Neoadjuvant Radiotherapy-Related Wound Morbidity in Soft Tissue Sarcoma: Perspectives for Radioprotective Agents
Abstract
:1. Introduction
2. Radiotherapy in Soft Tissue Sarcoma (STS)
2.1. Radiotherapy Modalities
2.1.1. External Beam Radiation Therapy (EBRT)
2.1.2. Brachytherapy (BT)
2.1.3. Intraoperative Radiotherapy (IORT)
2.2. Clinical Regimen-Neoadjuvant, Adjuvant, and Combined Modality Radiotherapy
2.2.1. Neoadjuvant Radiotherapy
2.2.2. Adjuvant Radiotherapy
2.2.3. Intraoperative and Adjuvant Boosts
2.3. Anatomic Disease Site
2.3.1. Extremity, Head and Neck, and Superficial Trunk
2.3.2. Retroperitoneal/Intra-Abdominal
3. Normal Physiology of Wound Healing
3.1. Early Homeostasis and Inflammation
3.2. Late Proliferation
3.3. Remodeling
4. Wound Pathology after Radiation Treatment
5. Musculoskeletal Injury from STS Radiotherapy
6. Radioprotective Agents
6.1. Amifostine
6.2. Nitroxides
6.3. Pharmacological Ascorbate
6.4. Superoxide Dismutase Mimetics
6.5. Other Radioprotectors
6.5.1. Vitamin E
6.5.2. Melatonin
6.5.3. Growth Factors
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Abrams, R.A. Radiotherapy for soft tissue sarcoma: 50 years of change and improvement. Am. Soc. Clin. Oncol. Educ. Book 2014, 34, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Stinson, S.F.; Delaney, T.F.; Greenberg, J.; Yang, J.C.; Lampert, M.H.; Hicks, J.E.; Venzon, D.; White, D.E.; Rosenberg, S.A.; Glatstein, E.J. Acute and long-term effects on limb function of combined modality limb sparing therapy for extremity soft tissue sarcoma. Int. J. Radiat. Oncol. 1991, 21, 1493–1499. [Google Scholar] [CrossRef]
- Wilson, A.; Davis, A.; Bell, R.; O’Sullivan, B.; Catton, C.; Madadi, F.; Kandel, R.; Fornasier, V. Local control of soft tissue sarcoma of the extremity: The experience of a multidisciplinary sarcoma group with definitive surgery and radiotherapy. Eur. J. Cancer 1994, 30, 746–751. [Google Scholar] [CrossRef]
- Yang, J.C.; E Chang, A.; Baker, A.R.; Sindelar, W.F.; Danforth, D.N.; Topalian, S.L.; Delaney, T.; Glatstein, E.; Steinberg, S.M.; Merino, M.J.; et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J. Clin. Oncol. 1998, 16, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Alektiar, K.; Velasco, J.; Zelefsky, M.J.; Woodruff, J.; Lewis, J.; Brennan, M.F. Adjuvant radiotherapy for margin-positive high-grade soft tissue sarcoma of the extremity. Int. J. Radiat. Oncol. 2000, 48, 1051–1058. [Google Scholar] [CrossRef]
- Alektiar, K.M.; Leung, D.H.Y.; Zelefsky, M.J.; Healey, J.H.; Brennan, M.F. Adjuvant brachytherapy for primary high-grade soft tissue sarcoma of the extremity. Ann. Surg. Oncol. 2002, 9, 48–56. [Google Scholar] [CrossRef]
- Davis, A.; O’Sullivan, B.; Bell, R.; Turcotte, R.; Catton, C.; Wunder, J.; Chabot, P.; Hammond, A.; Benk, V.; Isler, M.; et al. Function and health status outcomes in a randomized trial comparing preoperative and postoperative radiotherapy in extremity soft tissue sarcoma. J. Clin. Oncol. 2002, 20, 4472–4477. [Google Scholar] [CrossRef]
- Edmonson, J.H.; Petersen, I.A.; Shives, T.C.; Mahoney, M.R.; Rock, M.G.; Haddock, M.G.; Sim, F.H.; Maples, W.J.; O’Connor, M.I.; Gunderson, L.L.; et al. Chemotherapy, irradiation, and surgery for function-preserving therapy of primary extremity soft tissue sarcomas: Initial treatment with ifosfamide, mitomycin, doxorubicin, and cisplatin plus granulocyte macrophage-colony-stimulating factor. Cancer 2002, 94, 786–792. [Google Scholar] [CrossRef]
- Delaney, T.F.; Spiro, I.J.; Suit, H.D.; Gebhardt, M.C.; Hornicek, F.J.; Mankin, H.J.; Rosenberg, A.L.; Rosenthal, D.I.; Miryousefi, F.; Ancukiewicz, M.; et al. Neoadjuvant chemotherapy and radiotherapy for large extremity soft-tissue sarcomas. Int. J. Radiat. Oncol. 2003, 56, 1117–1127. [Google Scholar] [CrossRef]
- O’Sullivan, B. Five-year results of a randomized phase III trial of pre-operative versus postoperative radiotherapy in extremity soft tissue sarcoma. J. Clin. Oncol. 2004, 22 (Suppl. 14), 9007. [Google Scholar]
- Davis, A.; O’Sullivan, B.; Turcotte, R.; Bell, R.; Catton, C.; Chabot, P.; Wunder, J.; Hammond, A.; Benk, V.; Kandel, R. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother. Oncol. 2005, 75, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Holt, G.E.; Griffin, A.M.; Pintilie, M.; Wunder, J.S.; Catton, C.; O’Sullivan, B.; Bell, R.S. Fractures following radiotherapy and limb-salvage surgery for lower extremity soft-tissue sarcomas. A comparison of high-dose and low-dose radiotherapy. J. Bone. Jt. Surg. Am. 2005, 87, 315–319. [Google Scholar] [CrossRef]
- Wolfson, A.H. Preoperative vs postoperative radiation therapy for extremity soft tissue sarcoma: Controversy and present management. Curr. Opin. Oncol. 2005, 17, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Ballo, M.T.; Zagars, G.K.; Mirza, A.N.; Lin, P.P.; Lewis, V.O.; Yasko, A.W.; Benjamin, R.S.; Pisters, P.W. Complications of combined modality treatment of primary lower extremity soft-tissue sarcomas. Cancer 2006, 107, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Oertel, S.; Treiber, M.; Zahlten-Hinguranage, A.; Eichin, S.; Roeder, F.; Funk, A.; Hensley, F.W.; Timke, C.; Niethammer, A.G.; Huber, P.E.; et al. Intraoperative electron boost radiation followed by moderate doses of external beam radiotherapy in limb-sparing treatment of patients with extremity soft-tissue sarcoma. Int. J. Radiat. Oncol. 2006, 64, 1416–1423. [Google Scholar] [CrossRef]
- Tran, Q.N.H.; Kim, A.C.; Gottschalk, A.R.; Wara, W.M.; Phillips, T.L.; O’Donnell, R.J.; Weinberg, V.; Haas-Kogan, D.A. Clinical outcomes of intraoperative radiation therapy for extremity sarcomas. Sarcoma 2006, 2006, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Griffin, A.M.; Euler, C.I.; Sharpe, M.B.; Ferguson, P.C.; Wunder, J.S.; Bell, R.S.; Chung, P.W.M.; Catton, C.N.; O’Sullivan, B. Radiation planning comparison for superficial tissue avoidance in radiotherapy for soft tissue sarcoma of the lower extremity. Int. J. Radiat. Oncol. 2007, 67, 847–856. [Google Scholar] [CrossRef]
- Temple, C.; Ross, D.; Magi, E.; DiFrancesco, L.; Kurien, E.; Temple, W. Preoperative chemoradiation and flap reconstruction provide high local control and low wound complication rates for patients undergoing limb salvage surgery for upper extremity tumors. J. Surg. Oncol. 2007, 95, 135–141. [Google Scholar] [CrossRef]
- Alektiar, K.M.; Brennan, M.F.; Healey, J.H.; Singer, S. Impact of intensity-modulated radiation therapy on local control in primary soft-tissue sarcoma of the extremity. J. Clin. Oncol. 2008, 26, 3440–3444. [Google Scholar] [CrossRef]
- Cahlon, O.; Spierer, M.; Brennan, M.F.; Singer, S.; Alektiar, K.M. Long-term outcomes in extremity soft tissue sarcoma after a pathologically negative re-resection and without radiotherapy. Cancer 2008, 112, 2774–2779. [Google Scholar] [CrossRef]
