The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity of Three Peptides on ABC Transporter-Overexpressing Cell Lines
2.2. Cytotoxicity of ABC Substrates in Combination with the Peptide
2.3. XH-14C on ATPase Activity of ABCB1 and ABCG2 Transporters
2.4. Interaction of XH-14C with ABCB1
2.5. Effects of XH-14C on ABCB1 Transporter’s Function
2.6. Effect of XH-14C on the expression of ABCB1
2.7. Effects of XH-14C on the Subcellular Localization of ABCB1
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Lines and Cell Culture
4.3. MTT Colorimetric Assay
4.4. ATPase Assay
4.5. Molecular Docking Simulation
4.6. Drug Accumulation and Efflux Assay
4.7. Western Blotting Analysis
4.8. Immunofluorescence Assay
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA A Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr.; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2015, 18, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef]
- Horsey, A.J.; Cox, M.H.; Sarwat, S.; Kerr, I.D. The multidrug transporter ABCG2: Still more questions than answers. Biochem. Soc. Trans. 2016, 44, 824–830. [Google Scholar] [CrossRef] [Green Version]
- Chun, S.-Y.; Kwon, Y.-S.; Nam, K.-S.; Kim, S. Lapatinib enhances the cytotoxic effects of doxorubicin in MCF-7 tumorspheres by inhibiting the drug efflux function of ABC transporters. Biomed. Pharm. 2015, 72, 37–43. [Google Scholar] [CrossRef]
- Kumar, P.; Zhang, D.M.; Degenhardt, K.; Chen, Z.S. Autophagy and transporter-based multi-drug resistance. Cells 2012, 1, 558–575. [Google Scholar] [CrossRef] [Green Version]
- Vasiliou, V.; Vasiliou, K.; Nebert, D.W. Human ATP-binding cassette (ABC) transporter family. Hum. Genom. 2009, 3, 281–290. [Google Scholar] [CrossRef]
- Hegedus, C.; Ozvegy-Laczka, C.; Szakacs, G.; Sarkadi, B. Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: Substrates and/or inhibitors? Curr. Cancer Drug Targets 2009, 9, 252–272. [Google Scholar] [CrossRef]
- Ozvegy-Laczka, C.; Cserepes, J.; Elkind, N.B.; Sarkadi, B. Tyrosine kinase inhibitor resistance in cancer: Role of ABC multidrug transporters. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2005, 8, 15–26. [Google Scholar] [CrossRef]
- Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer 2017, 36, 52. [Google Scholar] [CrossRef] [PubMed]
- Leggas, M.; Panetta, J.C.; Zhuang, Y.; Schuetz, J.D.; Johnston, B.; Bai, F.; Sorrentino, B.; Zhou, S.; Houghton, P.J.; Stewart, C.F. Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res. 2006, 66, 4802–4807. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Peng, X.X.; Kim, I.W.; Shukla, S.; Si, Q.S.; Robey, R.W.; Bates, S.E.; Shen, T.; Ashby, C.R., Jr.; Fu, L.W.; et al. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res. 2007, 67, 11012–11020. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.L.; Tiwari, A.K.; Wu, C.P.; Su, X.D.; Wang, S.R.; Liu, D.G.; Ashby, C.R., Jr.; Huang, Y.; Robey, R.W.; Liang, Y.J.; et al. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008, 68, 7905–7914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.S.; Patel, A.; Shukla, S.; Zhang, Y.K.; Wang, Y.J.; Kathawala, R.J.; Robey, R.W.; Zhang, L.; Yang, D.H.; Talele, T.T.; et al. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2. Oncotarget 2014, 5, 4529–4542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, T.; Kuang, Y.H.; Ashby, C.R.; Lei, Y.; Chen, A.; Zhou, Y.; Chen, X.; Tiwari, A.K.; Hopper-Borge, E.; Ouyang, J.; et al. Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS ONE 2009, 4, e7520. [Google Scholar] [CrossRef]
