Enhancement of Radiosurgical Treatment Outcome Prediction Using MRI Radiomics in Patients with Non-Small Cell Lung Cancer Brain Metastases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. MRI Preprocessing and Radiomics Feature Extraction
2.3. Feature Selection and Classification Models
2.4. Model Performance and Statistics
3. Results
3.1. Clinical Characteristics of Patients
3.2. Selected Radiomic Features
3.3. Performance of Outcome Prediction Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merchut, M.P. Brain metastases from undiagnosed systemic neoplasms. Arch. Intern. Med. 1989, 149, 1076–1080. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.L.; Wang, Z.M.; Li, Z.; Zhang, T.X.; Wei, Z. Gefitinib as palliative therapy for lung adenocarcinoma metastatic to the brain. Lung Cancer 2007, 57, 359–364. [Google Scholar] [CrossRef]
- Specht, H.M.; Combs, S.E. Stereotactic radiosurgery of brain metastases. J. Neurosurg. Sci. 2016, 60, 357. [Google Scholar]
- Mut, M. Surgical treatment of brain metastasis: A review. Clin. Neurol. Neurosurg. 2012, 114, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Serizawa, T.; Ono, J.; Iichi, T.; Matsuda, S.; Sato, M.; Odaki, M.; Hirai, S.; Osato, K.; Saeki, N.; Yamaura, A. Gamma knife radiosurgery for metastatic brain tumors from lung cancer: A comparison between small cell and non—Small cell carcinoma. J. Neurosurg. 2002, 97, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, J.; Kondziolka, D.; Flickinger, J.; Lunsford, L.D. Radiosurgery for patients with recurrent small cell lung carcinoma metastatic to the brain: Outcomes and prognostic factors. J. Neurosurg. 2005, 102, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Kocher, M.; Soffietti, R.; Abacioglu, U.; Villa, S.; Fauchon, F.; Baumert, B.G.; Fariselli, L.; Tzuk-Shina, T.; Kortmann, R.-D.; Carrie, C. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: Results of the EORTC 22952-26001 study. J. Clin. Oncol. 2011, 29, 134. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-C.; Hsu, S.P.; Lin, C.-J.; Wu, H.-M.; Chen, Y.-W.; Luo, Y.-H.; Chiang, C.-L.; Hu, Y.-S.; Chung, W.-Y.; Shiau, C.-Y. Epidermal growth factor receptor mutations: Association with favorable local tumor control following Gamma Knife radiosurgery in patients with non–small cell lung cancer and brain metastases. J. Neurosurg. 2019, 133, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Morgillo, F.; Kim, W.-Y.; Kim, E.S.; Ciardiello, F.; Hong, W.K.; Lee, H.-Y.J.C.C.R. Implication of the insulin-like growth factor-IR pathway in the resistance of non–small cell lung cancer cells to treatment with gefitinib. Clin. Cancer Res. 2007, 13, 2795–2803. [Google Scholar] [CrossRef] [Green Version]
- Samani, A.A.; Yakar, S.; LeRoith, D.; Brodt, P. The Role of the IGF System in Cancer Growth and Metastasis: Overview and Recent Insights. Endocr. Rev. 2007, 28, 20–47. [Google Scholar] [CrossRef]
- De Azevedo Santos, T.R.; Tundisi, C.F.; Ramos, H.; Maia, M.A.C.; Pellizzon, A.C.A.; Silva, M.L.G.; Fogaroli, R.C.; Chen, M.J.; Suzuki, S.H.; Dias, J.E.S., Jr. Local control after radiosurgery for brain metastases: Predictive factors and implications for clinical decision. Radiat. Oncol. 2015, 10, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baschnagel, A.M.; Meyer, K.D.; Chen, P.Y.; Krauss, D.J.; Olson, R.E.; Pieper, D.R.; Maitz, A.H.; Ye, H.; Grills, I.S. Tumor volume as a predictor of survival and local control in patients with brain metastases treated with Gamma Knife surgery. J. Neurosurg. 2013, 119, 1139–1144. [Google Scholar] [CrossRef]