- Jebsen, N.L.; Trovik, C.S.; Bauer, H.C.; Rydholm, A.; Monge, O.R.; Hall, K.S.; Alvegård, T.; Bruland, Ø.S. Radiotherapy to improve local control regardless of surgical margin and malignancy grade in extremity and trunk wall soft tissue sarcoma: A scandinavian sarcoma group study. Int. J. Radiat. Oncol. 2008, 71, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Dickie, C.I.; Parent, A.; Griffin, A.M.; Fung, S.; Chung, P.W.M.; Catton, C.; Ferguson, P.C.; Wunder, J.S.; Bell, R.S.; Sharpe, M.B.; et al. Bone fractures following external beam radiotherapy and limb-preservation surgery for lower extremity soft tissue sarcoma: Relationship to irradiated bone length, volume, tumor location and dose. Int. J. Radiat. Oncol. 2009, 75, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Chen, Y.-L.; Kirsch, D.G.; Goldberg, S.I.; Kobayashi, W.; Kung, J.H.; Wolfgang, J.A.; Doppke, K.; E Rosenberg, A.; Nielsen, G.P.; et al. An effective preoperative three-dimensional radiotherapy target volume for extremity soft tissue sarcoma and the effect of margin width on local control. Int. J. Radiat. Oncol. 2010, 77, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Alektiar, K.M.; Brennan, M.F.; Singer, S. Local control comparison of adjuvant brachytherapy to intensity-modulated radiotherapy in primary high-grade sarcoma of the extremity. Cancer 2011, 117, 3229–3234. [Google Scholar] [CrossRef]
- Wang, D.; Bosch, W.; Roberge, D.; Finkelstein, S.E.; Petersen, I.; Haddock, M.; Chen, Y.-L.E.; Saito, N.G.; Kirsch, D.G.; Hitchcock, Y.J.; et al. RTOG sarcoma radiation oncologists reach consensus on gross tumor volume and clinical target volume on computed tomographic images for preoperative radiotherapy of primary soft tissue sarcoma of extremity in radiation therapy oncology group studies. Int. J. Radiat. Oncol. 2011, 81, e525–e528. [Google Scholar] [CrossRef] [Green Version]
- Haas, R.L.M.; Delaney, T.F.; O’Sullivan, B.; Keus, R.B.; Le Pechoux, C.; Olmi, P.; Poulsen, J.-P.; Seddon, B.; Wang, D. Radiotherapy for management of extremity soft tissue sarcomas: Why, when, and where? Int. J. Radiat. Oncol. 2012, 84, 572–580. [Google Scholar] [CrossRef]
- Mullen, J.T.; Kobayashi, W.; Wang, J.; Harmon, D.C.; Choy, E.; Hornicek, F.J.; Rosenberg, A.E.; Chen, Y.-L.; Spiro, I.J.; Delaney, T.F. Long-term follow-up of patients treated with neoadjuvant chemotherapy and radiotherapy for large, extremity soft tissue sarcomas. Cancer 2011, 118, 3758–3765. [Google Scholar] [CrossRef]
- Bahig, H.; Roberge, D.; Bosch, W.; Levin, W.; Petersen, I.; Haddock, M.; Freeman, C.; Delaney, T.F.; Abrams, R.A.; Indelicato, D.; et al. Agreement among RTOG sarcoma radiation oncologists in contouring suspicious peritumoral edema for preoperative radiation therapy of soft tissue sarcoma of the extremity. Int. J. Radiat. Oncol. 2013, 86, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Hong, N.J.L.; Hornicek, F.J.; Harmon, D.C.; Choy, E.; Chen, Y.-L.; Yoon, S.S.; Nielsen, G.P.; Szymonifka, J.; Yeap, B.Y.; Delaney, T.F.; et al. Neoadjuvant chemoradiotherapy for patients with high-risk extremity and truncal sarcomas: A 10-year single institution retrospective study. Eur. J. Cancer 2012, 49, 875–883. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, B.; Griffin, A.M.; Dickie, C.I.; Sharpe, M.B.; Chung, P.W.M.; Catton, C.N.; Ferguson, P.C.; Wunder, J.S.; Deheshi, B.M.; White, L.M.; et al. Phase 2 study of preoperative image-guided intensity-modulated radiation therapy to reduce wound and combined modality morbidities in lower extremity soft tissue sarcoma. Cancer 2013, 119, 1878–1884. [Google Scholar] [CrossRef]
- Alamanda, V.K.; Song, Y.; Shinohara, E.; Schwartz, H.S.; Holt, G.E. Postoperative radiation boost does not improve local recurrence rates in extremity soft tissue sarcomas. J. Med. Imaging Radiat. Oncol. 2014, 58, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Beane, J.D.; Yang, J.C.; White, D.; Steinberg, S.M.; Rosenberg, S.A.; Rudloff, U. Efficacy of adjuvant radiation therapy in the treatment of soft tissue sarcoma of the extremity: 20-year follow-up of a randomized prospective trial. Ann. Surg. Oncol. 2014, 21, 2484–2489. [Google Scholar] [CrossRef] [PubMed]
- Call, J.A.; Stafford, S.L.; Petersen, I.A.; Haddock, M.G. Use of intraoperative radiotherapy for upper-extremity soft-tissue sarcomas. Am. J. Clin. Oncol. 2014, 37, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Calvo, F.A.; Sole, C.V.; Polo, A.; Cambeiro, M.; Montero, A.; Álvarez, A.; Cuervo, M.; Julian, M.S.; Martínez-Monge, R. Limb-sparing management with surgical resection, external-beam and intraoperative electron-beam radiation therapy boost for patients with primary soft tissue sarcoma of the extremity. Strahlenther. und Onkol. 2014, 190, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Cassier, P.A.; Kantor, G.; Bonvalot, S.; Lavergne, E.; Stoeckle, E.; Le Pechoux, C.; Meeus, P.; Sunyach, M.-P.; Vaz, G.; Coindre, J.-M.; et al. Adjuvant radiotherapy for extremity and trunk wall atypical lipomatous tumor/well-differentiated LPS (ALT/WD-LPS): A French Sarcoma Group (GSF-GETO) study. Ann. Oncol. 2014, 25, 1854–1860. [Google Scholar] [CrossRef]
- Folkert, M.R.; Singer, S.; Brennan, M.F.; Kuk, D.; Qin, L.-X.; Kobayashi, W.K.; Crago, A.M.; Alektiar, K.M. Comparison of local recurrence with conventional and intensity-modulated radiation therapy for primary soft-tissue sarcomas of the extremity. J. Clin. Oncol. 2014, 32, 3236–3241. [Google Scholar] [CrossRef]
- Davis, L.E.; Ryan, C.W. Preoperative Therapy for Extremity Soft Tissue Sarcomas. Curr. Treat. Options Oncol. 2015, 16, 1–12. [Google Scholar] [CrossRef]
- Griffin, A.M.; Dickie, C.I.; Catton, C.N.; Chung, P.W.M.; Ferguson, P.C.; Wunder, J.S.; O’Sullivan, B. The influence of time interval between preoperative radiation and surgical resection on the development of wound healing complications in extremity soft tissue sarcoma. Ann. Surg. Oncol. 2015, 22, 2824–2830. [Google Scholar] [CrossRef]
- Tseng, W.W.; Zhou, S.; To, C.A.; Thall, P.F.; Lazar, A.J.; Pollock, R.E.; Lin, P.P.; Cormier, J.N.; Lewis, V.O.; Feig, B.W.; et al. Phase 1 adaptive dose-finding study of neoadjuvant gemcitabine combined with radiation therapy for patients with high-risk extremity and trunk soft tissue sarcoma. Cancer 2015, 121, 3659–3667. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, Q.; Eisenberg, B.L.; Kane, J.M.; Li, X.A.; Lucas, D.; Petersen, I.A.; Delaney, T.F.; Freeman, C.R.; Finkelstein, S.E.; et al. Significant reduction of late toxicities in patients with extremity sarcoma treated with image-guided radiation therapy to a reduced target volume: Results of Radiation Therapy Oncology Group RTOG-0630 Trial. J. Clin. Oncol. 2015, 33, 2231–2238. [Google Scholar] [CrossRef]
- Roeder, F.; Lehner, B.; Saleh-Ebrahimi, L.; Hensley, F.W.; Ulrich, A.; Alldinger, I.; Mechtersheimer, G.; Huber, P.E.; Krempien, R.; Bischof, M.; et al. Intraoperative electron radiation therapy combined with external beam radiation therapy and limb sparing surgery in extremity soft tissue sarcoma: A retrospective single center analysis of 183 cases. Radiother. Oncol. 2016, 119, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Gingrich, A.A.; Bateni, S.B.; Monjazeb, A.M.; Darrow, M.A.; Thorpe, S.W.; Kirane, A.R.; Bold, R.J.; Canter, R.J. Neoadjuvant radiotherapy is associated with R0 resection and improved survival for patients with extremity soft tissue sarcoma undergoing surgery: A national cancer database analysis. Ann. Surg. Oncol. 2017, 24, 3252–3263. [Google Scholar] [CrossRef] [PubMed]