- Thomas, H.; Coley, H.M. Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control. J. Moffitt Cancer Cent. 2003, 10, 159–165. [Google Scholar] [CrossRef]
- Kozovska, Z.; Gabrisova, V.; Kucerova, L. Colon cancer: Cancer stem cells markers, drug resistance and treatment. Biomed. Pharm. Biomed. Pharm. 2014, 68, 911–916. [Google Scholar] [CrossRef]
- Bissett, D.; Kerr, D.; Cassidy, J.; Meredith, P.; Traugott, U.; Kaye, S. Phase I and pharmacokinetic study of D-verapamil and doxorubicin. Br. J. Cancer 1991, 64, 1168–1171. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Kumar, P.; Anreddy, N.; Zhang, Y.-K.; Wang, Y.-J.; Chen, Y.; Talele, T.T.; Gupta, K.; Trombetta, L.D.; Chen, Z.-S. Quizartinib (AC220) reverses ABCG2-mediated multidrug resistance: In vitro and in vivo studies. Oncotarget 2017, 8, 93785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, S.; Sane, R.; Gallardo, J.L.; Ohlfest, J.R.; Elmquist, W.F. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J. Pharm. Exp. 2010, 334, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Agarwal, S.; Shaik, N.M.; Chen, C.; Yang, Z.; Elmquist, W.F. P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J. Pharm. Exp. 2009, 330, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.J.; Milton, M.N.N.; Yu, S.; Liao, M.; Liu, N.; Wu, J.-T.; Gan, L.-S.; Balani, S.K.; W Lee, F.; Prakash, S. P-glycoprotein and breast cancer resistance protein affect disposition of tandutinib, a tyrosine kinase inhibitor. Drug Metab. Lett. 2010, 4, 202–212. [Google Scholar] [CrossRef]
- Jänne, P.A.; Gray, N.; Settleman, J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat. Rev. Drug Discov. 2009, 8, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Assef, Y.; Rubio, F.; Coló, G.; del Mónaco, S.; Costas, M.A.; Kotsias, B.A. Imatinib resistance in multidrug-resistant K562 human leukemic cells. Leuk. Res. 2009, 33, 710–716. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Wei, M.-J. Reversing multidrug resistance by tyrosine kinase inhibitors. Chin. J. Cancer 2012, 31, 126. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Chen, Y.C.; Tsai, T.L.; Ye, X.H.; Lin, T.H. Anti-proliferative effect on a colon adenocarcinoma cell line exerted by a membrane disrupting antimicrobial peptide KL15. Cancer Biol. 2015, 16, 1172–1183. [Google Scholar] [CrossRef] [Green Version]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharm. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, P.E.; Arter, A.L.; Deng, G.; Tallant, E.A. Angiotensin-(1-7): A peptide hormone with anti-cancer activity. Curr. Med. Chem. 2014, 21, 2417–2423. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Et Biophys. Acta 2008, 1778, 357–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, J.C.; Mi, Z.; Kim, S.H.; Ng, B.; Robbins, P.D. A proapoptotic peptide for the treatment of solid tumors. Cancer Res. 2001, 61, 7709–7712. [Google Scholar] [PubMed]
- Wu, D.; Gao, Y.; Qi, Y.; Chen, L.; Ma, Y.; Li, Y. Peptide-based cancer therapy: Opportunity and challenge. Cancer Lett. 2014, 351, 13–22. [Google Scholar] [CrossRef]
- Shadidi, M.; Sioud, M. Selective targeting of cancer cells using synthetic peptides. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2003, 6, 363–371. [Google Scholar] [CrossRef]
