Scope of Artificial Intelligence in Gastrointestinal Oncology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Esophageal Cancers
3. Gastric Cancers
3.1. Use of AI in Helicobacter Pylori Detection
3.2. Use of AI in Gastric Cancer
4. Colorectal Cancer
4.1. AI and Colon Polyp Detection
4.2. AI and Colon Polyp Characterization
4.3. AI and Colorectal Cancer
5. Pancreatic Cancer
5.1. AI and Radiologic Diagnosis of Pancreatic Cancer
5.2. AI and Endoscopic Diagnosis of Pancreatic Cancer
5.3. AI and microRNA (miRNA) for Diagnosis of Pancreatic Cancer
6. Hepatocellular Cancer
6.1. AI and Ultrasound Diagnosis of HCC
6.2. AI and CT-Scan Diagnosis of HCC
6.3. AI and MRI Diagnosis of HCC
7. AI in Histopathologic Diagnosis of GI Malignancies
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall Press: Hoboken, NJ, USA, 2009. [Google Scholar]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mitsala, A.; Tsalikidis, C.; Pitiakoudis, M.; Simopoulos, C.; Tsaroucha, A.K. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Curr. Oncol. 2021, 28, 1581–1607. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Kudou, M.; Kosuga, T.; Otsuji, E. Artificial intelligence in gastrointestinal cancer: Recent advances and future perspectives. Artif. Intell. Gastroenterol. 2020, 1, 71–85. [Google Scholar] [CrossRef]
- Ruffle, J.K.; Farmer, A.D.; Aziz, Q. Artificial Intelligence-Assisted Gastroenterology- Promises and Pitfalls. Am. J. Gastroenterol. 2019, 114, 422–428. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Kuntz, S.; Krieghoff-Henning, E.; Kather, J.N.; Jutzi, T.; Hohn, J.; Kiehl, L.; Hekler, A.; Alwers, E.; von Kalle, C.; Frohling, S.; et al. Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review. Eur. J. Cancer 2021, 155, 200–215. [Google Scholar] [CrossRef]
- Suzuki, H.; Yoshitaka, T.; Yoshio, T.; Tada, T. Artificial intelligence for cancer detection of the upper gastrointestinal tract. Dig. Endosc. 2021, 33, 254–262. [Google Scholar] [CrossRef]
- Huynh, J.C.; Schwab, E.; Ji, J.; Kim, E.; Joseph, A.; Hendifar, A.; Cho, M.; Gong, J. Recent Advances in Targeted Therapies for Advanced Gastrointestinal Malignancies. Cancers 2020, 12, 1168. [Google Scholar] [CrossRef]
- Que, S.J.; Chen, Q.Y.; Qing, Z.; Liu, Z.Y.; Wang, J.B.; Lin, J.X.; Lu, J.; Cao, L.L.; Lin, M.; Tu, R.H.; et al. Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer. World J. Gastroenterol. 2019, 25, 6451–6464. [Google Scholar] [CrossRef]
- Le Berre, C.; Sandborn, W.J.; Aridhi, S.; Devignes, M.-D.; Fournier, L.; Smaïl-Tabbone, M.; Danese, S.; Peyrin-Biroulet, L. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology 2020, 158, 76–94.e72. [Google Scholar] [CrossRef] [Green Version]
- He, Y.S.; Su, J.R.; Li, Z.; Zuo, X.L.; Li, Y.Q. Application of artificial intelligence in gastrointestinal endoscopy. J. Dig. Dis. 2019, 20, 623–630. [Google Scholar] [CrossRef]
- Lech, G.; Słotwiński, R.; Słodkowski, M.; Krasnodębski, I.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol. 2016, 22, 1745–1755. [Google Scholar] [CrossRef]
- Enzinger, P.C.; Mayer, R.J. Esophageal cancer. N. Engl. J. Med. 2003, 349, 2241–2252. [Google Scholar] [CrossRef] [Green Version]
- Kuwano, H.; Nishimura, Y.; Oyama, T.; Kato, H.; Kitagawa, Y.; Kusano, M.; Shimada, H.; Takiuchi, H.; Toh, Y.; Doki, Y.; et al. Guidelines for Diagnosis and Treatment of Carcinoma of the Esophagus April 2012 edited by the Japan Esophageal Society. Esophagus 2015, 12, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Kubiliun, N. Endoscopic Treatment of Early-Stage Esophageal Cancer. Curr. Oncol. Rep. 2018, 20, 71. [Google Scholar] [CrossRef]
- Kuraoka, K.; Hoshino, E.; Tsuchida, T.; Fujisaki, J.; Takahashi, H.; Fujita, R. Early esophageal cancer can be detected by screening endoscopy assisted with narrow-band imaging (NBI). Hepatogastroenterology 2009, 56, 63–66. [Google Scholar]