- Ramey, S.; Yechieli, R.; Zhao, W.; Kodiyan, J.; Asher, D.; Chinea, F.M.; Patel, V.; Reis, I.M.; Wang, L.; Wilky, B.A.; et al. Limb-sparing surgery plus radiotherapy results in superior survival: An analysis of patients with high-grade, extremity soft-tissue sarcoma from the NCDB and SEER. Cancer Med. 2018, 7, 4228–4239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sole, C.V.; Calvo, F.A.; Cambeiro, M.; Polo, A.; Montero, A.; Hernanz, R.; Gonzalez, C.; Cuervo, M.; Pérez, D.; Julian, M.S.; et al. Intraoperative radiotherapy-containing multidisciplinary management of trunk-wall soft-tissue sarcomas. Clin. Transl. Oncol. 2014, 16, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Musat, E.; Kantor, G.; Caron, J.; Lagarde, P.; Laharie, H.; Stoeckle, E.; Angles, J.; Gilbeau, L.; Bui, B.N. Comparison of intensity-modulated postoperative radiotherapy with conventional postoperative conformal radiotherapy for retroperitoneal sarcoma. Cancer Radiother. 2004, 8, 255–261. [Google Scholar] [CrossRef]
- Dziewirski, W.; Rutkowski, P.; Nowecki, Z.I.; Sałamacha, M.; Morysiński, T.; Kulik, A.; Kawczyńska, M.; Kasprowicz, A.; Łyczek, J.; Ruka, W. Surgery combined with intraoperative brachytherapy in the treatment of retroperitoneal sarcomas. Ann. Surg. Oncol. 2006, 13, 245–252. [Google Scholar] [CrossRef]
- Tzeng, C.-W.D.; Fiveash, J.B.; Popple, R.A.; Arnoletti, J.P.; Russo, S.M.; Urist, M.M.; Bland, K.I.; Heslin, M.J. Preoperative radiation therapy with selective dose escalation to the margin at risk for retroperitoneal sarcoma. Cancer 2006, 107, 371–379. [Google Scholar] [CrossRef]
- Swanson, E.L.; Indelicato, D.; Louis, D.; Flampouri, S.; Li, Z.; Morris, C.G.; Paryani, N.; Slopsema, R. Comparison of Three-Dimensional (3D) Conformal Proton Radiotherapy (RT), 3D Conformal Photon RT, and Intensity-Modulated RT for Retroperitoneal and Intra-Abdominal Sarcomas. Int. J. Radiat. Oncol. 2012, 83, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Baldini, E.H.; Abrams, R.A.; Bosch, W.; Roberge, D.; Haas, R.L.; Catton, C.N.; Indelicato, D.J.; Olsen, J.R.; Deville, C.; Chen, Y.-L.; et al. Retroperitoneal sarcoma target volume and organ at risk contour delineation agreement among NRG Sarcoma Radiation Oncologists. Int. J. Radiat. Oncol. 2015, 92, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Trans-Atlantic RPS Working Group Management of Primary Retroperitoneal Sarcoma (RPS) in the Adult: A consensus approach from the Trans-Atlantic RPS Working Group. Ann. Surg. Oncol. 2014, 22, 256–263. [CrossRef]
- Pollack, A.; Zagars, G.K.; Goswitz, M.S.; A Pollock, R.; Feig, B.W.; Pisters, P.W.T. Preoperative vs. postoperative radiotherapy in the treatment of soft tissue sarcomas: A matter of presentation. Int. J. Radiat. Oncol. 1998, 42, 563–572. [Google Scholar] [CrossRef]
- Zagars, G.K.; Ballo, M.T.; Pisters, P.W.T.; E Pollock, R.; Patel, S.R.; Benjamin, R.S. Preoperative vs. postoperative radiation therapy for soft tissue sarcoma: A retrospective comparative evaluation of disease outcome. Int. J. Radiat. Oncol. 2003, 56, 482–488. [Google Scholar] [CrossRef]
- Smith, G.; Johnson, G.; Grimer, R.; Wilson, S. Trends in presentation of bone and soft tissue sarcomas over 25 years: Little evidence of earlier diagnosis. Ann. R. Coll. Surg. Engl. 2011, 93, 542–547. [Google Scholar] [CrossRef] [PubMed]
- White, L.M.; Wunder, J.S.; Bell, R.S.; O’Sullivan, B.; Catton, C.; Ferguson, P.; Blackstein, M.; Kandel, R.A. Histologic assessment of peritumoral edema in soft tissue sarcoma. Int. J. Radiat. Oncol. 2005, 61, 1439–1445. [Google Scholar] [CrossRef]
- Pisters, P.W.T.; O’Sullivan, B.; Maki, R. Evidence-based recommendations for local therapy for soft tissue sarcomas. J. Clin. Oncol. 2007, 25, 1003–1008. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Tepper, J.; Glatstein, E.; Costa, J.; Baker, A.; Brennam, M.; Demoss, E.V.; Seipp, C.; Sindelar, W.F.; Sugarbaker, P.; et al. The treatment of soft-tissue sarcomas of the extremities. Ann. Surg. 1982, 196, 305–315. [Google Scholar] [CrossRef]
- Pisters, P.W.; Harrison, L.B.; Leung, D.H.Y.; Woodruff, J.M.; Casper, E.S.; Brennan, M.F. Long-term results of a prospective randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J. Clin. Oncol. 1996, 14, 859–868. [Google Scholar] [CrossRef]
- O’Sullivan, B.; Davis, A.M.; Turcotte, R.; Bell, R.; Catton, C.; Chabot, P.; Wunder, J.; Kandel, R.; Goddard, K.; Sadura, A.; et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: A randomised trial. Lancet 2002, 359, 2235–2241. [Google Scholar] [CrossRef]
- A Müller, D.; Beltrami, G.; Scoccianti, G.; Frenos, F.; Capanna, R. Combining limb-sparing surgery with radiation therapy in high-grade soft tissue sarcoma of extremities—Is it effective? Eur. J. Surg. Oncol. (EJSO) 2016, 42, 1057–1063. [Google Scholar] [CrossRef]
- A Rosenberg, S.; Kent, H.; Costa, J.; Webber, B.L.; Young, R.; Chabner, B.; Baker, A.R.; Brennan, M.F.; Chretien, P.B.; Cohen, M.H.; et al. Prospective randomized evaluation of the role of limb-sparing surgery, radiation therapy, and adjuvant chemoimmunotherapy in the treatment of adult soft-tissue sarcomas. Surgery 1978, 84, 62–69. [Google Scholar]
- Hong, L.; Alektiar, K.M.; Hunt, M.; Venkatraman, E.; A Leibel, S. Intensity-modulated radiotherapy for soft tissue sarcoma of the thigh. Int. J. Radiat. Oncol. 2004, 59, 752–759. [Google Scholar] [CrossRef]
- Folkert, M.R.; Casey, D.L.; Berry, S.L.; Crago, A.; Fabbri, N.; Singer, S.; Alektiar, K.M. Femoral fracture in primary soft-tissue sarcoma of the thigh and groin treated with intensity-modulated radiation therapy: Observed versus expected risk. Ann. Surg. Oncol. 2019, 26, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Delannes, M.; Thomas, L.; Martel, P.; Bonnevialle, P.; Stöckle, E.; Chevreau, C.; Bui, B.N.; Daly-Schveitzer, N.; Pigneux, J.; Kantor, G. Low-dose-rate intraoperative brachytherapy combined with external beam irradiation in the conservative treatment of soft tissue sarcoma. Int. J. Radiat. Oncol. 2000, 47, 165–169. [Google Scholar] [CrossRef]
- Llácer, C.; Delannes, M.; Minsat, M.; Stoeckle, E.; Votron, L.; Martel, P.; Bonnevialle, P.; Bui, B.N.; Chevreau, C.; Kantor, G.; et al. Low-dose intraoperative brachytherapy in soft tissue sarcomas involving neurovascular structure. Radiother. Oncol. 2006, 78, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Pohar, S.; Haq, R.; Liu, L.; Koniarczyk, M.; Hahn, S.; Damron, T.; Aronowitz, J.N. Adjuvant high-dose-rate and low-dose-rate brachytherapy with external beam radiation in soft tissue sarcoma: A comparison of outcomes. Brachytherapy 2007, 6, 53–57. [Google Scholar] [CrossRef]
- Naghavi, A.; Fernandez, D.; Mesko, N.; Juloori, A.; Martinez, A.; Scott, J.; Shah, C.; Harrison, L. American Brachytherapy Society consensus statement for soft tissue sarcoma brachytherapy. Brachytherapy 2017, 16, 466–489. [Google Scholar] [CrossRef]
- Nag, S.; Shasha, D.; Janjan, N.; Petersen, I.; Zaider, M. The American Brachytherapy Society recommendations for brachytherapy of soft tissue sarcomas. Int. J. Radiat. Oncol. 2001, 49, 1033–1043. [Google Scholar] [CrossRef]
- Petera, J.; Soumarova, R.; Ruzickova, J.; Neumanová, R.; Dušek, L.; Sirák, I.; Macingova, Z.; Paluska, P.; Kašaová, L.; Hodek, M.; et al. perioperative hyperfractionated high-dose rate brachytherapy for the treatment of soft tissue sarcomas: Multicentric experience. Ann. Surg. Oncol. 2009, 17, 206–210. [Google Scholar] [CrossRef]
