × 2 + ATRA—CR2, alloHSCT | YES in CR2 | 177+ |
[26] | 46,XY,t(7;17)(q35;q21) | M/58 | 7.4 | YES | - | Induction ATRA + DAT—CR, Consolidation DAT + ATRA, MACE | YES (36) NA | NO | 36 (death in relapse) |
[8] | 46,XY,t(11;17)(q23;q21)/45,X,-Y,t(11;17)(q23;q21) | M/50 | 6.8 | YES | - | Induction ATRA + ADE—CR, Consolidation ADE, MACE, MiDAC | NO | NO | 73+ |
[3] | 46,XY, t(11;17)(q23;q21)/46,idem,del(12)(p1?)/46,idem,-6,+r | M/75 | 2.0 | YES | - | Induction ATRA + DAT—CR, Consolidation DAT, MACE | YES (55) DNR + Ara-C—CR2 | NO | 88 (death in CR2) |
[3] | 45,X,2Y,t(11;17)(q23;q21) | M/32 | 11.6 | YES | - | Induction AIDA—CR, alloHSCT | NO | YES in CR1 | 37+ |
46,XY,i(7)(q10),t(11;17)(q23;q21) | M/43 | 10.4 | YES | - | Induction AIDA—CR | YES (30) NO | NO | 30 (death in relapse) | |
[28] | 46,XY,t(11;17)(q23;q21)/47,idem,+8 | M/68 | 6.9 | Differentiation (monotherapy in second line) | - | Induction: ATRA + DNR + Ara-C—RES, ATRA (monotherapy)—RES, MTZ + HD-Ara-C—CR | YES (15) NO | NO | 15 (death in relapse) |
[11] | 45,X,2Y,add(2)(q33),t(11;17)(q23;q21)/46,XY | M/34 | 2.4 | NO | - | Induction ATRA + DNR + Ara-C—RES, Amsacrine + HD-Ara-C—CR | YES (56) NO | NO | 57 (death in relapse) |
[14] | No metaphases | M/48 | 71.6 | NO | NO (in second line) | Induction ATRA + DNR × 2—RES, HIDAC + ATO—RES | - | - | NA |
[14] | 46,XX,t(11;17)(q23;q22) | F/38 | 23.6 | NO | - | Induction ATRA + DNR—RES, MTZ + ETO + Ara-C—ED | - | - | 2 (death by sepsis) |
[32] | 46,XX,add(17)(q21)[4]/46,XX[9]. ish der(11)t(11;17)(q23;q21) | M/81 | 1.8 | Not evaluable | - | Induction AIDA—ED | - | - | 0.3 (death by pulmonary bleeding) |
Chemotherapy-based induction | |||||||||
[11] | 46XY+(3)+(13)(q34), t(11;17)(q23;q21) | M/53 | 15.3 | - | - | Induction DNR + Ara-C—CR Consolidation DNR + Ara-C | YES (7) DNR + Ara-C + Gm-CSF—CR2 2nd relapse (19) ETO + MTZ—CR3 ATRA + other—RES 3nd relapse (23) | NO | 28 (death in relapse) |
[31] | t(11;17)(q23;q21) | M/52 | 1.6 | - | - | Induction chemotherapy—CR | NA | NA | NA |
[29] | 46,XY,t(11;17)(q23;q21) | M/37 | 45.2 | - | - | Induction DNR + Ara-C—RES, IFN-alpha—RES, ETO + MTZ—CR | NO | NO | 11 (death cause unknown) |
[3] | 46,XY,t(11;17)(q23;q21),idem,-Y/46,XY | M/34 | 20 | YES (in second line) | - | Induction DNR + Ara-C + ETO—RES, Ara-C + IDA+ATRA—CR, alloHSCT | NO | YES in CR1 | 33+ |
[33] | t(11;17)(q23;q21) | M/50 | 1.3 | YES (in second line) | YES (in second line) | Induction DNR + Ara-C—RES, ATRA + ATO—CR | NA | NA | NA |
[3] | 46,XY.ish,ins(11;17)(q23;q21,q21) | M/62 | 9.9 | YES (monotherapy at relapse) | - | Induction Ida + Ara-C + ETO—RES, MICE—CR | YES ATRA-CR2 2nd relapse (8)—no treatment | NO | 25 (death in relapse) |
ATO+ATRA+/-chemotherapy-based induction | |||||||||
[7] | 46,XX,der(11),der(17)/46,XX | F/60 | 34 | YES | YES | Induction ATRA + ATO + IDA—CR, Consolidation ATO + IA, MTZ, ATO + DNR, ATO + DA, MA | NO | NO | 11 + |
