Preclinical In Vivo-Models to Investigate HIPEC; Current Methodologies and Challenges
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. HIPEC Research Categories
4. Preclinical HIPEC Models
4.1. Animal Model
4.2. Tumor Model
4.3. Experimental HIPEC Model
4.4. Temperature Monitoring and Control
5. Physiological and Anticancer Aspects of Preclinical HIPEC Models
5.1. Type of Drug and Drug Concentration
5.2. Carrier Solution
5.3. Volume
5.4. Temperature
5.5. Duration
5.6. Delivery Technique
6. Outlook
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Desai, J.P.; Moustarah, F. Cancer, Peritoneal Metastasis; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Verwaal, V.J.; Bruin, S.; Boot, H.; Van Slooten, G.; Van Tinteren, H. 8-Year Follow-up of Randomized Trial: Cytoreduction and Hyperthermic Intraperitoneal Chemotherapy Versus Systemic Chemotherapy in Patients with Peritoneal Carcinomatosis of Colorectal Cancer. Ann. Surg. Oncol. 2008, 15, 2426–2432. [Google Scholar] [CrossRef] [PubMed]
- Elias, D.; Lefevre, J.; Chevalier, J.; Brouquet, A.; Marchal, F.; Classe, J.-M.; Ferron, G.; Guilloit, J.-M.; Meeus, P.; Goéré, D.; et al. Complete Cytoreductive Surgery Plus Intraperitoneal Chemohyperthermia With Oxaliplatin for Peritoneal Carcinomatosis of Colorectal Origin. J. Clin. Oncol. 2009, 27, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Franko, J.; Ibrahim, Z.; Gusani, N.J.; Holtzman, M.P.; Bartlett, D.L.; Zeh, H.J. Cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion versus systemic chemotherapy alone for colorectal peritoneal carcinomatosis. Cancer 2010, 116, 3756–3762. [Google Scholar] [CrossRef] [PubMed]
- Van Driel, W.J.; Koole, S.N.; Sikorska, K.; Schagen van Leeuwen, J.H.S.; Schreuder, H.W.; Hermans, R.H.; de Hingh, I.H.; van der Velden, J.; Arts, H.J.; Massuger, L.F.; et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N. Engl. J. Med. 2018, 378, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Quénet, F.; Elias, D.; Roca, L.; Goéré, D.; Ghouti, L.; Pocard, M.; Facy, O.; Arvieux, C.; Lorimier, G.; Pezet, D.; et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 256–266. [Google Scholar] [CrossRef]
- Klempner, S.J.; Ryan, D.P. HIPEC for colorectal peritoneal metastases. Lancet Oncol. 2021, 22, 162–164. [Google Scholar] [CrossRef]
- Ceelen, W. HIPEC with oxaliplatin for colorectal peritoneal metastasis: The end of the road? Eur. J. Surg. Oncol. (EJSO) 2019, 45, 400–402. [Google Scholar] [CrossRef]
- Carboni, F.; Valle, M. Limitations of the PRODIGE 7 trial. Lancet Oncol. 2021, 22, e176. [Google Scholar] [CrossRef]
- Liberale, G.; Ameye, L.; Hendlisz, A. PRODIGE 7 should be interpreted with caution. Acta Chir. Belg. 2018, 119, 263–266. [Google Scholar] [CrossRef]
- Kirstein, M.N.; Root, S.A.; Moore, M.M.; Wieman, K.M.; Williams, B.W.; Jacobson, P.A.; Marker, P.H.; Tuttle, T. Exposure–response relationships for oxaliplatin-treated colon cancer cells. Anti-Cancer Drugs 2008, 19, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H.; van der Speeten, K. The PRODIGE 7 randomized trial has 4 design flaws and 4 pharmacologic flaws and cannot be used to discredit other HIPEC regimens. J. Gastrointest. Oncol. 2021, 12, S129–S130. [Google Scholar] [CrossRef]
- Auer, R.C.; Sivajohanathan, D.; Biagi, J.; Conner, J.; Kennedy, E.; May, T. Indications for hyperthermic intraperitoneal chemotherapy with cytoreductive surgery: A systematic review. Eur. J. Cancer 2020, 127, 76–95. [Google Scholar] [CrossRef]
- Helderman, R.F.C.P.A.; Löke, D.R.; Kok, H.P.; Oei, A.L.; Tanis, P.J.; Franken, N.A.P.K.; Crezee, J. Variation in Clinical Application of Hyperthermic Intraperitoneal Chemotherapy: A Review. Cancers 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Bushati, M.; Rovers, K.; Sommariva, A.; Sugarbaker, P.; Morris, D.; Yonemura, Y.; Quadros, C.; Somashekhar, S.; Ceelen, W.; Dubé, P.; et al. The current practice of cytoreductive surgery and HIPEC for colorectal peritoneal metastases: Results of a worldwide web-based survey of the Peritoneal Surface Oncology Group International (PSOGI). Eur. J. Surg. Oncol. (EJSO) 2018, 44, 1942–1948. [Google Scholar] [CrossRef]
- Spiliotis, J.; Kalles, V.; Kyriazanos, I.; Terra, A.; Prodromidou, A.; Raptis, A.; Kopanakis, N.; Christopoulou, A. CRS and HIPEC in patients with peritoneal metastasis secondary to colorectal cancer: The small-bowel PCI score as a predictor of survival. Pleura Peritoneum 2019, 4, 20190018. [Google Scholar] [CrossRef]