- Itami, J.; Sumi, M.; Beppu, Y.; Chuman, H.; Kawai, A.; Murakami, N.; Morota, M.; Mayahara, H.; Yoshimura, R.; Ito, Y.; et al. High–dose rate brachytherapy alone in postoperative soft tissue sarcomas with close or positive margins. Brachytherapy 2010, 9, 349–353. [Google Scholar] [CrossRef]
- Emory, C.L.; Montgomery, C.O.; Potter, B.K.; Keisch, M.E.; Conway, S.A. Early complications of high-dose-rate brachytherapy in soft tissue sarcoma: A comparison with traditional external-beam radiotherapy. Clin. Orthop. Relat. Res. 2011, 470, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.N.; Deo, S.S.; Rath, G.K.; Shukla, N.K.; Bakhshi, S.; Gandhi, A.K.; Julka, P.K. Perioperative high-dose-rate interstitial brachytherapy combined with external beam radiation therapy for soft tissue sarcoma. Brachytherapy 2015, 14, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Miguel, I.S.; San-Julian, M.; Cambeiro, M.; Sanmamed, M.F.; Vázquez-García, B.; Pagola, M.; Gaztañaga, M.; Martin-Algarra, S.; Martínez-Monge, R. Determinants of toxicity, patterns of failure, and outcome among adult patients with soft tissue sarcomas of the extremity and superficial trunk treated with greater than conventional doses of perioperative high-dose-rate brachytherapy and external beam radiotherapy. Int. J. Radiat. Oncol. 2011, 81, e529–e539. [Google Scholar] [CrossRef]
- Beroukas, E.; Peponi, E.; Soulimioti, G.; Kalaitzi, Z.; Potamianou, A.; Skarlatos, I.; Economou, G.; Athanassiou, A.E.; Beroukas, K. Intraoperative electron beam radiotherapy followed by moderate doses of external beam radiotherapy in the treatment of resected soft tissue sarcomas of the extremities. J. BUON Off. J. Balk. Union Oncol. 2007, 9, 391–398. [Google Scholar]
- Sindelar, W.F.; Kinsella, T.J.; Chen, P.W.; Delaney, T.F.; Tepper, J.E.; Rosenberg, S.A.; Glatstein, E. Intraoperative radiotherapy in retroperitoneal sarcomas. Arch. Surg. 1993, 128, 402–410. [Google Scholar] [CrossRef]
- Gieschen, H.L.; Spiro, I.J.; Suit, H.D.; Ott, M.J.; Rattner, D.W.; Ancukiewicz, M.; Willett, C.G. Long-term results of intraoperative electron beam radiotherapy for primary and recurrent retroperitoneal soft tissue sarcoma. Int. J. Radiat. Oncol. 2001, 50, 127–131. [Google Scholar] [CrossRef]
- Krempien, R.; Roeder, F.; Oertel, S.; Weitz, J.; Hensley, F.W.; Timke, C.; Funk, A.; Lindel, K.; Harms, W.; Büchler, M.W.; et al. Intraoperative electron-beam therapy for primary and recurrent retroperitoneal soft-tissue sarcoma. Int. J. Radiat. Oncol. 2006, 65, 773–779. [Google Scholar] [CrossRef]
- Pawlik, T.M.; Pisters, P.W.T.; Mikula, L.; Feig, B.W.; Hunt, K.K.; Cormier, J.N.; Ballo, M.T.; Catton, C.N.; Jones, J.J.; O’Sullivan, B.; et al. Long-term results of two prospective trials of preoperative external beam radiotherapy for localized intermediate- or high-grade retroperitoneal soft tissue sarcoma. Ann. Surg. Oncol. 2006, 13, 508–517. [Google Scholar] [CrossRef]
- Roeder, F.; Ulrich, A.; Habl, G.; Uhl, M.; Saleh-Ebrahimi, L.; Huber, P.E.; Schulz-Ertner, D.; Nikoghosyan, A.V.; Alldinger, I.; Krempien, R.; et al. Clinical Phase I/II trial to Investigate Preoperative Dose-Escalated Intensity-Modulated Radiation Therapy (IMRT) and Intraoperative Radiation Therapy (IORT) in patients with retroperitoneal soft tissue sarcoma: Interim analysis. BMC Cancer 2014, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Roeder, F.; Krempien, R. Intraoperative radiation therapy (IORT) in soft-tissue sarcoma. Radiat. Oncol. 2017, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Kunos, C.; Colussi, V.; Getty, P.; Kinsella, T.J. Intraoperative electron radiotherapy for extremity sarcomas does not increase acute or late morbidity. Clin. Orthop. Relat. Res. 2006, 446, 247–252. [Google Scholar] [CrossRef]
- Roeder, F.; Lehner, B.; Schmitt, T.; Kasper, B.; Egerer, G.; Sedlaczek, O.; Grüllich, C.; Mechtersheimer, G.; Wuchter, P.; Hensley, F.W.; et al. Excellent local control with IOERT and postoperative EBRT in high grade extremity sarcoma: Results from a subgroup analysis of a prospective trial. BMC Cancer 2014, 14, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoefkens, F.; Dehandschutter, C.; Leskelä, H.-V.; Meijnders, P.; Van Gestel, D. Soft tissue sarcoma of the extremities: Pending questions on surgery and radiotherapy. Radiat. Oncol. 2016, 11, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Absi, E.; Farrokhyar, F.; Sharma, R.; Whelan, K.; Corbett, T.; Patel, M.; Ghert, M. A systematic review and meta-analysis of oncologic outcomes of pre- versus postoperative radiation in localized resectable soft-tissue sarcoma. Ann. Surg. Oncol. 2010, 17, 1367–1374. [Google Scholar] [CrossRef]
- Sampath, S.; Schultheiss, T.E.; Hitchcock, Y.J.; Randall, R.L.; Shrieve, D.C.; Wong, J.Y. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma: Multi-institutional analysis of 821 patients. Int. J. Radiat. Oncol. 2011, 81, 498–505. [Google Scholar] [CrossRef]
- Kuklo, T.R.; Temple, H.T.; Owens, B.D.; Juliano, J.; Islinger, R.B.; Andejeski, Y.; A Frassica, D.; Berrey, B.H. Preoperative versus postoperative radiation therapy for soft-tissue sarcomas. Am. J. Orthop. (Belle Mead N.J.) 2005, 34, 75–80. [Google Scholar]
- Albertsmeier, M.; Rauch, A.; Roeder, F.; Hasenhütl, S.; Pratschke, S.; Kirschneck, M.; Gronchi, A.; Jebsen, N.L.; Cassier, P.A.; Sargos, P.; et al. External beam radiation therapy for resectable soft tissue sarcoma: A systematic review and meta-analysis. Ann. Surg. Oncol. 2017, 25, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Cheng, E.Y.; Dusenbery, K.E.; Winters, M.R.; Thompson, R.C. Soft tissue sarcomas: Preoperative versus postoperative radiotherapy. J. Surg. Oncol. 1996, 61, 90–99. [Google Scholar] [CrossRef]
- Nielsen, O.; Cummings, B.; O’Sullivan, B.; Catton, C.; Bell, R.; Fornasier, V. Preoperative and postoperative irradiation of soft tissue sarcomas: Effect on radiation field size. Int. J. Radiat. Oncol. 1991, 21, 1595–1599. [Google Scholar] [CrossRef]
- Al Yami, A.; Griffin, A.M.; Ferguson, P.C.; Catton, C.; Chung, P.W.M.; Bell, R.S.; Wunder, J.S.; O’Sullivan, B. Positive surgical margins in soft tissue sarcoma treated with preoperative radiation: Is a postoperative boost necessary? Int. J. Radiat. Oncol. 2010, 77, 1191–1197. [Google Scholar] [CrossRef]
- Pan, E.; Goldberg, S.I.; Chen, Y.-L.; Giraud, C.; Hornick, J.L.; Nielsen, G.P.; Hornicek, F.J.; Raut, C.P.; Delaney, T.F.; Baldini, E.H. Role of post-operative radiation boost for soft tissue sarcomas with positive margins following pre-operative radiation and surgery. J. Surg. Oncol. 2014, 110, 817–822. [Google Scholar] [CrossRef]
