CDK4/6 Inhibitors in Hormone Receptor-Positive Metastatic Breast Cancer: Current Practice and Knowledge
Abstract
:1. Introduction
2. Clinical Activity of CDK4/6 Inhibitors
3. Toxicity and Financial Impact
4. Patient Clinical Characteristics and Benefit from CDK4/6 Inhibitors
5. Molecular Biomarker Analysis Correlated with Resistance or Benefit from CDK4/6 Inhibitors
6. Detecting Dynamic Circulating Tumor DNA Alterations and Correlating with Response and Resistance to CDK Inhibitors
7. Is There A Distinct Resistance Mechanism to Each Specific CDK4/6 Inhibitor?
8. Conclusions
Funding
Conflicts of Interest
References
- Caldon, C.E.; Daly, R.J.; Sutherland, R.L.; Musgrove, E.A. Cell cycle control in breast cancer cells. J. Cell. Biochem. 2006, 97, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Coudreuse, D.; Nurse, P. Driving the cell cycle with a minimal CDK control network. Nature 2010, 468, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015, 14, 130–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musgrove, E.A.; Caldon, C.E.; Barraclough, J.; Stone, A.; Sutherland, R.L. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer 2011, 11, 558–572. [Google Scholar] [CrossRef]
- Harbour, J.; Luo, R.X.; Santi, A.D.; Postigo, A.A.; Dean, D.C. Cdk Phosphorylation Triggers Sequential Intramolecular Interactions that Progressively Block Rb Functions as Cells Move through G1. Cell 1999, 98, 859–869. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, B.; Finn, R.S.; Turner, N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 2016, 13, 417–430. [Google Scholar] [CrossRef]
- Hirai, H.; Roussel, M.F.; Kato, J.Y.; Ashmun, R.A.; Sherr, C.J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol. 1995, 15, 2672–2681. [Google Scholar] [CrossRef] [Green Version]
- Chan, F.K.; Zhang, J.; Cheng, L.; Shapiro, D.N.; Winoto, A. Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4. Mol. Cell. Biol. 1995, 15, 2682–2688. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.S.; Dering, J.; Conklin, D.; Kalous, O.; Cohen, D.J.; Desai, A.J.; Ginther, C.; Atefi, M.; Chen, I.; Fowst, C.; et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009, 11, R77. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.S.; Crown, J.P.; Láng, I.; Boer, K.; Bondarenko, I.N.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): A randomised phase 2 study. Lancet Oncol. 2015, 16, 25–35. [Google Scholar] [CrossRef]
- Finn, R.S.; Martín, M.; Rugo, H.; Jones, S.; Im, S.-A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Finn, R.S.; Dieras, V.; Ettl, J.; Lipatov, O.; Joy, A.; Harbeck, N.; Castrellon, A.; Lu, D.R.; Mori, A.; et al. Palbociclib (PAL) + letrozole (LET) as first-line therapy in estrogen receptor–positive (ER+)/human epidermal growth factor receptor 2–negative (HER2−) advanced breast cancer (ABC): Efficacy and safety updates with longer follow-up across patient subgroups. In Proceedings of the San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 5–9 December 2017. [Google Scholar]