- Spiegelberg, J.; Neeff, H.; Holzner, P.; Runkel, M.; Fichtner-Feigl, S.; Glatz, T. Comparison of hyperthermic intraperitoneal chemotherapy regimens for treatment of peritoneal-metastasized colorectal cancer. World J. Gastrointest. Oncol. 2020, 12, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.-H.; Yu, Y.; Liu, G.; Zhang, Y.-B.; An, S.-L.; Li, B.; Li, X.-B.; Yan, G.-J.; Li, Y. Peritoneal cancer index (PCI) based patient selecting strategy for complete cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy in gastric cancer with peritoneal metastasis: A single-center retrospective analysis of 125 patients. Eur. J. Surg. Oncol. (EJSO) 2021, 47, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, J.M.; Tobin, L.; Heavey, S.F.; Kelly, K.J.; Roeland, E.J.; Lowy, A.M. Predictors of Progression in High-Grade Appendiceal or Colorectal Peritoneal Carcinomatosis after Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Ann. Surg. Oncol. 2014, 22, 1716–1721. [Google Scholar] [CrossRef]
- Fagotti, A.; Petrillo, M.; Costantini, B.; Fanfani, F.; Gallotta, V.; Chiantera, V.; Turco, L.C.; Bottoni, C.; Scambia, G. Minimally invasive secondary cytoreduction plus HIPEC for recurrent ovarian cancer: A case series. Gynecol. Oncol. 2014, 132, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Gallotta, V.; Fagotti, A.; Fanfani, F.; Ferrandina, M.G.; Nero, C.; Costantini, B.; Alletti, S.G.; Chiantera, V.; Ercoli, A.; Scambia, G. Laparoscopic surgical management of localized recurrent ovarian cancer: A single-institution experience. Surg. Endosc. 2014, 28, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Urano, M.; Ling, C.C. Thermal enhancement of melphalan and oxaliplatin cytotoxicity in vitro. Int. J. Hyperthermia 2002, 18, 307–315. [Google Scholar] [CrossRef]
- Helderman, R.F.C.P.A.; Löke, D.R.; Verhoeff, J.; Rodermond, H.M.; van Bochove, G.G.; Boon, M.; van Kesteren, S.; Vallejo, J.J.G.; Kok, H.P.; Tanis, P.J.; et al. The Temperature-Dependent Effectiveness of Platinum-Based Drugs Mitomycin-C and 5-FU during Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Colorectal Cancer Cell Lines. Cells 2020, 9, 1775. [Google Scholar] [CrossRef]
- Murata, S.; Yamamoto, H.; Shimizu, T.; Naitoh, H.; Yamaguchi, T.; Kaida, S.; Takebayashi, K.; Miyake, T.; Tani, T.; Tani, M. 5-fluorouracil combined with cisplatin and mitomycin C as an optimized regimen for hyperthermic intraperitoneal chemotherapy in gastric cancer. J. Surg. Oncol. 2018, 117, 671–677. [Google Scholar] [CrossRef]
- Ubink, I.; Bolhaqueiro, A.C.F.; Elias, S.G.; Raats, D.A.E.; Constantinides, A.; Peters, N.A.; Wassenaar, E.C.E.; de Hingh, I.H.J.T.; Rovers, K.P.; van Grevenstein, W.M.U.; et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy. BJS 2019, 106, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Ceelen, W.; Demuytere, J.; de Hingh, I. Hyperthermic Intraperitoneal Chemotherapy: A Critical Review. Cancers 2021, 13, 3114. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.; de Hingh, I.; van der Speeten, K.; Hubner, M.; Deraco, M.; Bakrin, N.; Villeneuve, L.; Kusamura, S.; Glehen, O. HIPEC Methodology and Regimens: The Need for an Expert Consensus. Ann. Surg. Oncol. 2021, 1–16. [Google Scholar] [CrossRef]
- Bakkers, C.; Simkens, G.A.A.M.; de Hingh, I.H.J.T. Systemic therapy in addition to cytoreduction and hyperthermic intraperitoneal chemotherapy for colorectal peritoneal metastases: Recent insights from clinical studies and translational research. J. Gastrointest. Oncol. 2021, 12, S206–S213. [Google Scholar] [CrossRef] [PubMed]
- Van Stein, R.M.; Aalbers, A.G.J.; Sonke, G.S.; van Driel, W.J. Hyperthermic Intraperitoneal Chemotherapy for Ovarian and Colorectal Cancer. JAMA Oncol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, O.; van der Speeten, K.; de Hingh, I. Peritoneal Metastases From Colorectal Cancer: Defining and Addressing the Challenges. Front. Oncol. 2021, 11, 650098. [Google Scholar] [CrossRef] [PubMed]
- Ceelen, W.; Braet, H.; van Ramshorst, G.; Willaert, W.; Remaut, K. Intraperitoneal chemotherapy for peritoneal metastases: An expert opinion. Expert Opin. Drug Deliv. 2020, 17, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Bespalov, V.G.; Alvovsky, I.; Tochilnikov, G.V.; Stukov, A.N.; Vyshinskaya, E.A.; Semenov, A.L.; Vasilyeva, I.N.; Belyaeva, O.A.; Kireeva, G.S.; Senchik, K.Y.; et al. Comparative efficacy evaluation of catheter intraperitoneal chemotherapy, normothermic and hyperthermic chemoperfusion in a rat model of ascitic ovarian cancer. Int. J. Hyperth. 2017, 34, 545–550. [Google Scholar] [CrossRef]