- Jakob, J.; Wenz, F.; Dinter, D.J.; Ströbel, P.; Hohenberger, P. Preoperative intensity-modulated radiotherapy combined with temozolomide for locally advanced soft-tissue sarcoma. Int. J. Radiat. Oncol. 2009, 75, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Bramwell, V.; Rouesse, J.; Steward, W.; Santoro, A.; Schraffordt-Koops, H.; Buesa, J.; Ruka, W.; Priario, J.; Wagener, T.; Burgers, M. Adjuvant CYVADIC chemotherapy for adult soft tissue sarcoma—Reduced local recurrence but no improvement in survival: A study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J. Clin. Oncol. 1994, 12, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Fakhrai, N.; Austrian Cooperative Soft Tissue Sarcoma Study Group; Ebm, C.; Köstler, W.J.; Jantsch, M.; Abdolvahab, F.; Dominkus, M.; Pokrajac, B.; Kauer-Dorner, D.; Zielinski, C.C.; et al. Intensified adjuvant IFADIC chemotherapy in combination with radiotherapy versus radiotherapy alone for soft tissue sarcoma: Long-term follow-up of a prospective randomized feasibility trial. Wien. Klin. Wochenschr. 2010, 122, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Von Mehren, M.; Randall, R.L.; Benjamin, R.S.; Kane, J.M.; Bui, M.M.; Choy, E.; Connelly, M.; Ganjoo, K.N.; George, S.; Gonzalez, R.J.; et al. Soft tissue sarcoma, version 2.2020. J. Natl. Compr. Canc. Netw. 2020, 2. Available online: https://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf (accessed on 11 August 2020).
- Reinke, J.; Sorg, H. Wound Repair and Regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Mustoe, T.A.; O’Shaughnessy, K.; Kloeters, O. Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plast. Reconstr. Surg. 2006, 117, 35S–41S. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Jackson, C.J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 2015, 4, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Weyrich, A.S.; Zimmerman, G.A. Platelets: Signaling cells in the immune continuum. Trends Immunol. 2004, 25, 489–495. [Google Scholar] [CrossRef]
- Singer, A.J.; Clark, R.A. Cutaneous wound healing. New Engl. J. Med. 1999, 341, 738–746. [Google Scholar] [CrossRef]
- Gregory, S.; Schultz, G.A.C.; Lyle, M.; Robert, F.D. Principles of wound healing. In Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists; Fitridge, R., Thompson, M., Eds.; University of Adelaide Press: Adelaide, Australia, 2011; Volume 23. [Google Scholar]
- Tandara, A.A.; Mustoe, T.A. MMP- and TIMP-secretion by human cutaneous keratinocytes and fibroblasts—Impact of coculture and hydration. J. Plast. Reconstr. Aesthetic Surg. 2011, 64, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, Y.-P.; Kirsner, R.S. Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech. 2003, 60, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Investig. Dermatol. 2007, 127, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Boerma, M.; Fu, Q.; Hauer-Jensen, M. Radiation responses in skin and connective tissues: Effect on wound healing and surgical outcome. Hernia 2006, 10, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Franklin, A.; Coultas, P. Some effects of radiation on the healing of transected mouse ear. Radiat. Res. 1984, 100, 55. [Google Scholar] [CrossRef]
- Cano-Sanchez, M.; Lancel, S.; Boulanger, É.; Neviere, R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Bravo, B.; De Durango, C.G.; González, Á.; Gortazar, A.R.; Santos, X.; Forteza-Vila, J.; Vidal-Vanaclocha, F. Opposite effects of mechanical action of fluid flow on proangiogenic factor secretion from human adipose-derived stem cells with and without oxidative stress. J. Cell. Physiol. 2017, 232, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- Gökşen, S.; Balabanlı, B.; Coskun-Cevher, S. Application of platelet derived growth factor-BB and diabetic wound healing: The relationship with oxidative events. Free. Radic. Res. 2017, 51, 498–505. [Google Scholar] [CrossRef]
- Guimarães, E.L.; Stradiot, L.; Mannaerts, I.; Schroyen, B.; Van Grunsven, L.A. P311 modulates hepatic stellate cells migration. Liver Int. 2014, 35, 1253–1264. [Google Scholar] [CrossRef]
- Hou, J.; Kim, S. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast. Biochem. Biophys. Res. Commun. 2018, 499, 381–388. [Google Scholar] [CrossRef]
- Kaisers, W.; Boukamp, P.; Stark, H.-J.; Schwender, H.; Tigges, J.; Krutmann, J.; Schaal, H. Age, gender and UV-exposition related effects on gene expression in in vivo aged short term cultivated human dermal fibroblasts. PLoS ONE 2017, 12, e0175657. [Google Scholar] [CrossRef] [Green Version]
- Bucalo, B.; Eaglstein, W.H.; Falanga, V. Inhibition of cell proliferation by chronic wound fluid. Wound Repair Regen. 1993, 1, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Harris, I.R.; Yee, K.C.; Walters, C.E.; Cunliffe, W.J.; Kearney, J.N.; Wood, E.J.; Ingham, E. Cytokine and protease levels in healing and non-healing chronic venous leg ulcers. Exp. Dermatol. 1995, 4, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J.-Z.; Zhang, E.; Li, P.; Zhou, P.; Cheng, T.-M.; Zhou, Y.-G. Impaired wound healing after local soft x-ray irradiation in rat skin: Time course study of pathology, proliferation, cell cycle, and apoptosis. J. Trauma: Inj. Infect. Crit. Care 2005, 59, 682–690. [Google Scholar]
- Jun, J.-I.; Lau, L.F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 2010, 12, 676–685. [Google Scholar] [CrossRef]
- Nickoloff, B.J.; Lingen, M.W.; Chang, B.-D.; Shen, M.; Swift, M.; Curry, J.; Bacon, P.; Bodner, B.; Roninson, I.B. Tumor suppressor maspin is up-regulated during keratinocyte senescence, exerting a paracrine antiangiogenic activity. Cancer Res. 2004, 64, 2956–2961. [Google Scholar] [CrossRef] [Green Version]
- Manestar-Blažić, T.; Brajac, I. Defective induction of senescence during wound healing is a possible mechanism of keloid formation. Med. Hypotheses 2006, 66, 649–652. [Google Scholar] [CrossRef]
- Landén, N.X.; Li, D.; Ståhle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef] [Green Version]
- Dormand, E.-L.; E Banwell, P.; Goodacre, T.E. Radiotherapy and wound healing. Int. Wound J. 2005, 2, 112–127. [Google Scholar] [CrossRef]
- Herskind, C.; Bamberg, M.; Rodemann, H.P. The role of cytokines in the development of normal-tissue reactions after radiotherapy. Strahlenther. und Onkol. 1998, 174, 12–15. [Google Scholar]
- Schaue, D.; Micewicz, E.D.; Ratikan, J.A.; Xie, M.W.; Cheng, G.; McBride, W.H. Radiation and inflammation. Semin. Radiat. Oncol. 2015, 25, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.P.; Most, D.; Efron, D.T.; Tantry, U.; Fischel, M.; Barbul, A. The role of iNOS in wound healing. Surgry 2001, 130, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Schäffer, M.; Weimer, W.; Wider, S.; Stülten, C.; Bongartz, M.; Budach, W.; Becker, H.D. Differential expression of inflammatory mediators in radiation-impaired wound healing. J. Surg. Res. 2002, 107, 93–100. [Google Scholar]
- Haroon, Z.A.; Raleigh, J.A.; Greenberg, C.S.; Dewhirst, M. Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann. Surg. 2000, 231, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Arteel, G.E.; Connor, H.D.; Yin, M.; Frankenberg, M.V.; Stachlewitz, R.F.; A Raleigh, J.; Mason, R.P.; Thurman, R.G. Cyclosporin A increases hypoxia and free radical production in rat kidneys: Prevention by dietary glycine. Am. J. Physiol. Content 1998, 275, F595–F604. [Google Scholar] [CrossRef]
- Shweiki, D.; Itin, A.; Soffer, V.; Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992, 359, 843–845. [Google Scholar] [CrossRef]
- Denham, J.W.; Hauer-Jensen, M. The radiotherapeutic injury—A complex ‘wound’. Radiother. Oncol. 2002, 63, 129–145. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, H.; Ou, X.; Fink, L.M.; Hauer-Jensen, M. Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine. Am. J. Pathol. 2002, 160, 2063–2072. [Google Scholar] [CrossRef]
- Stone, H.B. Leg contracture in mice: An assay of normal tissue response. Int. J. Radiat. Oncol. 1984, 10, 1053–1061. [Google Scholar] [CrossRef]