- Rugo, H.; Finn, R.S.; Diéras, V.; Ettl, J.; Lipatov, O.; Joy, A.A.; Harbeck, N.; Castrellon, A.; Iyer, S.; Lu, D.R.; et al. Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up. Breast Cancer Res. Treat. 2019, 174, 719–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristofanilli, M.; Turner, N.C.; Bondarenko, I.N.; Ro, J.; Im, S.-A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016, 17, 425–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.-S.; Sonke, G.S.; Paluch-Shimon, S.; Campone, M.; Blackwell, K.L.; André, F.; Winer, E.P.; et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1738–1748. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.; Im, S.-A.; Colleoni, M.; Franke, F.; Bardia, A.; Harbeck, N.; Hurvitz, S.A.; Chow, L.; Sohn, J.; Lee, K.S.; et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): A randomised phase 3 trial. Lancet Oncol. 2018, 19, 904–915. [Google Scholar] [CrossRef]
- Im, S.-A.; Lu, Y.-S.; Bardia, A.; Harbeck, N.; Colleoni, M.; Franke, F.; Chow, L.; Sohn, J.; Lee, K.-S.; Campos-Gomez, S.; et al. Overall Survival with Ribociclib plus Endocrine Therapy in Breast Cancer. N. Engl. J. Med. 2019, 381, 307–316. [Google Scholar] [CrossRef]
- Dennis, J.; Slamon, P.N.; Chia, S.K.L.; Im, S.; Fasching, P.A.; DeLaurentiis, M.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martin, M.; et al. Ribociclib (RIB) + fulvestrant (FUL) in postmenopausal women with hormone receptor-positive (HR+), HER2-negative (HER2–) advanced breast cancer (ABC): Results from MONALEESA-3. In Proceedings of the 2018 ASCO Annual Meeting, Chicago, IL, USA, 1–5 June 2018. [Google Scholar]
- Slamon, D.J.; Neven, P.; Chia, S.; Fasching, P.A.; De Laurentiis, M.; Im, S.-A.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martín, M.; et al. Phase III Randomized Study of Ribociclib and Fulvestrant in Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer: MONALEESA-3. J. Clin. Oncol. 2018, 36, 2465–2472. [Google Scholar] [CrossRef]
- Turner, N.C.; Slamon, D.J.; Ro, J.; Bondarenko, I.; Im, S.-A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer. N. Engl. J. Med. 2018, 379, 1926–1936. [Google Scholar] [CrossRef]
- Goetz, M.P.; Toi, M.; Campone, M.; Sohn, J.; Paluch-Shimon, S.; Huober, J.; Park, I.H.; Trédan, O.; Chen, S.-C.; Manso, L.; et al. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J. Clin. Oncol. 2017, 35, 3638–3646. [Google Scholar] [CrossRef]
- Sledge, G.W.; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2− Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J. Clin. Oncol. 2017, 35, 2875–2884. [Google Scholar] [CrossRef]
- Sledge, G.W.; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; et al. The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor–Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine Therapy—MONARCH 2. JAMA Oncol. 2020, 6, 116. [Google Scholar] [CrossRef] [PubMed]
- Dickler, M.N.; Tolaney, S.M.; Rugo, H.S.; Cortés, J.; Diéras, V.; Patt, D.; Wildiers, H.; Hudis, C.A.; O’Shaughnessy, J.; Zamora, E.; et al. MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017, 23, 5218–5224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, E.; Cortes, J.; Dieras, V.; Ozyilkan, O.; Chen, S.-C.; Petrakova, K.; Manikhas, A.; Jerusalem, G.; Hegg, R.; Lu, Y.; et al. Abstract PD1-11: NextMONARCH 1: Phase 2 study of abemaciclib plus tamoxifen or abemaciclib alone in HR+, HER2- advanced breast cancer. Poster Discussion Abstracts 2019, 79, PD1–PD11. [Google Scholar] [CrossRef]