- Huang, W.-C.; Wu, C.-C.; Hsu, Y.-T.; Chang, C.-L. Effect of hyperthermia on improving neutrophil restoration after intraperitoneal chemotherapy. Int. J. Hyperth. 2019, 36, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Graziosi, L.; Mencarelli, A.; Renga, B.; Santorelli, C.; Cantarella, F.; Bugiantella, W.; Cavazzoni, E.; Donini, A.; Fiorucci, S. Gene expression changes induced by HIPEC in a murine model of gastric cancer. Vivo 2012, 26, 39–45. [Google Scholar]
- Bevanda, M.; Orsolic, N.; Basic, I.; Vukojević, K.; Benkovic, V.; Knezevic, A.H.; Lisičić, D.; Dikic, D.; Kujundžić, M. Prevention of peritoneal carcinomatosis in mice with combination hyperthermal intraperitoneal chemotherapy and IL-2. Int. J. Hyperth. 2009, 25, 132–140. [Google Scholar] [CrossRef]
- Oršolić, N.; Car, N. Quercetin and hyperthermia modulate cisplatin-induced DNA damage in tumor and normal tissues in vivo. Tumor Biol. 2014, 35, 6445–6454. [Google Scholar] [CrossRef] [PubMed]
- Muenyi, C.S.; States, V.; Masters, J.H.; Fan, T.W.; Helm, C.W.; States, J.C. Sodium arsenite and hyperthermia modulate cisplatin-DNA damage responses and enhance platinum accumulation in murine metastatic ovarian cancer xenograft after hyperthermic intraperitoneal chemotherapy (HIPEC). J. Ovarian Res. 2011, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Düzgün, Ö.; Sarici, I.S.; Gokcay, S.; Ates, K.E.; Yılmaz, M.B. Effects of nivolumab in peritoneal carcinamatosis of malign melanoma in mouse model. Acta Cir. Bras. 2017, 32, 1006–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, K.; Rickenbacher, A.; Jang, J.-H.; Oberkofler, C.E.; Vonlanthen, R.; von Boehmer, L.; Humar, B.; Graf, R.; Gertsch, P.; Clavien, P.-A. New Insight into Hyperthermic Intraperitoneal Chemotherapy. Ann. Surg. 2012, 256, 730–738. [Google Scholar] [CrossRef]
- Trépanier, J.-S.; Sideris, L.; Lee, L.; Tremblay, J.-F.; Drolet, P.; Dubé, P. Impact of electrocautery and hyperthermic intraperitoneal chemotherapy on intestinal microvasculature in a murine model. Int. J. Hyperth. 2016, 32, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; Duan, R.; Zhong, Y.-J.; Firestone, R.; Hong, Y.-P.; Li, J.-G.; Xin, Y.-C.; Wu, H.-L.; Li, Y. Synthesis, identification and in vivo studies of tumor-targeting agent peptide doxorubicin (PDOX) to treat peritoneal carcinomatosis of gastric cancer with similar efficacy but reduced toxicity. Mol. Cancer 2014, 13, 44. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Mei, L.-J.; Yang, X.-J.; Huang, C.-Q.; Zhou, Y.-F.; Yonemura, Y.; Li, Y. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy improves survival of gastric cancer with peritoneal carcinomatosis: Evidence from an experimental study. J. Transl. Med. 2011, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Park, E.J.; Ahn, J.; Gwak, S.W.; Park, K.S.; Baik, S.H.; Hwang, S.-J. Pharmacologic Properties of the Carrier Solutions for Hyperthermic Intraperitoneal Chemotherapy: Comparative Analyses between Water and Lipid Carrier Solutions in the Rat Model. Ann. Surg. Oncol. 2018, 25, 3185–3192. [Google Scholar] [CrossRef] [PubMed]
- Raue, W.; Kilian, M.; Braumann, C.; Atanassow, V.; Makareinis, A.; Caldenas, S.; Schwenk, W.; Hartmann, J. Multimodal approach for treatment of peritoneal surface malignancies in a tumour-bearing rat model. Int. J. Color. Dis. 2010, 25, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Bespalov, V.G.; Kireeva, G.S.; Belyaeva, O.A.; Kalinin, O.E.; Senchik, K.Y.; Stukov, A.N.; Gafton, G.I.; Guseynov, K.D.; Belyaev, A.M. Both heat and new chemotherapeutic drug dioxadet in hyperthermic intraperitoneal chemoperfusion improved survival in rat ovarian cancer model. J. Surg. Oncol. 2016, 113, 438–442. [Google Scholar] [CrossRef]
- Aghayeva, A.; Benlice, C.; Bilgin, I.A.; Atukeren, P.; Dogusoy, G.; Demir, F.; Atasoy, D.; Baca, B. The Effects of Hyperthermic Intraperitoneal Chemoperfusion on Colonic Anastomosis: An Experimental Study in a Rat Model. Tumori J. 2017, 103, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Klaver, Y.L.B.; Hendriks, T.; Lomme, R.; Rutten, H.J.T.; Bleichrodt, R.P.; de Hingh, I. Intraoperative hyperthermic intraperitoneal chemotherapy after cytoreductive surgery for peritoneal carcinomatosis in an experimental model. BJS 2010, 97, 1874–1880. [Google Scholar] [CrossRef] [PubMed]