- Redmond, A.J.; DiLuna, M.L.; Hebert, R.; Moliterno, J.A.; Desai, R.; Knisely, J.P.; Chiang, V.L. Gamma Knife surgery for the treatment of melanoma metastases: The effect of intratumoral hemorrhage on survival. J. Neurosurg. 2008, 109, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.; Even, A.J.; Jochems, A. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, C.; Xie, J.; Wang, W.; Zha, X.; Lv, W.; Chen, H.; Hu, Y.; Li, T.; Yu, J. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine 2018, 36, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Kickingereder, P.; Burth, S.; Wick, A.; Götz, M.; Eidel, O.; Schlemmer, H.-P.; Maier-Hein, K.H.; Wick, W.; Bendszus, M.; Radbruch, A. Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016, 280, 880–889. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, J.E.; Jo, Y.; Shim, W.H.; Nam, S.J.; Kim, J.H.; Yoo, R.-E.; Choi, S.H.; Kim, H.S. Incorporating diffusion-and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol. 2019, 21, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; He, L.; Yuan, C.; Huang, Y.; Liu, Z.; Liang, C. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur. J. Radiol. 2018, 98, 100–106. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.-J.; Bao, M.-L.; Zhang, J.; Wang, X.-N.; Zhang, Y.-D. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur. Radiol. 2017, 27, 4082–4090. [Google Scholar] [CrossRef]
- Giraud, P.; Giraud, P.; Gasnier, A.; El Ayachy, R.; Kreps, S.; Foy, J.-P.; Durdux, C.; Huguet, F.; Burgun, A.; Bibault, J.-E. Radiomics and machine learning for radiotherapy in head and neck cancers. Front. Oncol. 2019, 9, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouraviev, A.; Detsky, J.; Sahgal, A.; Ruschin, M.; Lee, Y.K.; Karam, I.; Heyn, C.; Stanisz, G.J.; Martel, A.L. Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery. Neuro Oncol. 2020, 22, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Karami, E.; Soliman, H.; Ruschin, M.; Sahgal, A.; Myrehaug, S.; Tseng, C.-L.; Czarnota, G.J.; Jabehdar-Maralani, P.; Chugh, B.; Lau, A. Quantitative MRI biomarkers of stereotactic radiotherapy outcome in brain metastasis. Sci. Rep. 2019, 9, 19830. [Google Scholar] [CrossRef]
- Kawahara, D.; Tang, X.; Lee, C.K.; Nagata, Y.; Watanabe, Y. Predicting the Local Response of Metastatic Brain Tumor to Gamma Knife Radiosurgery by Radiomics With a Machine Learning Method. Front. Oncol. 2021, 10. [Google Scholar] [CrossRef]
- Dhruv, B.; Mittal, N.; Modi, M. Study of Haralick’s and GLCM texture analysis on 3D medical images. Int. J. Neurosci. 2019, 129, 350–362. [Google Scholar] [CrossRef]
- Karacavus, S.; Yılmaz, B.; Tasdemir, A.; Kayaaltı, Ö.; Kaya, E.; İçer, S.; Ayyıldız, O. Can laws be a potential PET image texture analysis approach for evaluation of tumor heterogeneity and histopathological characteristics in NSCLC? J. Digit. Imaging 2018, 31, 210–223. [Google Scholar] [CrossRef]
- García-Olalla, Ó.; Fernández-Robles, L.; Alegre, E.; Castejón-Limas, M.; Fidalgo, E. Boosting Texture-Based Classification by Describing Statistical Information of Gray-Levels Differences. Sensors 2019, 19, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heikkilä, M.; Pietikäinen, M.; Schmid, C. Description of interest regions with local binary patterns. Pattern Recognit. 2009, 42, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depeursinge, A.; Andrearczyk, V.; Whybra, P.; van Griethuysen, J.; Müller, H.; Schaer, R.; Vallières, M.; Zwanenburg, A. Standardised convolutional filtering for radiomics. arXiv 2020, arXiv:2006.05470. [Google Scholar]