- Tolaney, S.; Sahebjam, S.; Le Rhun, E.; Lin, N.; Bear, M.M.; Yang, Z.; Chen, Y.; Anders, C. Abstract P1-19-01: A phase 2 study of abemaciclib in patients with leptomeningeal metastases secondary to HR+, HER2- breast cancer. Poster Session Abstracts 2019, 79, P1–P19. [Google Scholar] [CrossRef]
- Fasching, P.; Esteva, F.J.; Pivot, X.; Nusch, A.; Beck, J.; Chan, A.; Pieris-Gunatilaka, A.; Wang, Y.; LaNoue, B.; Chandiwana, D.; et al. Patient-reported outcomes (PROs) in advanced breast cancer (ABC) treated with ribociclib + fulvestrant: Results from MONALEESA-3. Ann. Oncol. 2018, 29, viii90. [Google Scholar] [CrossRef]
- Harbeck, N.; Vázquez, R.V.; Franke, F.; Babu, G.; Wheatley-Price, P.; Im, Y.-H.; Alam, J.; Chandiwana, D.; Colleoni, M. Ribociclib (RIB) 1 tamoxifen (TAM) or a non-steroidal aromatase inhibitor (NSAI) in premenopausal patients (pts) with hormone receptor-positive (HR1), HER2-negative (HER2–) advanced breast cancer (ABC): MONALEESA-7 patient-reported outcomes (PROs). In Proceedings of the 2018 ESMO Annual Meeting, Munich, Germany, 19–23 October 2018. [Google Scholar]
- Ciruelos, E.; Villagrasa, P.; Paré, L.; Oliveira, M.; Pernas, S.; Cortés, J.; Soberino, J.; Adamo, B.; Vazquez, S.; Martínez, N.; et al. Prat A SOLTI-1303 PATRICIA phase II trial (STAGE 1)—Palbociclib and trastuzumab in postmenopausal patients with HER2-positive metastatic breast cancer. In Proceedings of the San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 4–8 December 2018. [Google Scholar]
- Tolaney, S.M.; Wardley, A.M.; Zambelli, S.; Hilton, J.F.; Troso-Sandoval, T.A.; Ricci, F.; Im, S.-A.; Kim, S.-B.; Johnston, S.R.; Chan, A.; et al. Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): A randomised, open-label, phase 2 trial. Lancet Oncol. 2020, 21, 763–775. [Google Scholar] [CrossRef]
- Drugs and Lactation Database (LactMed). Abemaciclib. Available online: https://www.ncbi.nlm.nih.gov/books/NBK500939/ (accessed on 5 July 2020).
- Drugs and Lactation Database (LactMed). Palbociclib. Available online: https://www.ncbi.nlm.nih.gov/books/NBK500860/ (accessed on 5 July 2020).
- Drugs and Lactation Database (LactMed). Ribociclib. Available online: https://www.ncbi.nlm.nih.gov/books/NBK500944/ (accessed on 5 July 2020).
- Zheng, J.; Wu, J.; Wang, C.; Zhuang, S.; Chen, J.; Ye, F. Combination cyclin-dependent kinase 4/6 inhibitors and endocrine therapy versus endocrine monotherapy for hormonal receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0233571. [Google Scholar] [CrossRef]
- Lasheen, S.; Shohdy, K.S.; Kassem, L.; Abdel-Rahman, O. Fatigue, alopecia and stomatitis among patients with breast cancer receiving cyclin-dependent kinase 4 and 6 inhibitors: A systematic review and meta-analysis. Expert Rev. Anticancer. Ther. 2017, 17, 851–856. [Google Scholar] [CrossRef]
- Finn, R.S.; Crown, J.; Láng, I.; Boer, K.; Bondarenko, I.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; et al. Overall survival results from the randomized phase II study of palbociclib (P) in combination with letrozole (L) vs. letrozole alone for frontline treatment of ER+/HER2– advanced breast cancer (PALOMA-1; TRIO-18). J. Clin. Oncol. 2017, 35, 1001. [Google Scholar] [CrossRef]