- Derrien, A.; Gouard, S.; Maurel, C.; Gaugler, M.-H.; Bruchertseifer, F.; Morgenstern, A.; Faivre-Chauvet, A.; Classe, J.-M.; Chérel, M. Therapeutic Efficacy of Alpha-RIT Using a 213Bi-Anti-hCD138 Antibody in a Mouse Model of Ovarian Peritoneal Carcinomatosis. Front. Med. 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Francescutti, V.; Rivera, L.; Seshadri, M.; Kim, M.; Haslinger, M.; Camoriano, M.; Attwood, K.; Kane, J.M.; Skitzki, J.J. The benefit of intraperitoneal chemotherapy for the treatment of colorectal carcinomatosis. Oncol. Rep. 2013, 30, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Li, Y.; Liang, X.; Qi, Y.; Chen, Y.; Meng, X.; Zheng, H.; Xu, Y.; Cai, S.; Cai, G.; et al. A study of peritoneal metastatic xenograft model of colorectal cancer in the treatment of hyperthermic intraperitoneal chemotherapy with Raltitrexed. Biomed. Pharmacother. 2017, 92, 149–156. [Google Scholar] [CrossRef]
- Badrudin, D.; Perrault-Mercier, C.; Bouchard-Fortier, A.; Hubert, J.; Leblond, F.A.; Sideris, L.; Dubé, P. Pharmacokinetics and the effect of heat on intraperitoneal pemetrexed using a murine model. Surg. Oncol. 2016, 25, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Piché, N.; Leblond, F.A.; Sidéris, L.; Pichette, V.; Drolet, P.; Fortier, L.-P.; Mitchell, A.; Dubé, P. Rationale for Heating Oxaliplatin for the Intraperitoneal Treatment of Peritoneal Carcinomatosis. Ann. Surg. 2011, 254, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Gesson-Paute, A.; Ferron, G.; Thomas, F.; de Lara, E.C.; Chatelut, E.; Querleu, D. Pharmacokinetics of Oxaliplatin During Open Versus Laparoscopically Assisted Heated Intraoperative Intraperitoneal Chemotherapy (HIPEC): An Experimental Study. Ann. Surg. Oncol. 2007, 15, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, L.; Thijssen, E.; Carleer, R.; Cops, J.; Lemmens, V.; Van Eyken, P.; Sugarbaker, P.; van der Speeten, K. Body surface area-based versus concentration-based intraperitoneal perioperative chemotherapy in a rat model of colorectal peritoneal surface malignancy: Pharmacologic guidance towards standardization. Oncotarget 2019, 10, 1407–1424. [Google Scholar] [CrossRef] [PubMed]
- Liesenfeld, L.F.; Hillebrecht, H.C.; Klose, J.; Schmidt, T.; Schneider, M. Impact of Perfusate Concentration on Hyperthermic Intraperitoneal Chemotherapy Efficacy and Toxicity in a Rodent Model. J. Surg. Res. 2020, 253, 262–271. [Google Scholar] [CrossRef] [PubMed]
- McCabe-Lankford, E.; Peterson, M.; McCarthy, B.; Brown, A.J.; Terry, B.; Galarza-Paez, L.; Levi-Polyachenko, N. Murine Models of Intraperitoneal Perfusion for Disseminated Colorectal Cancer. J. Surg. Res. 2019, 233, 310–322. [Google Scholar] [CrossRef]
- Badrudin, D.; Sideris, L.; Perrault-Mercier, C.; Hubert, J.; Leblond, F.A.; Dubé, P. Comparison of open and closed abdomen techniques for the delivery of intraperitoneal pemetrexed using a murine model. J. Surg. Oncol. 2018, 117, 1318–1322. [Google Scholar] [CrossRef]
- Sánchez-García, S.; Padilla-Valverde, D.; Villarejo-Campos, P.; Martín-Fernández, J.; García-Rojo, M.; Rodríguez-Martínez, M. Experimental development of an intra-abdominal chemohyperthermia model using a closed abdomen technique and a PRS-1.0 Combat CO2 recirculation system. Surgery 2014, 155, 719–725. [Google Scholar] [CrossRef]
- Padilla-Valverde, D.; Villarejo, P.; Redondo, J.; Oyarzabal, J.; Estella, A.; Palomino, T.; Fernandez, E.; Sanchez, S.; Faba, P.; Baladron, V.; et al. Laparoscopic cytoreductive surgery and HIPEC is effective regarding peritoneum tissue paclitaxel distribution. Clin. Transl. Oncol. 2019, 21, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Deballon, P.; Facy, O.; Jambet, S.; Magnin, G.; Cotte, E.; Beltramo, J.L.; Chauffert, B.; Rat, P. Which Method to Deliver Hyperthermic Intraperitoneal Chemotherapy with Oxaliplatin? An Experimental Comparison of Open and Closed Techniques. Ann. Surg. Oncol. 2010, 17, 1957–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega-Deballon, P.; Facy, O.; Magnin, G.; Piard, F.; Chauffert, B.; Rat, P. Using a heating cable within the abdomen to make hyperthermic intraperitoneal chemotherapy easier: Feasibility and safety study in a pig model. Eur. J. Surg. Oncol. (EJSO) 2010, 36, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Ocak, S.; Buk, O.F.; Genc, B.; Avcı, B.; Uzuner, H.O.; Gundogdu, S.B. The effects of platelet-rich-plasma gel application to the colonic anastomosis in hyperthermic intraperitoneal chemotherapy: An experimental rat model. Int. Wound J. 2019, 16, 1426–1432. [Google Scholar] [CrossRef]
- Buk, O.F.; Ocak, S.; Genc, B.; Avcı, B.; Uzuner, H.O. Is platelet-rich plasma improves the anastomotic healing in hyperthermic intraperitoneal chemotherapy with oxaliplatin: An experimental rat study. Ann. Surg. Treat. Res. 2020, 98, 89–95. [Google Scholar] [CrossRef]