- Lu, C.-F.; Hsu, F.-T.; Hsieh, K.L.-C.; Kao, Y.-C.J.; Cheng, S.-J.; Hsu, J.B.-K.; Tsai, P.-H.; Chen, R.-J.; Huang, C.-C.; Yen, Y. Machine learning–based radiomics for molecular subtyping of gliomas. Clin. Cancer Res. 2018, 24, 4429–4436. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-C.; Wu, C.-C.; Lee, C.-C.; Huang, H.-E.; Lee, W.-K.; Chung, W.-Y.; Wu, H.-M.; Guo, W.-Y.; Wu, Y.-T.; Lu, C.-F. Prediction of pseudoprogression and long-term outcome of vestibular schwannoma after Gamma Knife radiosurgery based on preradiosurgical MR radiomics. Radiother. Oncol. 2020, 155, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.Z. Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2004, 34, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Mani, I.; Zhang, I. kNN approach to unbalanced data distributions: A case study involving information extraction. In Proceedings of the Proceedings of Workshop on Learning from Imbalanced Datasets, Washington, DC, USA, 21 August 2003. [Google Scholar]
- Lohmann, P.; Kocher, M.; Ceccon, G.; Bauer, E.K.; Stoffels, G.; Viswanathan, S.; Ruge, M.I.; Neumaier, B.; Shah, N.J.; Fink, G.R. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. NeuroImage Clin. 2018, 20, 537–542. [Google Scholar] [CrossRef]
- Dixon, P.M. Bootstrap resampling. Encycl. Env. 2006, 212–220. [Google Scholar] [CrossRef]
- Crombé, A.; Fadli, D.; Italiano, A.; Saut, O.; Buy, X.; Kind, M. Systematic review of sarcomas radiomics studies: Bridging the gap between concepts and clinical applications? Eur. J. Radiol. 2020, 132, 109283. [Google Scholar] [CrossRef]
- Vamvakas, A.; Williams, S.; Theodorou, K.; Kapsalaki, E.; Fountas, K.; Kappas, C.; Vassiou, K.; Tsougos, I. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Phys. Med. 2019, 60, 188–198. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Chao, S.T.; Sneed, P.K.; Luo, X.; Suh, J.; Roberge, D.; Bhatt, A.; Jensen, A.W.; Brown, P.D.; Shih, H. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: A multi-institutional analysis of 4259 patients. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Kim, S.; Kim, H.S.; Jeon, T.Y.; Kim, G.H.; Kim, D.U.; Park, D.Y.; Kim, T.U.; Kang, D.H. Spectrum of mucin-producing neoplastic conditions of the abdomen and pelvis: Cross-sectional imaging evaluation. World J. Gastroenterol. WJG 2011, 17, 4757. [Google Scholar] [CrossRef] [PubMed]
- Seshacharyulu, P.; Baine, M.J.; Souchek, J.J.; Menning, M.; Kaur, S.; Yan, Y.; Ouellette, M.M.; Jain, M.; Lin, C.; Batra, S.K. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 69–92. [Google Scholar] [CrossRef] [PubMed]
- Marchan, E.M.; Peterson, J.; Sio, T.T.; Chaichana, K.L.; Harrell, A.C.; Ruiz-Garcia, H.; Mahajan, A.; Brown, P.D.; Trifiletti, D.M. Postoperative cavity stereotactic radiosurgery for brain metastases. Front. Oncol. 2018, 8, 342. [Google Scholar] [CrossRef]
- Orlhac, F.; Nioche, C.; Soussan, M.; Buvat, I. Understanding changes in tumor texture indices in PET: A comparison between visual assessment and index values in simulated and patient data. J. Nucl. Med. 2017, 58, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Sperduto, P.W.; Yang, T.J.; Beal, K.; Pan, H.; Brown, P.D.; Bangdiwala, A.; Shanley, R.; Yeh, N.; Gaspar, L.E.; Braunstein, S. Estimating survival in patients with lung cancer and brain metastases: An update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol. 2017, 3, 827–831. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value | Percentage or Range |
---|---|---|
Patients for survival prediction (N = 237) | ||
Age | 60.8 | 22.6–91.3 |
Gender (Male:Female) | 115:122 | |
Overall survival (Month) | 12.2 | 0.07–64.7 |
Other metastasis | ||
Yes | 117 | 49.4% |
No | 120 | 50.6% |
KPS | ||
≥90 | 164 | 69.2% |
<90 | 73 | 30.8% |
Original tumor control | ||
Yes | 108 | 48.8% |
No | 129 | 50.4% |
Number of tumors | ||
≥3 | 123 | 51.9% |
<3 | 114 | 48.1% |
NSCLC histology | ||
Pure adenocarcinoma | 233 | 98.4% |
Adenocarcinoma + Large cell carcinoma | 1 | 0.4% |
Adenocarcinoma + Squamous cell carcinoma | 1 | 0.4% |
Undifferentiated NSCLC | 2 | 0.8% |
Additional treatments | ||