- Turner, N.; Finn, R.; Martin, M.; Im, S.-A.; DeMichele, A.; Ettl, J.; Diéras, V.; Moulder, S.; Lipatov, O.; Colleoni, M.; et al. Clinical considerations of the role of palbociclib in the management of advanced breast cancer patients with and without visceral metastases. Ann. Oncol. 2018, 29, 669–680. [Google Scholar] [CrossRef]
- Goetz, M.; O’Shaughnessy, J.; Sledge, G.; Martin, M.; Lin, Y.; Forrester, T.; Mockbee, C.; Smith, I.; Di Leo, A.; Johnston, S. Abstract GS6-02: The benefit of abemaciclib in prognostic subgroups: An exploratory analysis of combined data from the MONARCH 2 and 3 studies. In Proceedings of the General Session Abstracts, American Association for Cancer Research (AACR), San Antonio, TX, USA, 5–9 December 2017; Volume 78, p. GS6-02. [Google Scholar]
- Di Leo, A.; Dickler, M.; Sledge, G.; Toi, M.; Forrester, T.; Nanda, S.; Koustenis, A.; Bourayou, N.; Johnston, S. Abstract P5-21-02: Efficacy and safety of abemaciclib in patients with liver metastases in the MONARCH 1, 2, and 3 studies. In Proceedings of the Poster Session Abstracts, American Association for Cancer Research (AACR), San Antonio, TX, USA, 5–9 December 2017; Volume 78, p. P5-21. [Google Scholar]
- Singh, H.H.L.; Bloomquist, E.; Wedam, S.; Amiri-Kordestani, L.; Tang, S.; Sridhara, R.; Ibrahim, A.; Goldberg, K.; McKee, A.; Beaver, J.A.; et al. US Food and Drug Administration, Silver Spring: A U. S. food and drug administration pooled analysis of outcomes of older women with hormone-receptor positive metastatic breast cancer treated with a CDK4/6 inhibitor as initial endocrine based therapy. In Proceedings of the San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 5–9 December 2017. [Google Scholar]
- Nam, B.H.; Kim, S.Y.; Han, H.S.; Kwon, Y.; Lee, K.S.; Kim, T.H.; Ro, J. Breast cancer subtypes and survival in patients with brain metastases. Breast Cancer Res. 2008, 10, R20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestalozzi, B.C. Brain metastases and subtypes of breast cancer. Ann. Oncol. 2009, 20, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Raub, T.J.; Wishart, G.N.; Kulanthaivel, P.; Staton, B.A.; Ajamie, R.T.; Sawada, G.A.; Gelbert, L.M.; Shannon, H.E.; Sanchez-Martinez, C.; De Dios, A. Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft. Drug Metab. Dispos. 2015, 43, 1360–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachelot, T.; Kabos, P.; Yardley, D.; Diéras, V.; Costigan, T.; Klise, S.; Awada, A. Abstract P1-17-03: Abemaciclib for the treatment of brain metastases secondary to hormone receptor positive breast cancer. In Proceedings of the Poster Session Abstracts, American Association for Cancer Research (AACR), San Antonio, TX, USA, 5–9 December 2017; Volume 78, p. P1-17. [Google Scholar]
- Gao, J.J.; Cheng, J.; Bloomquist, E.; Schroeder, R.; Amiri-Kordestani, L.; Sridhara, R.; Blumenthal, G.M.; Pazdur, R.; Beaver, J.A.; Prowell, T.M. Benefit of CDK 4/6 inhibition in less common breast cancer subsets: A U.S. Food and Drug Administration pooled analysis. J. Clin. Oncol. 2018, 36, 1024. [Google Scholar] [CrossRef]