- Bespalov, V.G.; Kireeva, G.S.; Belyaeva, O.A.; Senchik, K.Y.; Stukov, A.N.; Maydin, M.A.; Semenov, A.L.; Gafton, G.I.; Guseynov, K.D.; Belyaev, A.M. Experimental study of antitumour activity and effects on leukocyte count of intraperitoneal administration and hyperthermic intraperitoneal chemoperfusion (HIPEC) with dioxadet in a rat model of ovarian cancer. J. Chemother. 2016, 28, 203–209. [Google Scholar] [CrossRef] [PubMed]
- López-López, V.; Lynn, P.B.; Gil, J.; García-Salom, M.; Gil, E.; González, A.; Muñoz, I.P.; Cascales-Campos, P.A. Effect of Paclitaxel-based Hyperthermic Intraperitoneal Chemotherapy (HIPEC) on colonic anastomosis in a rat model. Clin. Transl. Oncol. 2018, 21, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Glehen, O.; Stuart, O.A.; Mohamed, F.; Sugarbaker, P.H. Hyperthermia modifies pharmacokinetics and tissue distribution of intraperitoneal melphalan in a rat model. Cancer Chemother. Pharmacol. 2004, 54, 79–84. [Google Scholar] [CrossRef]
- Jacquet, P.; Averbach, A.; Stuart, O.A.; Chang, D.; Sugarbaker, P.H. Hyperthermic intraperitoneal doxorubicin: Pharmacokinetics, metabolism, and tissue distribution in a rat model. Cancer Chemother. Pharmacol. 1997, 41, 147–154. [Google Scholar] [CrossRef]
- Badrudin, D.; Sideris, L.; Leblond, F.; Pichette, V.; Cloutier, A.; Drolet, P.; Dubé, P. Rationale for the administration of systemic 5-FU in combination with heated intraperitonal oxaliplatin. Surg. Oncol. 2018, 27, 275–279. [Google Scholar] [CrossRef]
- Aarts, F.; Bleichrodt, R.P.; de Man, B.; Lomme, R.; Boerman, O.C.; Hendriks, T. The Effects of Adjuvant Experimental Radioimmunotherapy and Hyperthermic Intraperitoneal Chemotherapy on Intestinal and Abdominal Healing after Cytoreductive Surgery for Peritoneal Carcinomatosis in the Rat. Ann. Surg. Oncol. 2008, 15, 3299–3307. [Google Scholar] [CrossRef] [PubMed]
- Bouquet, W.; Deleye, S.; Staelens, S.; de Smet, L.; Van Damme, N.; DeBergh, I.; Ceelen, W.P.; de Vos, F.; Remon, J.P.; Vervaet, C. Antitumour Efficacy of Two Paclitaxel Formulations for Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in an In Vivo Rat Model. Pharm. Res. 2011, 28, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Pelz, J.O.W.; Doerfer, J.; Decker, M.; Dimmler, A.; Hohenberger, W.; Meyer, T. Hyperthermic intraperitoneal chemoperfusion (HIPEC) decrease wound strength of colonic anastomosis in a rat model. Int. J. Color. Dis. 2007, 22, 941–947. [Google Scholar] [CrossRef]
- Pelz, J.O.W.; Doerfer, J.; Hohenberger, W.; Meyer, T. A new survival model for hyperthermic intraperitoneal chemotherapy (HIPEC) in tumor-bearing rats in the treatment of peritoneal carcinomatosis. BMC Cancer 2005, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Klaver, Y.L.B.; Hendriks, T.; Lomme, R.; Rutten, H.J.T.; Bleichrodt, R.P.; de Hingh, I. Intraoperative versus Early Postoperative Intraperitoneal Chemotherapy after Cytoreduction for Colorectal Peritoneal Carcinomatosis: An Experimental Study. Ann. Surg. Oncol. 2011, 19, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Klaver, Y.L.B.; Hendriks, T.; Lomme, R.; Rutten, H.J.T.; Bleichrodt, R.P.; de Hingh, I. Hyperthermia and Intraperitoneal Chemotherapy for the Treatment of Peritoneal Carcinomatosis. Ann. Surg. 2011, 254, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Bouquet, W.; Ceelen, W.; Adriaens, E.; Almeida, A.; Quinten, T.; de Vos, F.; Pattyn, P.; Peeters, M.; Remon, J.P.; Vervaet, C. In vivo Toxicity and Bioavailability of Taxol® and a Paclitaxel/β-Cyclodextrin Formulation in a Rat Model during HIPEC. Ann. Surg. Oncol. 2010, 17, 2510–2517. [Google Scholar] [CrossRef] [PubMed]
- Löke, D.R.; Helderman, R.F.C.P.A.; Sijbrands, J.; Rodermond, H.M.; Tanis, P.J.; Franken, N.A.P.; Oei, A.L.; Kok, H.P.; Crezee, J. A Four-Inflow Construction to Ensure Thermal Stability and Uniformity during Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Rats. Cancers 2020, 12, 3516. [Google Scholar] [CrossRef]
- Sørensen, O.; Andersen, A.M.; Larsen, S.G.; Giercksky, K.-E.; Flatmark, K. Intraperitoneal mitomycin C improves survival compared to cytoreductive surgery alone in an experimental model of high-grade pseudomyxoma peritonei. Clin. Exp. Metastasis 2019, 36, 511–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colin, P.; de Smet, L.; Vervaet, C.; Remon, J.-P.; Ceelen, W.; Van Bocxlaer, J.; Boussery, K.; Vermeulen, A. A Model Based Analysis of IPEC Dosing of Paclitaxel in Rats. Pharm. Res. 2014, 31, 2876–2886. [Google Scholar] [CrossRef]
- Oršolic, N.; Car, N.; Lisicic, D.; Benkovic, V.; Knežević, A.H.; Domagoj, D.; Petrik, J. Synergism between Propolis and Hyperthermal Intraperitoneal Chemotherapy with Cisplatin on Ehrlich Ascites Tumor in Mice. J. Pharm. Sci. 2013, 102, 4395–4405. [Google Scholar] [CrossRef]