- Nagami, Y.; Tominaga, K.; Machida, H.; Nakatani, M.; Kameda, N.; Sugimori, S.; Okazaki, H.; Tanigawa, T.; Yamagami, H.; Kubo, N.; et al. Usefulness of non-magnifying narrow-band imaging in screening of early esophageal squamous cell carcinoma: A prospective comparative study using propensity score matching. Am. J. Gastroenterol. 2014, 109, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Kondo, H.; Fukuda, H.; Ono, H.; Gotoda, T.; Saito, D.; Takahiro, K.; Shirao, K.; Yamaguchi, H.; Yoshida, S. Sodium thiosulfate solution spray for relief of irritation caused by Lugol’s stain in chromoendoscopy. Gastrointest. Endosc. 2001, 53, 199–202. [Google Scholar] [CrossRef]
- Menon, S.; Trudgill, N. How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis. Endosc. Int. Open 2014, 2, E46–E50. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.-Y.; Gan, T.; Rao, N.-N.; Xing, Y.-W.; Zheng, J.; Li, S.; Luo, C.-S.; Zhou, Z.-J.; Wan, Y.-L. Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process. Med. Image Anal. 2016, 32, 281–294. [Google Scholar] [CrossRef]
- Swager, A.F.; van der Sommen, F.; Klomp, S.R.; Zinger, S.; Meijer, S.L.; Schoon, E.J.; Bergman, J.; de With, P.H.; Curvers, W.L. Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy. Gastrointest. Endosc. 2017, 86, 839–846. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.L.; Li, B.; Tan, W.M.; Niu, X.J.; Yu, H.H.; Yao, L.Q.; Zhou, P.H.; Yan, B.; Zhong, Y.S. Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video). Gastrointest. Endosc. 2019, 90, 745–753.e742. [Google Scholar] [CrossRef]
- Horie, Y.; Yoshio, T.; Aoyama, K.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Hirasawa, T.; Tsuchida, T.; Ozawa, T.; Ishihara, S.; et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest. Endosc. 2019, 89, 25–32. [Google Scholar] [CrossRef]
- Tokai, Y.; Yoshio, T.; Aoyama, K.; Horie, Y.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Tsuchida, T.; Hirasawa, T.; Sakakibara, Y.; et al. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. Esophagus 2020, 17, 250–256. [Google Scholar] [CrossRef]
- Everson, M.; Herrera, L.; Li, W.; Luengo, I.M.; Ahmad, O.; Banks, M.; Magee, C.; Alzoubaidi, D.; Hsu, H.M.; Graham, D.; et al. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study. United Eur. Gastroenterol. J. 2019, 7, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Struyvenberg, M.R.; van der Sommen, F.; Swager, A.F.; de Groof, A.J.; Rikos, A.; Schoon, E.J.; Bergman, J.J.; de With, P.H.N.; Curvers, W.L. Improved Barrett’s neoplasia detection using computer-assisted multiframe analysis of volumetric laser endomicroscopy. Dis. Esophagus 2020, 33, doz065. [Google Scholar] [CrossRef]
- de Groof, A.J.; Struyvenberg, M.R.; van der Putten, J.; van der Sommen, F.; Fockens, K.N.; Curvers, W.L.; Zinger, S.; Pouw, R.E.; Coron, E.; Baldaque-Silva, F.; et al. Deep-Learning System Detects Neoplasia in Patients with Barrett’s Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking. Gastroenterology 2020, 158, 915–929.e914. [Google Scholar] [CrossRef]
- de Groof, A.J.; Struyvenberg, M.R.; Fockens, K.N.; van der Putten, J.; van der Sommen, F.; Boers, T.G.; Zinger, S.; Bisschops, R.; de With, P.H.; Pouw, R.E.; et al. Deep learning algorithm detection of Barrett’s neoplasia with high accuracy during live endoscopic procedures: A pilot study (with video). Gastrointest. Endos.c 2020, 91, 1242–1250. [Google Scholar] [CrossRef]
- Shiroma, S.; Yoshio, T.; Kato, Y.; Horie, Y.; Namikawa, K.; Tokai, Y.; Yoshimizu, S.; Yoshizawa, N.; Horiuchi, Y.; Ishiyama, A.; et al. Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance. Sci. Rep. 2021, 11, 7759. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.X.; Li, Z.; Shao, X.J.; Ji, R.; Qu, J.Y.; Zheng, M.Q.; Sun, Y.N.; Zhou, R.C.; You, H.; Li, L.X.; et al. Real-time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video). Dig. Endosc. 2020. [Google Scholar] [CrossRef]