- Llombart-Cussac, A.; Pérez-García, J.M.; Bellet, M.; Dalenc, F.; Gil, M.J.G.; Borrego, M.R.; Gavilá, J.; Sampayo-Cordero, M.; Aguirre, E.; Schmid, P.; et al. PARSIFAL: A randomized, multicenter, open-label, phase II trial to evaluate palbociclib in combination with fulvestrant or letrozole in endocrine-sensitive patients with estrogen receptor (ER)[+]/HER2[-] metastatic breast cancer. In Proceedings of the ASCO Annual Meeting. J. Clin. Oncol. 2020, 38, 1007. [Google Scholar]
- Turner, N.C.; O’Leary, B.; Cutts, R.; Liu, Y.; Hrebien, S.; Huang, X.; Beaney, M.; Fenwick, K.; Andre, F.; Loibl, S.; et al. Genetic landscape of resistance to CDK4/6 inhibition in circulating tumor DNA (ctDNA) analysis of the PALOMA3 trial of palbociclib and fulvestrant versus placebo and fulvestrant. In Proceedings of the 2018 ASCO Annual Meeting, Chicago, IL, USA, 1–5 June 2018. [Google Scholar]
- Dean, J.L.; McClendon, A.K.; Hickey, T.E.; Butler, L.M.; Tilley, W.D.; Witkiewicz, A.K.; Knudsen, E.S. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle 2012, 11, 2756–2761. [Google Scholar] [CrossRef]
- Finn, R.; Turner, N.; Liu, Y.; Rugo, H.; Loibl, S.; Diéras, V.; Slamon, D.; André, F.; Gelmon, K.; DeMichele, A.; et al. Abstract P6-18-03: Biomarker analysis of CDK 4/6 and endocrine pathways in hormone-receptor positive (HR+) advanced breast cancer (ABC) bone only disease patients: A joint analysis of PALOMA-2 and PALOMA-3 studies. Poster Session Abstracts 2019, 79, P6–P18. [Google Scholar] [CrossRef]
- Neven, P.; Petrakova, K.; Bianchi, G.V.; Merino, L.d.; Jerusalem, G.; Beck, J.T.; Sonke, G.S.; Chia, S.; Brucker, S.; Wang, Y.; et al. Ribociclib (RIB) 1 fulvestrant (FUL) in hormone receptor-positive (HR1), human epidermal growth factor receptor 2-negative (HER2–) advanced breast cancer (ABC): MONALEESA-3 biomarker analyses. In Proceedings of the European Society for Medical Oncology Conference, Munich, Germany, 19–23 October 2018. [Google Scholar]
- Neven, P.; Petrakova, K.; Bianchi, G.V.; De La Cruz-Merino, L.; Jerusalem, G.; Sonke, G.; Nusch, A.; Beck, J.; Chia, S.; Solovieff, N.; et al. Abstract PD2-05: Biomarker analysis by baseline circulating tumor DNA alterations in the MONALEESA-3 study. Poster Discussion Abstracts 2019, 79, PD2-05. [Google Scholar] [CrossRef]
- Chia, S.; Su, F.; Neven, P.; Im, S.-A.; Petrakova, K.; Bianchi, G.V.; He, W.; Rodriguez-Lorenc, K.; Taran, T.; Babbar, N.; et al. Abstract PD2-08: Gene expression analysis and association with treatment response in postmenopausal patients with hormone receptor-positive, HER2-negative advanced breast cancer in the MONALEESA-3 study. In Proceedings of the Poster Spotlight Session Abstracts, American Association for Cancer Research (AACR), San Antoni, TX, USA, 10–14 December 2019; Volume 80, p. PD2-08. [Google Scholar]
- Andre, F.; Su, F.; Solovieff, N.; Arteaga, C.L.; Hortobagyi, G.N.; Chia, S.K.L.; Neven, P.; Bardia, A.; Tripathy, D.; Lu, Y.-S.; et al. Pooled ctDNA analysis of the MONALEESA (ML) phase III advanced breast cancer (ABC) trials. J. Clin. Oncol. 2020, 38, 1009. [Google Scholar] [CrossRef]