- Carlier, C.; Laforce, B.; van Malderen, S.J.; Gremonprez, F.; Tucoulou, R.; Villanova, J.; de Wever, O.; Vincze, L.; Vanhaecke, F.; Ceelen, W. Nanoscopic tumor tissue distribution of platinum after intraperitoneal administration in a xenograft model of ovarian cancer. J. Pharm. Biomed. Anal. 2016, 131, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Miailhe, G.; Arfi, A.; Mirshahi, M.; Eveno, C.; Pocard, M.; Touboul, C. A new animal model for hyperthermic intraperitoneal chemotherapy (HIPEC) in tumor-bearing mice in the treatment of peritoneal carcinomatosis of ovarian origin. J. Visc. Surg. 2018, 155, 183–189. [Google Scholar] [CrossRef]
- Kudo, M.; Asao, T.; Hashimoto, S.; Kuwano, H. Closed continuous hyperthermic peritoneal perfusion model in mice with peritoneal dissemination of colon 26. Int. J. Hyperth. 2004, 20, 441–450. [Google Scholar] [CrossRef]
- Facy, O.; Combier, C.; Poussier, M.; Magnin, G.; Ladoire, S.; Ghiringhelli, F.; Chauffert, B.; Rat, P.; Ortega-Deballon, P. High pressure does not counterbalance the advantages of open techniques over closed techniques during heated intraperitoneal chemotherapy with oxaliplatin. Surgery 2015, 157, 72–78. [Google Scholar] [CrossRef]
- Facy, O.; al Samman, S.; Magnin, G.; Ghiringhelli, F.; Ladoire, S.; Chauffert, B.; Rat, P.; Ortega-Deballon, P. High Pressure Enhances the Effect of Hyperthermia in Intraperitoneal Chemotherapy With Oxaliplatin. Ann. Surg. 2012, 256, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Davigo, A.; Passot, G.; Vassal, O.; Bost, M.; Tavernier, C.; Decullier, E.; Bakrin, N.; Alyami, M.; Bonnet, J.-M.; Louzier, V.; et al. PIPAC versus HIPEC: Cisplatin spatial distribution and diffusion in a swine model. Int. J. Hyperth. 2020, 37, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Tavernier, C.; Passot, G.; Vassal, O.; Allaouchiche, B.; Decullier, E.; Bakrin, N.; Alyami, M.; Davigo, A.; Bonnet, J.-M.; Louzier, V.; et al. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) might increase the risk of anastomotic leakage compared to HIPEC: An experimental study. Surg. Endosc. 2020, 34, 2939–2946. [Google Scholar] [CrossRef]
- Giger-Pabst, U.; Bucur, P.; Roger, S.; Falkenstein, T.A.; Tabchouri, N.; le Pape, A.; Lerondel, S.; Demtröder, C.; Salamé, E.; Ouaissi, M. Comparison of Tissue and Blood Concentrations of Oxaliplatin Administrated by Different Modalities of Intraperitoneal Chemotherapy. Ann. Surg. Oncol. 2019, 26, 4445–4451. [Google Scholar] [CrossRef]
- Cianci, S.; Vizzielli, G.; Fagotti, A.; Pacelli, F.; di Giorgio, A.; Tropea, A.; Biondi, A.; Scambia, G. A novel HIPEC technique using hybrid CO2 recirculation system: Intra-abdominal diffusion test in a porcine model. Updat. Surg. 2018, 70, 529–533. [Google Scholar] [CrossRef]
- Garcia, S.S.; Padilla, D.; Campos, P.V.; García-Santos, E.P.; Martín-Fernández, J. Hyperthermic chemotherapy intra-abdominal laparoscopic approach: Development of a laparoscopic model using CO2 recirculation system and clinical translation in peritoneal carcinomatosis. Int. J. Hyperth. 2017, 33, 684–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferron, G.; Gesson-Paute, A.; Classe, J.-M.; Querleu, D. Feasibility of laparoscopic peritonectomy followed by intra-peritoneal chemohyperthermia: An experimental study. Gynecol. Oncol. 2005, 99, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Coccolini, F.; Acocella, F.; Morosi, L.; Brizzola, S.; Ghiringhelli, M.; Ceresoli, M.; Davoli, E.; Ansaloni, L.; D’Incalci, M.; Zucchetti, M. High Penetration of Paclitaxel in Abdominal Wall of Rabbits after Hyperthermic Intraperitoneal Administration of Nab-Paclitaxel Compared to Standard Paclitaxel Formulation. Pharm. Res. 2017, 34, 1180–1186. [Google Scholar] [CrossRef]
- Reymond, M.; Tannapfel, A.; Schneider, C.; Scheidbach, H.; Köver, S.; Jung, A.; Reck, T.; Köckerling, F.; Lippert, H. Description of an intraperitoneal tumour xenograft survival model in the pig. Eur. J. Surg. Oncol. (EJSO) 2000, 26, 393–397. [Google Scholar] [CrossRef]
- Gremonprez, F.; Willaert, W.; Ceelen, W. Animal models of colorectal peritoneal metastasis. Pleura Peritoneum 2016, 1, 23–43. [Google Scholar] [CrossRef] [Green Version]
- Meredith, A.L. Viral Skin Diseases of the Rabbit. Vet. Clin. N. Am. Exot. Anim. Pract. 2013, 16, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Löke, D.R.; Helderman, R.F.C.P.A.; Rodermond, H.M.; Tanis, P.J.; Streekstra, G.J.; Franken, N.A.P.; Oei, A.L.; Crezee, J.; Kok, H.P. Demonstration of treatment planning software for hyperthermic intraperitoneal chemotherapy in a rat model. Int. J. Hyperth. 2021, 38, 38–54. [Google Scholar] [CrossRef]