- Masuda, K.; Hunter, N.; Stone, H.B.; Withers, H. Leg contracture in mice after single and multifractionated 137Cs exposure. Int. J. Radiat. Oncol. 1987, 13, 1209–1215. [Google Scholar] [CrossRef]
- Stone, H.B.; Milas, L. Enhancement of radiation-induced normal tissue damage by a fibrosarcoma. Int. J. Radiat. Oncol. 1987, 13, 1721–1724. [Google Scholar] [CrossRef]
- Stone, H.B. Thermal enhancement of radiation-induced leg contracture. Int. J. Radiat. Oncol. 1990, 18, 595–602. [Google Scholar] [CrossRef]
- Rahman, N.; Khan, R.; Badshah, S. Effect of x-rays and gamma radiations on the bone mechanical properties: Literature review. Cell Tissue Bank. 2018, 19, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Sternheim, A.; Saidi, K.; Lochab, J.; O’Donnell, P.W.; Eward, W.C.; Griffin, A.; Wunder, J.S.; Ferguson, P. Internal fixation of radiation-induced pathological fractures of the femur has a high rate of failure. Bone Jt. J. 2013, 95, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.A.; Naz, S.; Anver, M.R.; Sowers, A.L.; Fabre, K.; Krishna, M.C.; Mitchell, J.B. Cancer incidence in C3H mice protected from lethal total-body radiation after amifostine. Radiat. Res. 2018, 189, 490–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brizel, D.M.; Wasserman, T.H.; Henke, M.; Strnad, V.; Rudat, V.; Monnier, A.; Eschwege, F.; Zhang, J.; Russell, L.; Oster, W.; et al. Phase III Randomized trial of Amifostine as a Radioprotector in head and neck cancer. J. Clin. Oncol. 2000, 18, 3339–3345. [Google Scholar] [CrossRef] [PubMed]
- Kouvaris, J.R.; Kouloulias, V.; Vlahos, L.J. Amifostine: The first selective-target and broad-spectrum radioprotector. Oncol. 2007, 12, 738–747. [Google Scholar] [CrossRef] [Green Version]
- Schuchter, L.M.; Hensley, M.L.; Meropol, N.J.; Winer, E.P. 2002 Update of recommendations for the use of chemotherapy and radiotherapy protectants: Clinical practice guidelines of the american society of clinical oncology. J. Clin. Oncol. 2002, 20, 2895–2903. [Google Scholar] [CrossRef]
- Margulies, B.S.; Damron, T.A.; Allen, M.J. The differential effects of the radioprotectant drugs amifostine and sodium selenite treatment in combination with radiation therapy on constituent bone cells, ewing’s sarcoma of bone tumor cells, and rhabdomyosarcoma tumor cells in vitro. J. Orthop. Res. 2008, 26, 1512–1519. [Google Scholar] [CrossRef]
- Sagowski, C.; Tesche, S.; Zywietz, F.; Wenzel, S.; Metternich, F. The radioprotectors amifostine and sodium selenite do not modify the radiosensitivity of rat rhabdomyosarcomas. Oncol. Res. Treat. 2004, 27, 54–57. [Google Scholar] [CrossRef]
- Camphausen, K.A. NCT00040365. 2002. Available online: https://clinicaltrials.gov/ct2/show/NCT00040365 (accessed on 6 May 2020).
- Ng, A.K. NCT00136474, Dana-Farber Cancer Institute/Brigham and Women’s Hospital: Clinicaltrials.gov. 2005. Available online: https://clinicaltrials.gov/ct2/show/NCT00136474 (accessed on 20 May 2020).
- Forman, A. NCT00078845. 2004. Available online: https://clinicaltrials.gov/ct2/show/NCT00078845 (accessed on 15 May 2020).
- Samuni, A.; Krishna, C.; Riesz, P.; Finkelstein, E.; Russo, A. Superoxide reaction with nitroxide spin-adducts. Free. Radic. Boil. Med. 1989, 6, 141–148. [Google Scholar] [CrossRef]
- Shinde, A.; Berhane, H.; Rhieu, B.H.; Kalash, R.; Xu, K.; Goff, J.; Shields, D. Intraoral mitochondrial-targeted GS-Nitroxide, JP4-039, radioprotects normal tissue in tumor-bearing radiosensitive Fancd2(-/-) (C57BL/6) Mice. Radiat. Res. 2016, 185, 134–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raza, M.H.; Siraj, S.; Arshad, A.; Waheed, U.; Aldakheel, F.; Alduraywish, S.A.; Arshad, M. ROS-modulated therapeutic approaches in cancer treatment. J. Cancer Res. Clin. Oncol. 2017, 143, 1789–1809. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, A.; Rwigema, J.-C.; Epperly, M.W.; Glowacki, J.; Wang, H.; Wipf, P.; Goff, J.P.; Dixon, T.; Patrene, K.; Greenberger, J.S. Small molecule GS-nitroxide ameliorates ionizing irradiation-induced delay in bone wound healing in a novel murine model. Vivo 2010, 24, 377–385. [Google Scholar] [CrossRef]
- Hahn, S.M.; Krishna, C.M.; Samuni, A.; DeGraff, W.; O Cuscela, D.; Johnstone, P.; Mitchell, J.B. Potential use of nitroxides in radiation oncology. Cancer Res. 1994, 54, 2006–2010. [Google Scholar]
- Gariboldi, M.B.; Rimoldi, V.; Supino, R.; Favini, E.; Monti, E. The nitroxide tempol induces oxidative stress, p21(WAF1/CIP1), and cell death in HL60 cells. Free. Radic. Boil. Med. 2000, 29, 633–641. [Google Scholar] [CrossRef]
- Citrin, D.; Cotrim, A.P.; Hyodo, F.; Baum, B.J.; Krishna, M.C.; Mitchell, J.B. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncol. 2010, 15, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Hyodo, F.; Davis, R.M.; Hyodo, E.; Matsumoto, S.; Krishna, M.C.; Mitchell, J.B. The relationship between tissue oxygenation and redox status using magnetic resonance imaging. Int. J. Oncol. 2012, 41, 2103–2108. [Google Scholar] [CrossRef]
- Hahn, S.M.; Sullivan, F.J.; DeLuca, A.M.; Krishna, C.; Wersto, N.; Venzon, D.; Russo, A.; Mitchell, J.B. Evaluation of tempol radioprotection in a murine tumor model. Free. Radic. Boil. Med. 1997, 22, 1211–1216. [Google Scholar] [CrossRef]
- Hahn, S.M.; Tochner, Z.; Krishna, C.M.; Glass, J.; Wilson, L.; Samuni, A.; Sprague, M.; Venzon, D.; Glatstein, E.; Mitchell, J.B. Tempol, a stable free radical, is a novel murine radiation protector. Cancer Res. 1992, 52, 1750–1753. [Google Scholar]
- Schoenfeld, J.D.; Alexander, M.S.; Waldron, T.J.; Sibenaller, Z.A.; Spitz, U.R.; Buettner, G.R.; Allen, B.G.; Cullen, J.J. Pharmacological ascorbate as a means of sensitizing cancer cells to radio-chemotherapy while protecting normal tissue. Semin. Radiat. Oncol. 2019, 29, 25–32. [Google Scholar] [CrossRef]
- Schoenfeld, J.D.; Sibenaller, Z.A.; Mapuskar, K.A.; Wagner, B.A.; Cramer-Morales, K.L.; Furqan, M.; Sandhu, S.; Carlisle, T.L.; Smith, M.C.; Hejleh, T.A.; et al. O2(-) and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to Pharmacological Ascorbate. Cancer Cell 2017, 32, 268. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.S.; Wilkes, J.G.; Schroeder, S.R.; Buettner, G.R.; A Wagner, B.; Du, J.; Gibson-Corley, K.N.; O’Leary, B.R.; Spitz, U.R.; Buatti, J.M.; et al. Pharmacologic ascorbate reduces radiation-induced normal tissue toxicity and enhances tumor radiosensitization in pancreatic cancer. Cancer Res. 2018, 78, 6838–6851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, J.D.; Sibenaller, Z.A.; Mapuskar, K.A.; Bradley, M.D.; Wagner, B.A.; Buettner, G.R.; Monga, V.; Milhem, M.; Spitz, D.R.; Allen, B.G. Redox active metals and H2O2 mediate the increased efficacy of pharmacological ascorbate in combination with gemcitabine or radiation in pre-clinical sarcoma models. Redox Boil. 2018, 14, 417–422. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Rajanikant, G.; Rao, S.K. Evaluation of the Effect of Ascorbic Acid Treatment on Wound Healing in Mice Exposed to Different Doses of Fractionated Gamma Radiation. Radiat. Res. 2003, 159, 371–380. [Google Scholar] [CrossRef]
- Monga, V. NCT03508726. 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT03508726 (accessed on 6 May 2020).