- Gong, X.; Litchfield, L.M.; Webster, Y.; Chio, L.-C.; Wong, S.S.; Stewart, T.R.; Dowless, M.; Dempsey, J.; Zeng, Y.; Torres, R.; et al. Genomic Aberrations that Activate D-type Cyclins Are Associated with Enhanced Sensitivity to the CDK4 and CDK6 Inhibitor Abemaciclib. Cancer Cell 2017, 32, 761–776.e6. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, E.S.; Witkiewicz, A.K. The Strange Case of CDK4/6 Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends Cancer 2017, 3, 39–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, G.I. Novel mechanisms of acquired resistance to selective CDK4/6 inhibition. In Proceedings of the AACR Annual Meeting 2018, Chicago, IL, USA, 14–18 April 2018. [Google Scholar]
- Yang, C.; Li, Z.; Bhatt, T.; Dickler, M.; Giri, D.; Scaltriti, M.; Baselga, J.; Rosen, N.; Chandarlapaty, S. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 2016, 36, 2255–2264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Razavi, P.; Li, Q.; Toy, W.; Liu, B.; Ping, C.; Hsieh, W.; Sanchez-Vega, F.; Brown, D.N.; Paula, A.F.D.C.; et al. Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 Inhibitors via the Hippo Pathway. Cancer Cell 2018, 34, 893–905.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olanich, M.E.; Sun, W.; Hewitt, S.M.; Abdullaev, Z.; Pack, S.D.; Barr, F.G. CDK4 Amplification Reduces Sensitivity to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma. Clin. Cancer Res. 2015, 21, 4947–4959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formisano, L.; Lu, Y.; Servetto, A.; Hanker, A.B.; Jansen, V.M.; Bauer, J.A.; Sudhan, D.; Guerrero-Zotano, A.L.; Croessmann, S.; Guo, Y.; et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat. Commun. 2019, 10, 1373. [Google Scholar] [CrossRef] [Green Version]
- Hortobagyi, G.N.; Paluch-Shimon, S.; Petrakova, K.; Villanueva, C.; Chan, A.; Nusch, A.; Yap, Y.S.; Hart, L.; Favret, A.; Marschner, N.; et al. First-line ribociclib (RIB) + letrozole (LET) in hormone receptor-positive (HR+), HER2-negative (HER2–) advanced breast cancer (ABC): MONALEESA-2 biomarker analyses. In Proceedings of the 2018 ASCO Annual Meeting, Chicago, IL, USA, 1–5 June 2018. [Google Scholar]
- Goetz, M.P.; Beck, J.T.; Campone, M.; Hurvitz, S.; Im, S.-A.; Johnston, S.; Llombart-Cussac, A.; Martin, M.; Sohn, J.; Toi, M.; et al. Abstract PD2-06: Efficacy of abemaciclib based on genomic alterations detected in baseline circulating tumor DNA from the MONARCH 3 study of abemaciclib plus nonsteroidal aromatase inhibitor. In Proceedings of the Poster Spotlight Session Abstracts, American Association for Cancer Research (AACR), San Antoni, TX, USA, 10–14 December 2019; Volume 80, p. PD2-06. [Google Scholar]
- Turner, N.C.; Liu, Y.; Zhu, Z.; Loi, S.; Colleoni, M.; Loibl, S.; DeMichele, A.; Harbeck, N.; André, F.; Zhang, Z.; et al. Abstract CT039: Cyclin E1 (CCNE1)expression associates with benefit from palbociclib in metastatic breast cancer (MBC) in the PALOMA3 trial. Clin. Trials 2018, 78, CT039. [Google Scholar] [CrossRef]
- Schiavon, G.; Hrebien, S.; Garcia-Murillas, I.; Cutts, R.J.; Pearson, A.; Tarazona, N.; Fenwick, K.; Kozarewa, I.; Lopez-Knowles, E.; Ribas, R.; et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med. 2015, 7, 313ra182. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.R.; Wu, Y.-M.; Vats, P.; Su, F.; Lonigro, R.J.; Cao, X.; Kalyana-Sundaram, S.; Wang, R.; Ning, Y.; Hodges, L.; et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 2013, 45, 1446–1451. [Google Scholar] [CrossRef] [Green Version]