- Mehta, A.; Hoven, J.V.D.; Rosing, H.; Hillebrand, M.; Nuijen, B.; Huitema, A.; Beijnen, J.; Verwaal, V.J. Stability of oxaliplatin in chloride-containing carrier solutions used in hyperthermic intraperitoneal chemotherapy. Int. J. Pharm. 2015, 479, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.L.; Gleisner, A.; Halpern, A.; Ibrahim-Zada, I.; Luna, R.A.; Pearlman, N.; Gajdos, C.; Edil, B.; McCarter, M. Implications of Hyperthermic Intraperitoneal Chemotherapy Perfusion-Related Hyperglycemia. Ann. Surg. Oncol. 2018, 25, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Ceelen, W.P.; Peeters, M.; Houtmeyers, P.; Breusegem, C.; de Somer, F.; Pattyn, P. Safety and Efficacy of Hyperthermic Intraperitoneal Chemoperfusion with High-Dose Oxaliplatin in Patients with Peritoneal Carcinomatosis. Ann. Surg. Oncol. 2007, 15, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Yonemura, Y.; de Aretxabala, X.; Fujimura, T.; Fushida, S.; Katayama, K.; Bandou, E.; Sugiyama, K.; Kawamura, T.; Kinoshita, K.; Endou, Y.; et al. Intraoperative chemohyperthermic peritoneal perfusion as an adjuvant to gastric cancer: Final results of a randomized controlled study. Hepatogastroenterology 2002, 48, 1776–1782. [Google Scholar]
- Shimizu, T.; Maeta, M.; Koga, S. Influence of local hyperthermia on the healing of small intestinal anastomoses in the rat. BJS 2005, 78, 57–59. [Google Scholar] [CrossRef]
- Oei, A.; Kok, H.; Oei, S.; Horsman, M.; Stalpers, L.; Franken, N.; Crezee, J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv. Drug Deliv. Rev. 2020, 163–164, 84–97. [Google Scholar] [CrossRef]
- Oei, A.L.; Vriend, L.E.M.; Crezee, J.; Franken, N.A.P.; Krawczyk, P.M. Effects of hyperthermia on DNA repair pathways: One treatment to inhibit them all. Radiat. Oncol. 2015, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Z.; Zheng, K.; Fan, Q.; Jiang, X.; Xiong, D. Hyperthermia exposure induces apoptosis and inhibits proliferation in HCT116 cells by upregulating miR-34a and causing transcriptional activation of p53. Exp. Ther. Med. 2017, 14, 5379–5386. [Google Scholar] [CrossRef] [PubMed]
- Oei, A.L.; van Leeuwen, C.M.; Cate, R.T.; Rodermond, H.M.; Buist, M.R.; Stalpers, L.J.A.; Crezee, J.; Kok, H.; Medema, J.P.; Franken, N.A.P. Hyperthermia Selectively Targets Human Papillomavirus in Cervical Tumors via p53-Dependent Apoptosis. Cancer Res. 2015, 75, 5120–5129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrandt, B. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. 2002, 43, 33–56. [Google Scholar] [CrossRef]
- Roti, J.L.R. Cellular responses to hyperthermia (40–46 °C): Cell killing and molecular events. Int. J. Hyperth. 2008, 24, 3–15. [Google Scholar] [CrossRef]
- Löffler, M.W.; Seyfried, N.; Burkard, M.; Oswald, B.; Tolios, A.; Yurttas, C.; Herster, F.; Kauer, J.; Jäger, T.; Thiel, K.; et al. Short-term oxaliplatin exposure according to established hyperthermic intraperitoneal chemotherapy (HIPEC) protocols lacks effectiveness in vitro and ex vivo. bioRxiv 2019, 709055. [Google Scholar] [CrossRef]
Research Category Effect of: | Number of Papers | Reference(s) | Study Goal | Recommended Animal Model | Recommended Tumor Model |
---|---|---|---|---|---|
1. Type of drug | 15 | [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] | Uptake and/or sensitivity of tumor tissue | Mouse, rat | Syngeneic, xenograft or PDX |
Immune response | Mouse, rat | Syngeneic | |||
2. Drug concentration | 11 | [32,36,40,47,48,49,50,51,52,53,54] | Uptake by ‘healthy’ organs | Pig | Not required |
Uptake and/or sensitivity of tumor tissue | Mouse, rat | Syngeneic, xenograft or PDX | |||
3. Carrier solution | 1 | [43] | Drug effectiveness | Mouse, rat | Syngeneic, xenograft or PDX |
Systemic toxicity | Pig | Not required | |||
4. Volume | 1 | [55] | Drug and temperature distribution | Pig | Not required |
Drug effectiveness | Mouse, rat | Syngeneic, xenograft or PDX | |||
5. Temperature | 2 | [51,52] | Effect on drug uptake and/or tumor sensitivity | Mouse, rat | Syngeneic, xenograft or PDX |
Systemic toxicity | Pig | Not required | |||
6. Duration | 1 | [55] | Uptake and/or sensitivity of tumor tissue | Mouse, rat | Syngeneic, xenograft or PDX |
Systemic toxicity | Pig | Not required | |||
7. Delivery technique | 6 | [56,57,58,59,60,61] | Drug and temperature distribution in the peritoneal area | Pig | Not required |
Systemic toxicity | Pig | Not required |