- Mapuskar, K.A.; Anderson, C.M.; Spitz, U.R.; Batinic-Haberle, I.; Allen, B.G.; Oberley-Deegan, R.E. Utilizing superoxide dismutase mimetics to enhance radiation therapy response while protecting normal tissues. Semin. Radiat. Oncol. 2019, 29, 72–80. [Google Scholar] [CrossRef]
- Vozenin-Brotons, M.C.; Sivan, V.; Gault, N.; Renard, C.; Geffrotin, C.; Delanian, S.; Lefaix, J.L.; Martin, M. Antifibrotic action of Cu/Zn SOD is mediated by TGF-beta1 repression and phenotypic reversion of myofibroblasts. Free. Radic. Boil. Med. 2001, 30, 30–42. [Google Scholar] [CrossRef]
- Campana, F.; Zervoudis, S.; Perdereau, B.; Gez, E.; Fourquet, A.; Badiu, C.; Tsakiris, G.; Koulaloglou, S. Topical superoxide dismutase reduces post-irradiation breast cancer fibrosis. J. Cell. Mol. Med. 2007, 8, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Delanian, S.; Martin, M.; Bravard, A.; Luccioni, C.; Lefaix, J.L. Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Radiother. Oncol. 2001, 58, 325–331. [Google Scholar] [CrossRef]
- Tuder, R.M.; Zhen, L.; Cho, C.Y.; Taraseviciene-Stewart, L.; Kasahara, Y.; Salvemini, D.; Voelkel, N.F.; Flores, S.C. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell Mol. Boil. 2003, 29, 88–97. [Google Scholar] [CrossRef]
- Forman, H.J.; Fridovich, I. Superoxide dismutase: A comparison of rate constants. Arch. Biochem. Biophys. 1973, 158, 396–400. [Google Scholar] [CrossRef]
- Anderson, C.M.; Sonis, S.T.; Lee, C.M.; Adkins, U.; Allen, B.G.; Sun, W.; Agarwala, S.S.; Venigalla, M.L.; Chen, Y.; Zhen, W.; et al. Phase 1b/2a trial of the superoxide dismutase mimetic GC4419 to reduce chemoradiotherapy-induced oral mucositis in patients with oral cavity or oropharyngeal carcinoma. Int. J. Radiat. Oncol. 2018, 100, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doctrow, S.R.; Lopez, A.; Schock, A.M.; Duncan, N.E.; Jourdan, M.M.; Olasz, E.B.; Moulder, J.E.; Fish, B.L.; Mäder, M.; Lazar, J.; et al. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J. Investig. Dermatol. 2012, 133, 1088–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitra, S.; Devi, C.S. Effects of radiation and α-tocopherol on saliva flow rate, amylase activity, total protein and electrolyte levels in oral cavity cancer. Indian J. Dent. Res. 2008, 19, 213. [Google Scholar] [CrossRef] [PubMed]
- Bairati, I.; Meyer, F.; Gélinas, M.; Fortin, A.; Nabid, A.; Brochet, F.; Mercier, J.-P.; Têtu, B.; Harel, F.; Abdous, B.; et al. Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. J. Clin. Oncol. 2005, 23, 5805–5813. [Google Scholar] [CrossRef] [PubMed]
- Misirlioglu, C.H.; Demirkasimoglu, T.; Kucukplakci, B.; Sanri, E.; Altundag, K. Pentoxifylline and alpha-tocopherol in prevention of radiation-induced lung toxicity in patients with lung cancer. Med. Oncol. 2007, 24, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Aykin-Burns, N.; Pathak, R.; Boerma, M.; Kim, T.; Hauer-Jensen, M. Utilization of vitamin e analogs to protect normal tissues while enhancing antitumor effects. Semin. Radiat. Oncol. 2019, 29, 55–61. [Google Scholar] [CrossRef]
- Hobson, R. Vitamin E and wound healing: An evidence-based review. Int. Wound J. 2014, 13, 331–335. [Google Scholar] [CrossRef]
- Afzali, H.; Kashi, A.H.J.; Momen-Heravi, M.; Razzaghi, R.; Amirani, E.; Bahmani, F.; Gilasi, H.R.; Asemi, Z. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. Wound Repair Regen. 2019, 27, 277–284. [Google Scholar] [CrossRef]
- Adam, A.; Marzuki, A.; Ngah, W.Z.W.; Top, G.M. Nitrofurantoin-induced hepatic and pulmonary biochemical changes in mice fed different vitamin E doses. Pharmacol. Toxicol. 1996, 79, 334–339. [Google Scholar] [CrossRef]
- Lee, S.-P.; Mar, G.-Y.; Ng, L.-T.; Ng, L.T. Effects of tocotrienol-rich fraction on exercise endurance capacity and oxidative stress in forced swimming rats. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 107, 587–595. [Google Scholar] [CrossRef]
- Kuhad, A.; Bishnoi, M.; Tiwari, V.; Chopra, K. Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharm. Biochem. Behav. 2009, 92, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Norazlina, M.; Maizatul-Neza, J.; Azarina, A.; Nazrun, A.S.; Norliza, M.; Ima-Nirwana, S. Effects of vitamin E on receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in rats treated with nicotine. Med J. Malays. 2010, 65, 14–17. [Google Scholar]
- Meyer, F.; Bairati, I.; Fortin, A.; Gélinas, M.; Nabid, A.; Brochet, F.; Têtu, B. Interaction between antioxidant vitamin supplementation and cigarette smoking during radiation therapy in relation to long-term effects on recurrence and mortality: A randomized trial among head and neck cancer patients. Int. J. Cancer 2007, 122, 1679–1683. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.; Delibas, N.; Serteser, M.; Ulukaya, E.; Özkaya, O. The effect of melatonin on lipid peroxidation during radiotherapy in female rats. Strahlenther. und Onkol. 1999, 175, 285–288. [Google Scholar] [CrossRef]
- Topkan, E.; Tufan, H.; Yavuz, A.A.; Bacanli, D.; Onal, C.; Kosdak, S.; Yavuz, M. Comparison of the protective effects of melatonin and amifostine on radiation-induced epiphyseal injury. Int. J. Radiat. Boil. 2008, 84, 796–802. [Google Scholar] [CrossRef]
- Manda, K.; Ueno, M.; Anzai, K. Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: Attenuation by melatonin pretreatment. J. Pineal Res. 2009, 46, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.R.; Abu-Dief, E.E.; Kamel, E.; Abouelghait, A.; Abdulwahed, S.R.; Ahmad, M.H. Melatonin and roentgen irradiation-induced acute radiation enteritis in Albino rats: An animal model. Cell Boil. Int. 2008, 32, 1353–1361. [Google Scholar] [CrossRef]