- Leuschner, C.; Hansel, W. Membrane disrupting lytic peptides for cancer treatments. Curr. Pharm. Des. 2004, 10, 2299–2310. [Google Scholar] [CrossRef]
- Zhang, H.; Patel, A.; Ma, S.L.; Li, X.J.; Zhang, Y.K.; Yang, P.Q.; Kathawala, R.J.; Wang, Y.J.; Anreddy, N.; Fu, L.W.; et al. In vitro, in vivo and ex vivo characterization of ibrutinib: A potent inhibitor of the efflux function of the transporter MRP1. Br. J. Pharm. 2014, 171, 5845–5857. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.K.; Zhang, G.N.; Wang, Y.J.; Patel, B.A.; Talele, T.T.; Yang, D.H.; Chen, Z.S. Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters. Sci. Rep. 2016, 6, 25694. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Qiu, Q.; Wang, X.; Huang, W.; Qian, H. Design, Synthesis, and Biological Evaluation of Novel Cholesteryl Peptides with Anticancer and Multidrug Resistance-Reversing Activities. Chem. Biol. Drug Des. 2016, 87, 374–381. [Google Scholar] [CrossRef]
- Deng, X.; Qiu, Q.; Yang, B.; Wang, X.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of novel peptides with anti-cancer and drug resistance-reversing activities. Eur. J. Med. Chem. 2015, 89, 540–548. [Google Scholar] [CrossRef]
- Anreddy, N.; Gupta, P.; Kathawala, R.J.; Patel, A.; Wurpel, J.N.; Chen, Z.S. Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014, 19, 13848–13877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loo, T.W.; Clarke, D.M. Tariquidar inhibits P-glycoprotein drug efflux but activates ATPase activity by blocking transition to an open conformation. Biochem. Pharm. 2014, 92, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Liu, W.; Qin, Y.; He, F.; Qin, Z.; Li, C.; Peng, Q.; Gong, Z.; Duns, G.J. Design, Characterization and Antimicrobial Activity of Novel Antimicrobial Peptides from Temporin-Pta. J. Biomed. Nanotechnol. 2017, 13, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.K.; Zhang, H.; Zhang, G.N.; Wang, Y.J.; Kathawala, R.J.; Si, R.; Patel, B.A.; Xu, J.; Chen, Z.S. Semi-synthetic ocotillol analogues as selective ABCB1-mediated drug resistance reversal agents. Oncotarget 2015, 6, 24277–24290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-Q.; Li, J.Y.; Teng, Q.-X.; Lei, Z.-N.; Ji, N.; Cui, Q.; Zeng, L.; Pan, Y.; Yang, D.-H.; Chen, Z.-S. Venetoclax, a BCL-2 Inhibitor, Enhances the Efficacy of Chemotherapeutic Agents in Wild-Type ABCG2-Overexpression-Mediated MDR Cancer Cells. Cancers 2020, 12, 466. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.F.; Zhang, W.; Zeng, L.; Lei, Z.N.; Cai, C.Y.; Gupta, P.; Yang, D.H.; Cui, Q.; Qin, Z.D.; Chen, Z.S.; et al. Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. Cancer Lett. 2018, 421, 186–198. [Google Scholar] [CrossRef]
- Ambudkar, S.V. Drug-stimulatable ATPase activity in crude membranes of human MDR1-transfected mammalian cells. Methods Enzymol. 1998, 292, 504–514. [Google Scholar]
- Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEPFOLD approach for peptide and miniprotein structure prediction. J. Chem. Theory Comput. 2014, 10, 4745–4758. Available online: https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/ (accessed on 10 July 2020). [CrossRef]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 43. [Google Scholar]