Animal Type | Tumor Model | Cell Line | Cell Amount | Dissolvent | Tumor Take Rate (%) | Tumor Outgrowth Time (Days after Injection) | PCI Score | Location(s) | Ref.(s) |
---|---|---|---|---|---|---|---|---|---|
Rats | Syngeneic | CC531 | 2 × 106 | PBS | 100 | 7–8 | 6–10 | Greater omentum, liver hilum, perisplenic area, mesentery, bowel surface, gonadal fat pads, intra-abdominal site of inoculation | [47,54,69,70,72,73,74] |
Rats | Syngeneic | Ovarian cancer cells | 1 × 107 | Ascitic liquid + saline (1:4) | 64–100 | - | - | Ascites, visceral and parietal peritoneum, greater and lesser omentum, mesentery | [32,45,64] |
Rats | PDX | PMCA-3 | 500 µL ascites | Mucinous tumor tissue | 19–24 | 11 | Larger omentum, splenic surface and splenic hilum, liver surface and liver hilum, gonadal fat pads, and parietal peritoneum | [77] | |
Rats | Syngeneic | DHD/K12 /Trb | 2 × 105 | - | 98 | 21 | 18 | - | [44] |
Rats | Xenograft | SKOV-3 | 5 × 5 × 3 mm | Not dissolved | 100 | 21 | - | Only at the transplantation site | [78] |
Mice | Xenograft | OVCAR-3 | 6.0 × 106 | Serum-free DMEM | 100 | 19 | - | - | [81] |
Mice | Syngeneic | ID8-luc | 1 × 106 | - | - | 5 | - | - | [33] |
Mice | Xenograft | MKN45 | 1 × 107 | Serum-free medium | 100 | 10 | - | Mesentery, diffuse colonization of the peritoneal cavity | [34] |
Mice | Xenograft | HCT116 | 2 × 106 or 2.5 × 107 | Not reported or PBS + 500 μg/mL matrigel | 100 | 7–10 | 20 | Small nodules diffused in the peritoneum, mesentery | [50,55] |
Mice | Syngeneic | EAT | 2 × 106 | Saline | - | - | - | Ascites | [36,79] |
Mice | Syngeneic | MCA | 5 × 103 | - | - | - | - | - | [35] |
Mice | Xenograft | SHIN-3 | 5 × 106 | PBS | 100 | 27 | 2–11 | Pancreas, peritoneum, liver, small intestine, spleen, ascites, colon, stomach diaphragm | [48] |
Mice | Syngeneic | CT26 | 3 × 106 or 5 × 104 | PBS or saline | 100 | 5 | - | Small bowel serosa, small bowel mesentery | [49,56] |
Mice | Syngeneic | Colon 26 | 5 × 104 | Saline | 100 | 7 | - | Mesentery | [82] |
Mice | Xenograft | A2780/CP70 | 1 × 106 | Serum-free RPMI 1640 | - | 21 | - | Small bowel, colon | [37] |
Mice | Syngeneic | B16F10 | 1 × 106 | - | 100 | 10 | 9 | Small bowel, liver | [38] |
Mice | Xenograft | SKOV-3 | 5.0 × 105 | Matrigel | - | 14 | - | Only at the transplantation site | [80] |
Mice | Syngeneic | MC38 | 2 × 106 | - | - | 2 | - | Perisplenic, peripancreatic, omental fat | [39] |
Rabbits | Syngeneic | VX2 | 5 × 1010 | - | 100 | 8 | 9.5 | Greater omentum, antrum of the stomach, abdominal wall, diaphragm, intestinal wall | [41,42] |
Type of Drug | Rat (%; Dosage) | Mouse (%; Dosage) | Pig (%; Dosage) | Rabbit (%; Dosage) | Temperature Range (°C) | Clinical Dosage (mg/m2) [14] |
---|---|---|---|---|---|---|
Mitomycin C | 36%; 1.5–4 mg or 2 mg/kg or 15–35 mg/m2 | 25%; 6–8.25 µg/mL or 5 mg/kg | - | - | 40–44 | 10–160 |
Oxaliplatin | 21%; 77.5 mg/kg or 150–1840 mg/m2 | 13%; 460–920 mg/m2 | 38%; 400 mg or 150 mg/mL or 360–460 mg/m2 | - | 40–43 | 160–460 |
Paclitaxel | 14%; 0.24 mg/mL or 60 mg/m2 | - | 23%; 175 mg/m2 | 33%; 10.83 mg/kg | 40–43 | 60–175 |
Cisplatin | 7%; 4–40 mg/kg | 50%; 3–37.5 mg/kg or 70–75 mg/m2 | 15%; 70 mg/m2 | - | 39–43.5 | 50–360 |
Doxorubicin | 7%; 2 mg/kg | 6%; not reported | - | 33%; not reported | 40–43 | 15 |
Other | 18% | 25% | - | 33% | 40.5–43 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helderman, R.F.C.P.A.; Löke, D.R.; Tanis, P.J.; Tuynman, J.B.; Ceelen, W.; de Hingh, I.H.; van der Speeten, K.; Franken, N.A.P.; Oei, A.L.; Kok, H.P.; et al. Preclinical In Vivo-Models to Investigate HIPEC; Current Methodologies and Challenges. Cancers 2021, 13, 3430. https://doi.org/10.3390/cancers13143430
Helderman RFCPA, Löke DR, Tanis PJ, Tuynman JB, Ceelen W, de Hingh IH, van der Speeten K, Franken NAP, Oei AL, Kok HP, et al. Preclinical In Vivo-Models to Investigate HIPEC; Current Methodologies and Challenges. Cancers. 2021; 13(14):3430. https://doi.org/10.3390/cancers13143430
Chicago/Turabian StyleHelderman, Roxan F. C. P. A., Daan R. Löke, Pieter J. Tanis, Jurriaan B. Tuynman, Wim Ceelen, Ignace H. de Hingh, Kurt van der Speeten, Nicolaas A. P. Franken, Arlene L. Oei, H. Petra Kok, and et al. 2021. "Preclinical In Vivo-Models to Investigate HIPEC; Current Methodologies and Challenges" Cancers 13, no. 14: 3430. https://doi.org/10.3390/cancers13143430
APA StyleHelderman, R. F. C. P. A., Löke, D. R., Tanis, P. J., Tuynman, J. B., Ceelen, W., de Hingh, I. H., van der Speeten, K., Franken, N. A. P., Oei, A. L., Kok, H. P., & Crezee, J. (2021). Preclinical In Vivo-Models to Investigate HIPEC; Current Methodologies and Challenges. Cancers, 13(14), 3430. https://doi.org/10.3390/cancers13143430