- Akagi, T.; Ushinohama, K.; Ikesue, S.; Yukawa, E.; Higuchi, S.; Hamase, K.; Zaitsu, K.; Ohdo, S. Chronopharmacology of melatonin in mice to maximize the antitumor effect and minimize the rhythm disturbance effect. J. Pharmacol. Exp. Ther. 2003, 308, 378–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, L.; Berkey, B.; Rich, T.; Hrushesky, W.; Blask, D.; Gallagher, M.; Kudrimoti, M.; McGarry, R.C.; Suh, J.; Mehta, M.P. Randomized Phase II trial of high-dose melatonin and radiation therapy for RPA Class 2 patients with brain metastases (RTOG 0119). Int. J. Radiat. Oncol. 2007, 68, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Zhang, Z.; Wang, C.; Tang, Q.; Wang, J.; Bai, X.; Wang, Q.; Nisar, M.; Tian, N.; Wang, Q.; et al. Melatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic mice. Exp. Mol. Med. 2018, 50, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Katoh, O.; Tauchi, H.; Kawaishi, K.; Kimura, A.; Satow, Y. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res. 1995, 55, 5687–5692. [Google Scholar] [PubMed]
- A Mustoe, T.; Purdy, J.; Gramates, P.; Deuel, T.F.; Thomason, A.; Pierce, G.F. Reversal of impaired wound healing in irradiated rats by platelet-derived growth factor-BB. Am. J. Surg. 1989, 158, 345–350. [Google Scholar] [CrossRef]
- Schultze-Mosgau, S.; Wehrhan, F.; Rödel, F.; Amann, K.; Radespiel-Tröger, M.; Grabenbauer, G.G. Transforming growth factor-beta receptor-II up-regulation during wound healing in previously irradiated graft beds in vivo. Wound Repair Regen. 2003, 11, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Xavier, S.; Piek, E.; Fujii, M.; Javelaud, D.; Mauviel, A.; Flanders, K.C.; Samuni, A.M.; Felici, A.; Reiss, M.; Yarkoni, S.; et al. Amelioration of Radiation-induced Fibrosis. J. Boil. Chem. 2004, 279, 15167–15176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordeiro, M.F.; Mead, A.; Ali, R.R.; Alexander, R.A.; Murray, S.; Chen, C.; York-Defalco, C.; Dean, N.M.; Schultz, G.S.; Khaw, P.T. Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome. Gene. Ther. 2003, 10, 59–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Disease Site | RT Course (# Patients) | Acute/ Late Toxicity | Measure | Neoadjuvant (%) | Adjuvant (%) | Significance |
---|---|---|---|---|---|---|---|
Pollack et al., 1998 [51] | MFH, synovial, and liposarcoma | Neoadjuvant 50Gy/25fx (n = 128), Adjuvant 60-66Gy/30–33fx (n = 165) | Acute | Wound complications | 25% | 6% * | p < 0.001 |
Late | 5-, 10-, and 15-year actuarial incidence | 6, 7, and 7% respectively (Neoadjuvant & Adjuvant) | NS | ||||
O’Sullivan et al., 2002 [58] | Upper & Lower Extremities | Neoadjuvant 50Gy/25fx (n = 88), Adjuvant 66Gy/33fx (n = 94) | Acute | Skin toxicity grade ≥2 | 36% | 68% * | p < 0.0001 |
Wound complications | 35% | 17% * | p = 0.01 | ||||
Late | MSTS (mean, scale 0–35) | 21 | 25 * | p = 0.01 | |||
TESS (mean, scale 0–100) | 60 | 69 * | p = 0.01 | ||||
SF-36 bodily pain (mean, scale 0–100) | 58 | 67 * | p = 0.03 | ||||
Zagars et al., 2003 [52] | Head & Neck, Trunk, and Extremities | Neoadjuvant 50Gy (n = 271), Adjuvant 60Gy (n = 246)(1.8–2.0Gy/fx) | Late | 10-year actuarial complication incidence | 5% | 9% * | p = 0.03 |
Necrosis, fractures, edema, or fibrosis | 4% | 8.9% | NR | ||||
Davis et al., 2005 [11] | Upper & Lower Extremities | Neoadjuvant 50Gy/25fx (n = 73), Adjuvant 66Gy/33fx (n = 56) | Late | Subcutaneous fibrosis | 31.5% | 48.2% | NS |
Joint stiffness | 17.8% | 23.2% | NS | ||||
Edema | 15.1% | 23.2% | NS | ||||
TESS (mean, scale 0–100) | 85.1 | 81.3 | NS | ||||
MSTS (mean, scale 0–35) | 29.9 | 28.0 | NS | ||||
O’Sullivan et al., 2013 [30] | Lower Extremities | Neoadjuvant 50Gy/25fx (n = 59), Compared to historical control of neoadjuvant from Davis et al., 2005 [11] | Acute | O’Sullivan 2013 | Davis et al., 2005 | ||
Secondary operation | 33% | 43% | NS | ||||
Seroma/hematoma drainage | 8.4% | NR | |||||
Infection requiring debridement | 5.0% | NR | |||||
Dressing changes/deep packing. 4 months post-surgery | 6.7% | NR | |||||
Total wound complications | 30.5% | 43% | NS | ||||
Late | Edema | 11.1% | 15.1% | NR | |||
Skin Toxicity | 1.9% | NR | |||||
Subcutaneous fibrosis | 9.3% | 31.5% | NR | ||||
Fracture | 0% | NR | |||||
Joint Stiffness | 5.6% | 17.8% | NR | ||||
TESS (mean, scale 0–100) | 83.1 | 85.1 | NR | ||||
MSTS-87 (mean, scale 0–35) | 31.5 | 29.9 | NR | ||||
MSTS-93 (mean, scale 0–100) | 89.3 | NR | |||||
Folkert et al., 2014 [36] | Upper & Lower Extremities | Neoadjuvant 50Gy median (n = 39), Adjuvant 63Gy median (n = 280) | Acute | Wound complications | 17.5% | 18.8% | NS |
Radiation dermatitis | 48.7% | 31.5% | p = 0.002 | ||||
Late | Fracture | 9.1% | 4.8% | NS | |||
Joint stiffness | 11.0% | 14.5% | NS | ||||
Edema | 14.9% | 7.9% * | p = 0.05 | ||||
Nerve damage | 1.6% | 3.5% | NS | ||||
Total | 36.6% | 30.7% | NR | ||||
Muller et al. 2016 [59] | Upper & Lower Extremities | Neoadjuvant 59Gy mean (n = 89), Adjuvant 71Gy mean (n = 365) | Acute | Surgical revision | 9.0% | 4.4% | NS |
Late | Wound necrosis, pathologic fractures, etc. | 11.2% | 15.2% | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Callaghan, C.M.; Hasibuzzaman, M.M.; Rodman, S.N.; Goetz, J.E.; Mapuskar, K.A.; Petronek, M.S.; Steinbach, E.J.; Miller, B.J.; Pulliam, C.F.; Coleman, M.C.; et al. Neoadjuvant Radiotherapy-Related Wound Morbidity in Soft Tissue Sarcoma: Perspectives for Radioprotective Agents. Cancers 2020, 12, 2258. https://doi.org/10.3390/cancers12082258
Callaghan CM, Hasibuzzaman MM, Rodman SN, Goetz JE, Mapuskar KA, Petronek MS, Steinbach EJ, Miller BJ, Pulliam CF, Coleman MC, et al. Neoadjuvant Radiotherapy-Related Wound Morbidity in Soft Tissue Sarcoma: Perspectives for Radioprotective Agents. Cancers. 2020; 12(8):2258. https://doi.org/10.3390/cancers12082258
Chicago/Turabian StyleCallaghan, Cameron M., M. M. Hasibuzzaman, Samuel N. Rodman, Jessica E. Goetz, Kranti A. Mapuskar, Michael S. Petronek, Emily J. Steinbach, Benjamin J. Miller, Casey F. Pulliam, Mitchell C. Coleman, and et al. 2020. "Neoadjuvant Radiotherapy-Related Wound Morbidity in Soft Tissue Sarcoma: Perspectives for Radioprotective Agents" Cancers 12, no. 8: 2258. https://doi.org/10.3390/cancers12082258
APA StyleCallaghan, C. M., Hasibuzzaman, M. M., Rodman, S. N., Goetz, J. E., Mapuskar, K. A., Petronek, M. S., Steinbach, E. J., Miller, B. J., Pulliam, C. F., Coleman, M. C., Monga, V. V., Milhem, M. M., Spitz, D. R., & Allen, B. G. (2020). Neoadjuvant Radiotherapy-Related Wound Morbidity in Soft Tissue Sarcoma: Perspectives for Radioprotective Agents. Cancers, 12(8), 2258. https://doi.org/10.3390/cancers12082258