46,XY,?t(11;17)(q23;q21)/46,XY | M/44 | 52.1 | NO | NO | Induction ATRA + DNR + Ara-C (3+7) + ATO—RES | - | - | 5+ | |
47,XY,+8[4/20]/47,idem,t(11;17)(q23;q21)/46,XY | M/52 | 8.9 | YES (in second line) | NO | Induction ATRA+ATO—RES, DNR + ATRA + CAG × 3—CR | NO | NO | 7+ | |
46,XX,t(11;17)(q23;q22)/46,XY | M/46 | 23.1 | NO | NO | Induction ATRA + ATO—RES, IDA + Ara-C—CR, Consolidation MTZ + ETO + Ara-C, MTZ + Ara-C, HD-AraC | NO | NO | 5+ | |
ATO+/-chemotherapy-based induction | |||||||||
[9] | 45,X,-Y, t(11;17)(q23;q21)/46,XY, t(11;17)(q23;q21) | M/23 | 9.1 | - | NO | Induction ATO—RES, DNR + Ara-C 3+7—CR; Consolidation Ara-C × 5, Ara-C + DNR × 4 | YES (7) NA | NO | 32+ |
[30] | NA | M/15 | 64.9 | - | NO | Induction ATO + IDA—RES, HD-Ara-C (×3)—CR, Maintenance ATRA | NO | NO | NA |
NA | M/38 | NA | - | NO | Induction ATO—RES | - | - | 2+ | |
NA | M/45 | NA | - | NO | Induction ATO—RES | - | - | NA | |
NA | M/36 | 4.9 | - | NO | Induction ATO + Decitabine—RES, DNR + Ara-C—RES, HD-Ara-C—CR, Consolidation HD-Ara-C × 2 | YES (11) NO | NO | 11 (death in relapse) | |
NA | M/22 | 76.9 | - | NO | Induction ATO—RES, HD-Ara-C (×3)—NA | NA | NA | NA |
Case Reference | Karyotype | Sex/Age (Years) | WBC (×109/L) | Myeloid Sarcoma | Response to ATRA-Containing Regimen | Response to ATO-Containing Regimen | Induction and Response | Relapse (Months) Salvage Therapy | alloHSCT | Survival in Months (Status) |
---|---|---|---|---|---|---|---|---|---|---|
[37,40] | 46,XX,t(5;17)(q32;q12) 48,XX,t(5;17),+2mar | F/2 | NA | NO | YES | - | Induction DNR + Ara-C + ETO—CR, then ATRA—molecular CR, autoHSCT | YES (7) | NO (autoHSCT) | 7 (death in relapse) |
[41] | 47,XY,t(5;17)(q35;q21),der(8)(p23), der(10)(q26),del(12)(q13q22),del(1)(q12q14),−16,−18,+21,+22,+mar | M/12 | NA | NO | YES | - | Induction DNR + Ara-C (3+7)—CR, consolidation DNR + Ara-C + 6-TG + ETO + DXM | YES (5) ATRA + Ara-C—CR2, alloHSCT | YES in CR2 | 8+ |
[3] | 46,XX,ins(3;5)(q26;q13q13),t(5;17)(q34;q21) | F/9 | 17 | NO | YES | - | Induction ATRA + Ara-C + MTZ—CR, consolidation DNR + Ara-C + ETO | NO | NO | 29+ |
46,XX,der(5)t(5;17)(q13;q21),del(8)(q22q24),der(17),532–dim | F/76 | 43.1 | NO | YES | - | Induction ATRA + DNR + Ara-C—ED | - | - | 0.5 (death by differentiation syndrome) | |
[6] | 46,XY,t(5;17)(q35;q21),del(12)(p13) | M/12 | 15.7 | NO | Not evaluable | - | Induction ATRA—ED | - | - | 0.2 (death by cerebral hemorrhage) |
[39] | 46,XY,t(5;17)(q35;q21) | M/29 | 2.9 | Pelvis | YES | NA (used in relapse) | Induction AIDA—CR consolidation IDA + Ara- + ATRA), MTZ + ETO + ATRA, IDA + Ara-C + 6-TG + ATRA, maintenance ATRA | YES (22) ATO (1 cycle) | NO | 23+ |
[36] | 46,XY,t(5;17)(q35;q12)[4]/46,XY[16] | M/4 | NA | Skin | YES | - | Induction ATRA + chemotherapy—CR | YES (NA) | NO | 46+ |