Neurosurgery | 22 | 9.3% |
Whole-brain radiotherapy | 30 | 12.7% |
Tyrosine kinase inhibitor | 207 | 87.3% |
Chemotherapy | 137 | 57.8% |
BMs for prediction of local tumor control (N = 976) | ||
Local tumor control | ||
Good | 821 | 84.1% |
Poor | 155 | 15.9% |
Maximum 3D diameter (d) | ||
0 < d < 5 mm | 11 | 1.1% |
5 < d < 10 mm | 410 | 42.0% |
10 < d < 20 mm | 416 | 42.6% |
d > 20 mm | 139 | 14.3% |
Median GK dose (Gy) | ||
Tumor center | 28.6 | 18.7–50 |
Tumor periphery | 19 | 12–30 |
Image Contrast | Wavelet Filtering | Radiomics Type | Feature Name | Outcome Status | |
---|---|---|---|---|---|
Good | Poor | ||||
Prediction of local tumor control | |||||
T1w | LLH | Texture-GLCM | Homogeneity 1 | −0.52 ± 0.46 | 0.53 ± 1.13 |
T1w | LHL | Texture-GLCM | Informational measure of correlation 1 (IMC1) | −0.51 ± 0.49 | 0.52 ± 1.12 |
T1w | HLL | Texture-GLCM | Informational measure of correlation 1 (IMC1) | −0.52 ± 0.46 | 0.53 ± 1.12 |
T1w | HHL | Texture-GLCM | Informational measure of correlation 1 (IMC1) | −0.54 ± 0.45 | 0.55 ± 1.11 |
T1c | none | Texture-GLCM | Informational measure of correlation 1 (IMC1) | −0.50 ± 0.49 | 0.52 ± 1.12 |
Prediction of overall survival | |||||
T1w | LLL | Histogram | Maximum | 0.32 ± 1.03 | −0.33 ± 0.86 |
T1w | LLH | Histogram | Minimum | −0.30 ± 1.17 | 0.31 ± 0.67 |
T1w | LHH | Texture-GLCM | Cluster Tendency | 0.19 ± 1.17 | −0.20 ± 0.76 |
T1w | HLL | Texture-GLCM | Correlation | 0.01 ± 0.96 | −0.01 ± 1.06 |
Model Performance | Radiomics | Clinical | Combined | p-Values | ||
---|---|---|---|---|---|---|
Radiomics vs. Clinical | Radiomics vs. Combined | Clinical vs. Combined | ||||
Prediction of local tumor control | ||||||
AUC | 0.86 ± 0.10 | 0.80 ± 0.08 | 0.95 ± 0.09 | <0.001 * | <0.001 * | <0.001 * |
Accuracy | 0.85 ± 0.10 | 0.76 ± 0.09 | 0.89 ± 0.11 | <0.001 * | <0.001 * | <0.001 * |
Sensitivity | 0.85 ± 0.17 | 0.69 ± 0.14 | 0.87 ± 0.17 | <0.001 * | 0.124 | <0.001 * |
Specificity | 0.85 ± 0.11 | 0.83 ± 0.10 | 0.91 ± 0.12 | 0.118 | <0.001 * | <0.001 * |
Prediction of overall survival | ||||||
AUC | 0.64 ± 0.24 | 0.78 ± 0.15 | 0.82 ± 0.15 | <0.001 * | <0.001 * | <0.001 * |
Accuracy | 0.62 ± 0.21 | 0.71 ± 0.10 | 0.80 ± 0.17 | <0.001 * | <0.001 * | <0.001 * |
Sensitivity | 0.68 ± 0.25 | 0.73 ± 0.25 | 0.77 ± 0.14 | 0.046 | <0.001 * | 0.006 * |
Specificity | 0.55 ± 0.29 | 0.68 ± 0.20 | 0.81 ± 0.24 | <0.001 * | <0.001 * | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, C.-Y.; Lee, C.-C.; Yang, H.-C.; Chen, C.-J.; Chung, W.-Y.; Wu, H.-M.; Guo, W.-Y.; Liu, R.-S.; Lu, C.-F. Enhancement of Radiosurgical Treatment Outcome Prediction Using MRI Radiomics in Patients with Non-Small Cell Lung Cancer Brain Metastases. Cancers 2021, 13, 4030. https://doi.org/10.3390/cancers13164030
Liao C-Y, Lee C-C, Yang H-C, Chen C-J, Chung W-Y, Wu H-M, Guo W-Y, Liu R-S, Lu C-F. Enhancement of Radiosurgical Treatment Outcome Prediction Using MRI Radiomics in Patients with Non-Small Cell Lung Cancer Brain Metastases. Cancers. 2021; 13(16):4030. https://doi.org/10.3390/cancers13164030
Chicago/Turabian StyleLiao, Chien-Yi, Cheng-Chia Lee, Huai-Che Yang, Ching-Jen Chen, Wen-Yuh Chung, Hsiu-Mei Wu, Wan-Yuo Guo, Ren-Shyan Liu, and Chia-Feng Lu. 2021. "Enhancement of Radiosurgical Treatment Outcome Prediction Using MRI Radiomics in Patients with Non-Small Cell Lung Cancer Brain Metastases" Cancers 13, no. 16: 4030. https://doi.org/10.3390/cancers13164030
APA StyleLiao, C. -Y., Lee, C. -C., Yang, H. -C., Chen, C. -J., Chung, W. -Y., Wu, H. -M., Guo, W. -Y., Liu, R. -S., & Lu, C. -F. (2021). Enhancement of Radiosurgical Treatment Outcome Prediction Using MRI Radiomics in Patients with Non-Small Cell Lung Cancer Brain Metastases. Cancers, 13(16), 4030. https://doi.org/10.3390/cancers13164030