- Fribbens, C.; O’Leary, B.; Kilburn, L.; Hrebien, S.; Garcia-Murillas, I.; Beaney, M.; Cristofanilli, M.; André, F.; Loi, S.; Loibl, S.; et al. Plasma ESR1 Mutations and the Treatment of Estrogen Receptor–Positive Advanced Breast Cancer. J. Clin. Oncol. 2016, 34, 2961–2968. [Google Scholar] [CrossRef]
- Gyanchandani, R.; Kota, K.J.; Jonnalagadda, A.R.; Minteer, T.; Knapick, B.A.; Oesterreich, S.; Brufsky, A.M.; Lee, A.V.; Puhalla, S.L. Detection of ESR1 mutations in circulating cell-free DNA from patients with metastatic breast cancer treated with palbociclib and letrozole. Oncotarget 2016, 8, 66901–66911. [Google Scholar] [CrossRef] [Green Version]
- Razavi, P.; dos Anjos, C.H.; Brown, D.N.; Qing, L.; Ping, C.; Herbert, J.; Colon, J.; Liu, D.; Mao, M.; Norton, L.; et al. Molecular profiling of ER+ metastatic breast cancers to reveal association of genomic alterations with acquired resistance to CDK4/6 inhibitors. In Proceedings of the ASCO Annual Meeting, Chicago, IL, USA, 31 May–4 June 2019. [Google Scholar]
- Vignot, S.; Besse, B.; André, F.; Spano, J.-P.; Soria, J.-C. Discrepancies between primary tumor and metastasis: A literature review on clinically established biomarkers. Crit. Rev. Oncol. 2012, 84, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Merker, J.D.; Oxnard, G.R.; Compton, C.; Diehn, M.; Hurley, P.; Lazar, A.; Lindeman, N.; Lockwood, C.M.; Rai, A.J.; Schilsky, R.L.; et al. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J. Clin. Oncol. 2018, 36, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Dawson, S.-J.; Tsui, D.W.; Murtaza, M.; Biggs, H.; Rueda, O.M.; Chin, S.-F.; Dunning, M.J.; Gale, D.; Forshew, T.; Mahler-Araujo, B.; et al. Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer. N. Engl. J. Med. 2013, 368, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Murillas, I.; Schiavon, G.; Weigelt, B.; Ng, C.K.; Hrebien, S.; Cutts, R.J.; Cheang, M.C.U.; Osin, P.; Nerurkar, A.; Kozarewa, I.; et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 2015, 7, 302ra133. [Google Scholar] [CrossRef]
- Gagliato, D.D.M.; Jardim, D.L.F. Noninvasive cancer biomarkers in solid malignancies: Circulating tumor DNA—Clinical utility, current limitations and future perspectives. Ann. Transl. Med. 2018, 6, 233. [Google Scholar] [CrossRef] [PubMed]
- Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar] [PubMed]
- O’Leary, B.; Hrebien, S.; Morden, J.P.; Beaney, M.; Fribbens, C.; Huang, X.; Liu, Y.; Bartlett, C.H.; Koehler, M.; Cristofanilli, M.; et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bidard, F.C.; Callens, C.; Dalenc, F.; Pistilli, B.; Rouge, T.D.L.M.; Clatot, F.; D’Hondt, V.; Teixeira, L.; Vegas, H.; Everhard, S.; et al. Prognostic impact of ESR1 mutations in ER+ HER2- MBC patients prior treated with first line AI and palbociclib: An exploratory analysis of the PADA-1 trial. J. Clin. Oncol. 2020, 38, 1010. [Google Scholar] [CrossRef]
- Crucitta, S.; Del Re, M.; Fontana, A.; Bertolini, I.; Rofi, E.; de Angelis, C.; Diodati, L.; Cavallero, D.; Salvadori, B.; Falcone, A.; et al. Expression of TK1 and CDK9 in plasma-derived exosomes is associated with clinical response to CDK4/6 inhibitors in breast cancer. In Proceedings of the 2018 ESMO Annual Meeting, Munich, Germany, 19–23 October 2018. [Google Scholar]