[38] | 46,XY,t(5;17)(q35;q12) | M/51 | 4.2 | Vertebral | YES | - | Induction ATRA + chemotherapy—CR | NO | NO | 2+ |
[35] | 46,XY,t(5;17)(q35;q12) | M/64 | NA | No | Yes | - | Induction ATRA + chemotherapy—CR | NO | NO | 18+ |
References | Rearrangement | Karyotype | N of Cases | Sex/Median Age Years (Range) | WBC × 109/L Median (Range) | ATRA Sensitivity | ATO Sensitivity | Treatment Schedules | Relapse Months | HSCT | OS (Months) |
---|---|---|---|---|---|---|---|---|---|---|---|
[8,15,16,17,18,19,20,21,22,23,24] | STAT5B-RARα | From normal till complex karyotype, (interstitial deletion within chr. 17) | 12 | M (10)/F (3) 42 (17–67) years | 16.1 (2.1–77.8) | YES | POSSIBLE 1 CR with ATRA + ATO + Ida | IA, ETO, FLAG, CAG, FLA, DA, MTZ, GO, Decitabine, ATO (most of them with ATRA)—CR in 8/12 (67%) cases (5 CR with ATRA-containing induction) | YES (4 patients) Median 30.4, range 3.5–56 | YES 2 in CR1 and 2 in CR2 | Median 25.6 (0–75) |
[43,44,45,46] | TBLR1-RARα (1 case also with PML-RARα) | t(3;17)(q26;q12–21) plus other alterations t(3;17) (p25;q21) in 1 case | 6 | M (6)/F (2) 41.3 (3–72) years (available in 4 patients) | 14.1 and 20.4 (available) | YES | POSSIBLE (in 2nd line with chemotherapy) | 1st case: ATRA + DNR—CR, 2nd case: ATRA + MTZ—RES, 3rd case: ATRA + chemotherapy—ED 4th case: ATRA—RES 5th case: ATRA—RES, chemotherapy CR 6th case: —ED | YES (2 patients after 10 and 24 months; one extramedullary) | YES (1 patient in 2nd CR—cord blood) | 1 patient alive after alloHSCT |
[47,48,49,50,51] | IRF2P2-RARα | Normal, diploid, −X (2 cases), t(1;17)(q42;q21) | 5 | M(2)/F (3) 38 (19–68) years | 3.8 (1.65–5.14) | YES | YES | 1st case: ATRA + ATO + GO—CR/2nd case: ATRA + IDA + Ara-C + GO—CR 3rd case: ATRA—CR 4th case: ATRA + IDA + Ara-C—CR 5th case: ATRA + ATO + DRN + Ara-C—CR | YES (3 patients between 8–12 months) | 1 patient (after relapse) | Median 39 (8–18) months |
[52,53] | FIP1L1-RARα | t(4;17)(q12;q21) | 2 | F (2) 77, 90 | 59 in 1 case (other case NA) | YES | - | 1st case:Induction AIDA protocol—ED; 2nd case: Induction ATRA—CR | NA | NO | 1st patient: 0.3 (death by DS), 2nd patient NA |
[54] | STAT3-RARα | 45,XY,-Y[6]/46,XY[8] or 46,XY[20] | 2 | M (2) 24, 26 | 6.6, 32.3 | NO | NO | 1st case: Induction ATO + ATRA—RES, DA3+7—RES, Homoharringtonine + ARA-C + G-CSF—CR, consolidation FLU + ARA-C (×4) MTZ + ARA-C (×1) 2nd case: Induction ATRA—RES, IA3+7—RES | YES (1st patient) | NO | 1st patient: 33 (death in relapse), 2nd patient 6 months (death as RES) |
[55,58] | BCOR-RARα | t(X;17)(p11;q21) or Y,t(X;17)(p11.4;q21) | 2 | M/45 and 71 | 25.3 and >10 | YES | NO (in relapse) | 1st case:Induction ATRA + IDA + Ara-C—CR, than Consolidation 2nd case: Induction DA 3+7—CR, Consolidation ATRA + chemotherapy | YES at 35 months IDA + Ara-C + ATRA—CR2 2nd at 41 months—ATO—RES, tamibarotene + DNR + Ara-C—CR3 | YES (cord blood in 3rd CR) | 44+ and 12+ |
