A Global Gene Body Methylation Measure Correlates Independently with Overall Survival in Solid Cancer Types
Abstract
:1. Introduction
2. Results
2.1. Reduced Representation Bisulfite Sequencing
2.2. Comparison of the Methylation Definition Factor (MDF) of Tumor Tissues, Tumor Cell Lines, and Normal Human Tissues
2.3. Validation of the Impact of the MDF on Survival in other Cancer Entities
2.4. Characterization of Unmethylated, Methylated, and Undefined Methylated Gene Bodies
2.5. Correlation of the MDF and MUMF with Gene Expression
3. Discussion
4. Materials and Methods
4.1. Aim
4.2. Patient Cohorts
4.3. DNA Isolation and Reduced Representation Bisulfite Sequencing (RRBS)
4.4. Gene Body and CpG Island Analysis
4.5. Overall Survival Analysis of Gene Body and CpG Island Decile Numbers
4.6. Annotation of Genes with Different Methylation Status and Genes Which Expressions Correlated with the MDF or MUMF
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fardi, M.; Solali, S.; Farshdousti Hagh, M. Epigenetic mechanisms as a new approach in cancer treatment: An updated review. Genes Dis. 2018, 5, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Han, H.; De Carvalho, D.D.; Lay, F.D.; Jones, P.A.; Liang, G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014, 26, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Hellman, A.; Chess, A. Gene body-specific methylation on the active X chromosome. Science 2007, 315, 1141–1143. [Google Scholar] [CrossRef]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef]
- Lee, S.M.; Choi, W.Y.; Lee, J.; Kim, Y.J. The regulatory mechanisms of intragenic DNA methylation. Epigenomics 2015, 7, 527–531. [Google Scholar] [CrossRef]
- Arechederra, M.; Daian, F.; Yim, A.; Bazai, S.K.; Richelme, S.; Dono, R.; Saurin, A.J.; Habermann, B.H.; Maina, F. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat. Commun. 2018, 9, 3164. [Google Scholar] [CrossRef]
- Jorda, M.; Diez-Villanueva, A.; Mallona, I.; Martin, B.; Lois, S.; Barrera, V.; Esteller, M.; Vavouri, T.; Peinado, M.A. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome. Res. 2017, 27, 118–132. [Google Scholar] [CrossRef] [Green Version]
- Klein Hesselink, E.N.; Zafon, C.; Villalmanzo, N.; Iglesias, C.; van Hemel, B.M.; Klein Hesselink, M.S.; Montero-Conde, C.; Buj, R.; Mauricio, D.; Peinado, M.A.; et al. Increased Global DNA Hypomethylation in Distant Metastatic and Dedifferentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2018, 103, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheffield, N.C.; Pierron, G.; Klughammer, J.; Datlinger, P.; Schonegger, A.; Schuster, M.; Hadler, J.; Surdez, D.; Guillemot, D.; Lapouble, E.; et al. DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat. Med. 2017, 23, 386–395. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455, 1061–1068. [Google Scholar] [CrossRef]
- Hinoue, T.; Weisenberger, D.J.; Lange, C.P.; Shen, H.; Byun, H.M.; Van Den Berg, D.; Malik, S.; Pan, F.; Noushmehr, H.; van Dijk, C.M.; et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012, 22, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Auer, K.; Bachmayr-Heyda, A.; Aust, S.; Grunt, T.W.; Pils, D. Comparative transcriptome analysis links distinct peritoneal tumor spread types, miliary and non-miliary, with putative origin, tubes and ovaries, in high grade serous ovarian cancer. Cancer Lett 2016, 388, 158–166. [Google Scholar] [CrossRef]
- Auer, K.; Bachmayr-Heyda, A.; Aust, S.; Sukhbaatar, N.; Reiner, A.T.; Grimm, C.; Horvat, R.; Zeillinger, R.; Pils, D. Peritoneal tumor spread in serous ovarian cancer-epithelial mesenchymal status and outcome. Oncotarget 2015, 6, 17261–17275. [Google Scholar] [CrossRef] [Green Version]