- Chen, R.; Li, L.; Weng, Z. ZDOCK: An initial-stage protein-docking algorithm. Proteins Struct. Funct. Bioinform. 2003, 52, 80–87. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, N.; Teng, Q.-X.; Cai, C.-Y.; Wang, J.-Q.; Wu, Z.-X.; Lei, Z.-N.; Lusvarghi, S.; Ambudkar, S.V.; Chen, Z.-S. Sitravatinib, a Tyrosine Kinase Inhibitor, Inhibits the Transport Function of ABCG2 and Restores Sensitivity to Chemotherapy-Resistant Cancer Cells in vitro. Front. Oncol. 2020, 10, 700. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-X.; Teng, Q.-X.; Cai, C.-Y.; Wang, J.-Q.; Lei, Z.-N.; Yang, Y.; Fan, Y.-F.; Zhang, J.-Y.; Li, J.; Chen, Z.-S. Tepotinib reverses ABCB1-mediated multidrug resistance in cancer cells. Biochem. Pharm. 2019, 166, 120–127. [Google Scholar] [CrossRef] [PubMed]
Treatment | IC50 1 (nM) (RF 2) | |
---|---|---|
KB-3-1 | KB-C2 | |
Paclitaxel | 3.0 ± 0.5 (1.00) | 1310 ± 271 (437) |
+ XH-14A (3 μM) | 4.0 ± 0.3 (1.33) | 1767 ± 224 (589) |
+ XH-14B (3 μM) | 3.0 ± 0.9 (1.00) | 441 ± 9.0 (147) |
+ XH-14C (3 μM) | 2.0 ± 0.6 (0.67) | 28.0 ± 4.0 # (9.33) |
+ Verapamil (3 μM) | 2.0 ± 0.4 (0.67) | 10.0 ± 6.0 # (0.33) |
Doxorubicin | 1276 ± 189 (1.00) | 67600 ± 2459 (53.0) |
+ XH-14A (3 μM) | 1187 ± 174 (0.93) | 61030 ± 5099 (47.8) |
+ XH-14B (3 μM) | 1010 ± 204 (0.79) | 15010 ± 1310 (11.8) |
+ XH-14C (3 μM) | 955 ± 102 (0.75) | 1594 ± 153 # (1.25) |
+ Verapamil (3 μM) | 1026 ± 136 (0.80) | 832 ± 112 # (0.65) |
Cisplatin | 1635 ± 487 (1.00) | 1764 ± 377 (1.08) |
+ XH-14A (3 μM) | 1626 ± 223 (0.99) | 1610 ± 283 (0.98) |
+ XH-14B (3 μM) | 1672 ± 361 (1.02) | 1650 ± 283 (1.01) |
+ XH-14C (3 μM) | 1690 ± 455 (1.03) | 1795 ± 353 (1.10) |
+ Verapamil (3 μM) | 1685 ± 482 (1.03) | 1796 ± 256 (1.10) |
Treatment | IC50 1 (nM) (RF 2) | |
---|---|---|
HEK293/pcDNA3.1 | HEK293/ABCB1 | |
Paclitaxel | 14.3 ± 1.53 (1.00) | 305.8 ± 45.4 (21.38) |
+ XH-14A (3 μM) | 15.1 ± 3.14 (1.06) | 240.4 ± 25.2 (16.85) |
+ XH-14B (3 μM) | 15.1 ± 2.45 (1.06) | 209.2 ± 28.1 (14.63) |
+ XH-14C (3 μM) | 13.5 ± 2.65 (0.95) | 16.5 ± 2.45 # (1.15) |
+ Verapamil (3 μM) | 14.7 ± 3.69 (1.03) | 11.6 ± 2.59 # (0.82) |
Doxorubicin | 1226 ± 1.88 (1.00) | 32646 ± 4807 (26.6) |
+ XH-14A (3 μM) | 1254 ± 172 (1.02) | 23054 ± 2830 (18.8) |
+ XH-14B (3 μM) | 1176 ± 238 (0.96) | 19423 ± 2303 (15.8) |
+ XH-14C (3 μM) | 1420 ± 147 (1.16) | 1316 ± 357 # (1.07) |
+ Verapamil (3 μM) | 1271 ± 155 (1.04) | 1288 ± 259 # (1.05) |
Cisplatin | 2275 ± 489 (1.00) | 2595 ± 246 (1.14) |
+ XH-14A (3 μM) | 2268 ± 368 (1.00) | 2476 ± 269 (1.09) |
+ XH-14B (3 μM) | 2272 ± 487 (1.00) | 2358 ± 392 (1.04) |
+ XH-14C (3 μM) | 2365 ± 359 (1.04) | 2559 ± 175 (1.12) |
+ Verapamil (3 μM) | 2296 ± 186 (1.01) | 2185 ± 228 (0.96) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, Q.-X.; Luo, X.; Lei, Z.-N.; Wang, J.-Q.; Wurpel, J.; Qin, Z.; Yang, D.-H. The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide. Cancers 2020, 12, 1963. https://doi.org/10.3390/cancers12071963
Teng Q-X, Luo X, Lei Z-N, Wang J-Q, Wurpel J, Qin Z, Yang D-H. The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide. Cancers. 2020; 12(7):1963. https://doi.org/10.3390/cancers12071963
Chicago/Turabian StyleTeng, Qiu-Xu, Xiaofang Luo, Zi-Ning Lei, Jing-Quan Wang, John Wurpel, Zuodong Qin, and Dong-Hua Yang. 2020. "The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide" Cancers 12, no. 7: 1963. https://doi.org/10.3390/cancers12071963
APA StyleTeng, Q. -X., Luo, X., Lei, Z. -N., Wang, J. -Q., Wurpel, J., Qin, Z., & Yang, D. -H. (2020). The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide. Cancers, 12(7), 1963. https://doi.org/10.3390/cancers12071963