[56] | GTF2I-RARα | t(7;17)(q11;q21) | 1 | M/35 | 53.7 | No | NO | Induction ATRA + DA - RES ID-ARA-C – RES IAH – RES ATRA+ATO – RES, death | - | - | 4.8 (death as RES) |
[57] | NuMa1-RARα | t(11;17)(q13;q21) | 1 | M/0.5 | 3.6 | YES | - | Induction ATRA—CR, autoHSCT | NO | NO (autoHSCT) | 38 |
[59] | PRKAR1A-RARα | t(17;17)(q21;q24) | 1 | M/66 | 5.3 | YES | YES | Induction ATRA + ATO + IDA—CR, Consolidation Ara-C + amsacrine × 3, Maintenance ATRA | NO | NO | 24+ |
[60] | NABP1-RARα (OBFC2A-RARα) | der(2)(t(2;17)(q32;q21) with sublcones t(11;19)(q13;p13.1) | 1 | M/59 | 96.9 | YES | - | Induction AIDA—CR Consolidation × 2 cycles | NO | YES (MUD) | 15+ |
[62] | TFG-RARα | t(3;14;17)(q12;q11;q21) | 1 | M/16 | 1.81 | YES | Induction: ATRA—CR, Consolidation: ATRA + IDA (×2), maintenance: ATRA | NO | NO | NA | |
[61] | FNDC3B-RARα | t(3;17)(q26;q21) | 1 | M/36 | 3.6 | YES | - | Induction ATRA + DA 3+7—CR, consolidation DA 5+2, HD-Ara-C, maintenance ATRA/MTX/6-MP | YES | NO | 8 (death in relapse) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobas, M.; Talarn-Forcadell, M.C.; Martínez-Cuadrón, D.; Escoda, L.; García-Pérez, M.J.; Mariz, J.; Mela-Osorio, M.J.; Fernández, I.; Alonso-Domínguez, J.M.; Cornago-Navascués, J.; et al. PLZF-RARα, NPM1-RARα, and Other Acute Promyelocytic Leukemia Variants: The PETHEMA Registry Experience and Systematic Literature Review. Cancers 2020, 12, 1313. https://doi.org/10.3390/cancers12051313
Sobas M, Talarn-Forcadell MC, Martínez-Cuadrón D, Escoda L, García-Pérez MJ, Mariz J, Mela-Osorio MJ, Fernández I, Alonso-Domínguez JM, Cornago-Navascués J, et al. PLZF-RARα, NPM1-RARα, and Other Acute Promyelocytic Leukemia Variants: The PETHEMA Registry Experience and Systematic Literature Review. Cancers. 2020; 12(5):1313. https://doi.org/10.3390/cancers12051313
Chicago/Turabian StyleSobas, Marta, Maria Carme Talarn-Forcadell, David Martínez-Cuadrón, Lourdes Escoda, María J. García-Pérez, Jose Mariz, María J. Mela-Osorio, Isolda Fernández, Juan M. Alonso-Domínguez, Javier Cornago-Navascués, and et al. 2020. "PLZF-RARα, NPM1-RARα, and Other Acute Promyelocytic Leukemia Variants: The PETHEMA Registry Experience and Systematic Literature Review" Cancers 12, no. 5: 1313. https://doi.org/10.3390/cancers12051313
APA StyleSobas, M., Talarn-Forcadell, M. C., Martínez-Cuadrón, D., Escoda, L., García-Pérez, M. J., Mariz, J., Mela-Osorio, M. J., Fernández, I., Alonso-Domínguez, J. M., Cornago-Navascués, J., Rodríguez-Macias, G., Amutio, M. E., Rodríguez-Medina, C., Esteve, J., Sokół, A., Murciano-Carrillo, T., Calasanz, M. J., Barrios, M., Barragán, E., ... Montesinos, P. (2020). PLZF-RARα, NPM1-RARα, and Other Acute Promyelocytic Leukemia Variants: The PETHEMA Registry Experience and Systematic Literature Review. Cancers, 12(5), 1313. https://doi.org/10.3390/cancers12051313