- Michalak, E.M.; Burr, M.L.; Bannister, A.J.; Dawson, M.A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Neri, F.; Rapelli, S.; Krepelova, A.; Incarnato, D.; Parlato, C.; Basile, G.; Maldotti, M.; Anselmi, F.; Oliviero, S. Intragenic DNA methylation prevents spurious transcription initiation. Nature 2017, 543, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Lev Maor, G.; Yearim, A.; Ast, G. The alternative role of DNA methylation in splicing regulation. Trends Genet 2015, 31, 274–280. [Google Scholar] [CrossRef]
- Bachmayr-Heyda, A.; Reiner, A.T.; Auer, K.; Sukhbaatar, N.; Aust, S.; Bachleitner-Hofmann, T.; Mesteri, I.; Grunt, T.W.; Zeillinger, R.; Pils, D. Correlation of circular RNA abundance with proliferation—exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 2015, 5, 8057. [Google Scholar] [CrossRef] [PubMed]
- Auer, K.; Bachmayr-Heyda, A.; Sukhbaatar, N.; Aust, S.; Schmetterer, K.G.; Meier, S.M.; Gerner, C.; Grimm, C.; Horvat, R.; Pils, D. Role of the immune system in the peritoneal tumor spread of high grade serous ovarian cancer. Oncotarget 2016, 7, 61336–61354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aust, S.; Felix, S.; Auer, K.; Bachmayr-Heyda, A.; Kenner, L.; Dekan, S.; Meier, S.M.; Gerner, C.; Grimm, C.; Pils, D. Absence of PD-L1 on tumor cells is associated with reduced MHC I expression and PD-L1 expression increases in recurrent serous ovarian cancer. Sci. Rep. 2017, 7, 42929. [Google Scholar] [CrossRef] [PubMed]
- Aust, S.; Knogler, T.; Pils, D.; Obermayr, E.; Reinthaller, A.; Zahn, L.; Radlgruber, I.; Mayerhoefer, M.E.; Grimm, C.; Polterauer, S. Skeletal Muscle Depletion and Markers for Cancer Cachexia Are Strong Prognostic Factors in Epithelial Ovarian Cancer. PLoS ONE 2015, 10, e0140403. [Google Scholar] [CrossRef]
- Bachmayr-Heyda, A.; Auer, K.; Sukhbaatar, N.; Aust, S.; Deycmar, S.; Reiner, A.T.; Polterauer, S.; Dekan, S.; Pils, D. Small RNAs and the competing endogenous RNA network in high grade serous ovarian cancer tumor spread. Oncotarget 2016, 7, 39640–39653. [Google Scholar] [CrossRef] [Green Version]
- Bachmayr-Heyda, A.; Aust, S.; Auer, K.; Meier, S.M.; Schmetterer, K.G.; Dekan, S.; Gerner, C.; Pils, D. Integrative Systemic and Local Metabolomics with Impact on Survival in High-Grade Serous Ovarian Cancer. Clin. Cancer Res. 2017, 23, 2081–2092. [Google Scholar] [CrossRef] [Green Version]
- Sukhbaatar, N.; Bachmayr-Heyda, A.; Auer, K.; Aust, S.; Deycmar, S.; Horvat, R.; Pils, D. Two different, mutually exclusively distributed, TP53 mutations in ovarian and peritoneal tumor tissues of a serous ovarian cancer patient: Indicative for tumor origin? Cold Spring Harb. Mol. Case Stud. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Klughammer, J.; Datlinger, P.; Printz, D.; Sheffield, N.C.; Farlik, M.; Hadler, J.; Fritsch, G.; Bock, C. Differential DNA Methylation Analysis without a Reference Genome. Cell Rep. 2015, 13, 2621–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tusher, V.G.; Tibshirani, R.; Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 2001, 98, 5116–5121. [Google Scholar] [CrossRef] [Green Version]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S.; Springer: New York, NY, USA, 2003. [Google Scholar]
- van der Maaten, L. Accelerating t-SNE using Tree-Based Algorithms. J. Mach Learn Res. 2014, 15, 3221–3245. [Google Scholar]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolde, R.; Vilo, J. GOsummaries: An R Package for Visual Functional Annotation of Experimental Data. F1000Res 2015, 4, 574. [Google Scholar] [CrossRef]