- Navarro-Yepes, J.; Chen, X.; Bui, T.; Kettner, N.M.; Hunt, K.K.; Keyomarsi, K. Differential mechanisms of acquired resistance to abemaciclib versus palbociclib reveal novel therapeutic strategies for CDK4/6 therapy-resistant breast cancers. In Proceedings of the 2018 San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 11–14 December 2019. [Google Scholar]
Clinical Trial | Endocrine Agent | CDK4/6 Inhibitor | PFS | HR |
---|---|---|---|---|
PALOMA 1 | Letrozol (L) | Palbociclib (P) | 10.2 months (L) 20.2 months (L + P) | HR = 0·488, 95% CI = 0·319–0·748, p = 0.0004 |
PALOMA 2 | Letrozol (L) | Palbociclib (P) | 14.5 months (L) 24.8 months (L + P) | HR = 0.58; 95% CI = 0.46 to 0.72; p < 0.001 |
MONALEESA 2 | Letrozol(L) | Ribociclib (R) | 14.7 months (L) Not reached (L + R) | HR = 0.59; 95% CI = 0.41 to 0.85; p = 0.002 |
MONALEESA 3 | Fulvestrant (F) | Ribociclib (R) | 12.8 months (F) 20.5 months (F + R) | HR = 0.593; 95% CI = 0.48–0.73; p = 4.10 × 10–7 |
MONALEESA 7 | Nonsteroidal AIor Tamoxifen + OFS (ET + OFS) | Ribociclib (R) | 13 months (ET) 23.8 months (ET + R) | HR = 0.553 (95% CI = 0.441–0.694; p = 9.83 × 10–8 |
MONARCH 3 | Nonsteroidal AI (AI) | Abemaciclib (A) | 14.7 months (ET) Not reached (ET + A) | HR = 0.54; 95% CI = 0.41 to 0.72; p = 0.00021 |
Clinical Trial | Endocrine Agent | CDK4/6 Inhibitor | PFS | HR |
---|---|---|---|---|
PALOMA 3 | Fulvestrant | Palbociclib (P) | 3.8 months (F) 9.2 months (F + P) | HR = 0.42; 95% CI = 0.32 to 0.56; p < 0.001 |
MONALEESA 3 | Fulvestrant (F) | Ribociclib (R) | 12.8 months (F) 20.5 months (F + R) | HR = 0.593; 95% CI = 0.48–0.73; p = 4.10 × 10–7 |
MONARCH 2 | Fulvestrant | Abemaciclib (A) | 9.3 months (F) 16.4 months (F + A) | HR = 0.553; 95% CI = 0.449 to 0.681 p < 0.001 |
Substitute for Efficacy Endpoints | PALOMA 2 | MONARCH 3 | ||
---|---|---|---|---|
Letrozol + Placebo | Letrozol + Palbociclib | AI + Placebo | AI + Abemaciclib | |
Overall mPFS | 14.5 months | 24.8 months | 14.7 months | Not reached |
Liver Metastasis mPFS | 8.4 months | 13.7 months | 7.2 months | 15 months |
Overall RR | 44.4% | 55.3% | 43.8% | 59.2% |
Liver Metastasis RR | 37% | 41.3% | 20.7% | 54.2% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Melo Gagliato, D.; C Buzaid, A.; Perez-Garcia, J.M.; Llombart, A.; Cortes, J. CDK4/6 Inhibitors in Hormone Receptor-Positive Metastatic Breast Cancer: Current Practice and Knowledge. Cancers 2020, 12, 2480. https://doi.org/10.3390/cancers12092480
de Melo Gagliato D, C Buzaid A, Perez-Garcia JM, Llombart A, Cortes J. CDK4/6 Inhibitors in Hormone Receptor-Positive Metastatic Breast Cancer: Current Practice and Knowledge. Cancers. 2020; 12(9):2480. https://doi.org/10.3390/cancers12092480
Chicago/Turabian Stylede Melo Gagliato, Debora, Antonio C Buzaid, Jose Manuel Perez-Garcia, Antonio Llombart, and Javier Cortes. 2020. "CDK4/6 Inhibitors in Hormone Receptor-Positive Metastatic Breast Cancer: Current Practice and Knowledge" Cancers 12, no. 9: 2480. https://doi.org/10.3390/cancers12092480
APA Stylede Melo Gagliato, D., C Buzaid, A., Perez-Garcia, J. M., Llombart, A., & Cortes, J. (2020). CDK4/6 Inhibitors in Hormone Receptor-Positive Metastatic Breast Cancer: Current Practice and Knowledge. Cancers, 12(9), 2480. https://doi.org/10.3390/cancers12092480