- Law, C.W.; Chen, Y.; Shi, W.; Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014, 15, R29. [Google Scholar] [CrossRef] [Green Version]
- Tarca, A.L.; Draghici, S.; Khatri, P.; Hassan, S.S.; Mittal, P.; Kim, J.S.; Kim, C.J.; Kusanovic, J.P.; Romero, R. A novel signaling pathway impact analysis. Bioinformatics 2009, 25, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef] [Green Version]
Characteristics and OS Analyses | Cox Regression (Overall Survival) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cancer Type | Patients 1 | Gene Bodies 2 | SAM Sign.3 | MDF Predictor (Def/UnDef) 4 | Cutpoint 5 | Univariate | Multiple | Clinical Params 6 | Cit |
Ovarian (OvCa) | 45 (19) | 17,798 | + 0–10% + 90–100% −50–60% −60–70% | D: <10% and >90% U: 50–70% | 28 vs. 17 | HR 4.29 (1.62–11.3) p = 0.0034 | HR 4.44 (1.63–12.08) p = 0.0035 | Age Residual tumor (FIGO stage) (Grade) | RRBS |
Ovarian—Exons | 45 (19) | 14,902 (Exons) | + 0–10% + 90–100% −all other deciles | D: <10% and >90% U: 30–70% | 27 vs. 18 | HR 3.17 (1.24–8.11) p = 0.0162 | HR 3.44 (1.31–9.06) p = 0.0124 | Age Residual tumor (FIGO stage) (Grade) | RRBS |
Ovarian—Introns | 45 (19) | 15,223 (Introns) | + 0–10% + 80–90% +90–100% −60–70% −70–80% | D: <10% and >80% U: 60–80% | 28 vs. 17 | HR 5.33 (1.96–14.52) p = 0.0011 | HR 6.10 (2.01–18.51) p = 0.0014 | Age Residual tumor (FIGO stage) (Grade) | RRBS |
Breast (BC) | 690 (87) 680 (84) | 7814 | + 10–20% | D: <20% U: 30–70% | 428 vs. 252 | HR 1.79 (1.17–2.76) p = 0.0078 | HR 1.78 (1.16–2.75) p = 0.0088 | Stage (Histology) | [13] |
Colorectal (CRC) | 390 (87) 370 (80) | 7816 | + 70–80% + 80–90% −20–30% −30–40% −40–50% −50–60% | D: >70% U: 20–60% | 192 vs. 178 | HR 1.8 (1.13–2.85) p = 0.0126 | HR 1.96 (1.23–3.11) p = 0.0044 | Stage (Sex) (Histology) (Site) | [14] |
Pancreatic (PAAC) | 184 (99) 167 (91) | 7816 | −0–10% −10–20% −20–30% + 40–50% + 50–60% | D: <30% U: 40–60% | 114 vs. 53 | HR 0.44 (0.27–0.74) p = 0.0018 | HR 0.49 (0.29–0.82) p = 0.0068 | Age Residual tumor Radio therapy (Sex) (Stage) | [15] |
Lung | 238 (150) | 7815 | n.s. | n.d.7 | n.d. | n.d. | n.d. | n.d. | [16] |
Glioblastoma (GBM) | 138 (93) 126 (82) | 7816 | + 0–10% + 10–20% + 20–30% + 30–40% + 40–50% −60–70% −70–80% −80–90% −90–100% | Methylated/Unmethylated (MUMF) M: >50% UM: <50% | 76 vs. 50 | HR 0.49 (0.31–0.79) p = 0.0030 | HR 0.50 (0.30–0.83) p = 0.0073 | Sex Histology Radio therapy | [17] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pils, D.; Steindl, E.; Bachmayr-Heyda, A.; Dekan, S.; Aust, S. A Global Gene Body Methylation Measure Correlates Independently with Overall Survival in Solid Cancer Types. Cancers 2020, 12, 2257. https://doi.org/10.3390/cancers12082257
Pils D, Steindl E, Bachmayr-Heyda A, Dekan S, Aust S. A Global Gene Body Methylation Measure Correlates Independently with Overall Survival in Solid Cancer Types. Cancers. 2020; 12(8):2257. https://doi.org/10.3390/cancers12082257
Chicago/Turabian StylePils, Dietmar, Elisabeth Steindl, Anna Bachmayr-Heyda, Sabine Dekan, and Stefanie Aust. 2020. "A Global Gene Body Methylation Measure Correlates Independently with Overall Survival in Solid Cancer Types" Cancers 12, no. 8: 2257. https://doi.org/10.3390/cancers12082257
APA StylePils, D., Steindl, E., Bachmayr-Heyda, A., Dekan, S., & Aust, S. (2020). A Global Gene Body Methylation Measure Correlates Independently with Overall Survival in Solid Cancer Types. Cancers, 12(8), 2257. https://doi.org/10.3390/cancers12082257