- Bang, C.S.; Lee, J.J.; Baik, G.H. Computer-aided diagnosis of esophageal cancer and neoplasms in endoscopic images: A systematic review and meta-analysis of diagnostic test accuracy. Gastrointest. Endosc. 2021, 93, 1006–1015.e1013. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Protano, M.A.; Polydorides, A.D.; Dawsey, S.M.; Pierce, M.C.; Kim, M.K.; Schwarz, R.A.; Quang, T.; Parikh, N.; Bhutani, M.S.; et al. Quantitative analysis of high-resolution microendoscopic images for diagnosis of esophageal squamous cell carcinoma. Clin. Gastroenterol. Hepatol. 2015, 13, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quang, T.; Schwarz, R.A.; Dawsey, S.M.; Tan, M.C.; Patel, K.; Yu, X.; Wang, G.; Zhang, F.; Xu, H.; Anandasabapathy, S.; et al. A tablet-interfaced high-resolution microendoscope with automated image interpretation for real-time evaluation of esophageal squamous cell neoplasia. Gastrointest. Endosc. 2016, 84, 834–841. [Google Scholar] [CrossRef] [Green Version]
- van der Sommen, F.; Zinger, S.; Curvers, W.L.; Bisschops, R.; Pech, O.; Weusten, B.L.; Bergman, J.J.G.H.M.; de With, P.H.N.; Schoon, E.J. Computer-aided detection of early neoplastic lesions in Barrett’s esophagus. Endoscopy 2016, 48, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Mendel, R.; Ebigbo, A.; Probst, A.; Messmann, H.; Palm, C. Barrett’s Esophagus Analysis Using Convolutional Neural Networks. Bildverarbeitung für die Medizin; Springer: Berlin, Heidelberg, Germany, 2017. [Google Scholar]
- Ebigbo, A.; Mendel, R.; Probst, A.; Manzeneder, J.; Souza, L.A., Jr.; Papa, J.P.; Palm, C.; Messmann, H. Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut 2019, 68, 1143–1145. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Y.; Xue, D.X.; Wang, Y.L.; Zhang, R.; Sun, B.; Cai, Y.P.; Feng, H.; Cai, Y.; Xu, J.-M. Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy. Endoscopy 2019, 51, 333–3341. [Google Scholar] [CrossRef]
- Nakagawa, K.; Ishihara, R.; Aoyama, K.; Ohmori, M.; Nakahira, H.; Matsuura, N.; Shichijo, S.; Nishida, T.; Yamada, T.; Yamaguchi, S.; et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest. Endosc. 2019, 90, 407–414. [Google Scholar] [CrossRef]
- Guo, L.; Xiao, X.; Wu, C.; Zeng, X.; Zhang, Y.; Du, J.; Bai, S.; Xie, J.; Zhang, Z.; Li, Y.; et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest. Endosc. 2020, 91, 41–51. [Google Scholar] [CrossRef]
- Hashimoto, R.; Requa, J.; Dao, T.; Ninh, A.; Tran, E.; Mai, D.; Lugo, M.; El-Hage Chehade, N.; Chang, K.J.; Karnes, W.E.; et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointest. Endosc. 2020, 91, 1264–1271. [Google Scholar] [CrossRef]
- Ohmori, M.; Ishihara, R.; Aoyama, K.; Nakagawa, K.; Iwagami, H.; Matsuura, N.; Shichiji, S.; Yamamoto, K.; Nagaike, K.; Nakahara, M.; et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest. Endosc. 2020, 91, 301–309. [Google Scholar] [CrossRef]
- Li, B.; Cai, S.L.; Tan, W.M.; Li, J.C.; Yalikong, A.; Feng, X.S.; Yu, H.H.; Lu, P.X.; Feng, Z.; Yao, L.Q.; et al. Comparative study on artificial intelligence systems for detecting early esophageal squamous cell carcinoma between narrow-band and white-light imaging. World J. Gastroenterol. 2021, 27, 281–293. [Google Scholar] [CrossRef]
- Ebigbo, A.; Mendel, R.; Rückert, T.; Schuster, L.; Probst, A.; Manzeneder, J.; Prinz, F.; Mende, M.; Steinbrück, I.; Faiss, S.; et al. Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of artificial intelligence: A pilot study. Endoscopy 2021, 53, 878–883. [Google Scholar]
- Colom, R.; Karama, S.; Jung, R.E.; Haier, R.J. Human intelligence and brain networks. Dialogues Clin. Neurosci. 2010, 12, 489–501. [Google Scholar]
- Li, L.; Chen, Y.; Shen, Z.; Zhang, X.; Sang, J.; Ding, Y.; Yang, X.; Li, J.; Chen, M.; Jin, C.; et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer 2020, 23, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, C.S. Helicobacter pylori gastritis, peptic ulcer, and gastric cancer: Clinical and molecular aspects. Clin. Infect. Dis. 1997, 25, 1017–1019. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.R.; Sheu, B.S.; Chung, P.C.; Yang, H.B. Computerized diagnosis of Helicobacter pylori infection and associated gastric inflammation from endoscopic images by refined feature selection using a neural network. Endoscopy 2004, 36, 601–608. [Google Scholar] [CrossRef]
- Shichijo, S.; Nomura, S.; Aoyama, K.; Nishikawa, Y.; Miura, M.; Shinagawa, T.; Takiyama, H.; Tanimoto, T.; Ishihara, S.; Matsuo, K.; et al. Application of Convolutional Neural Networks in the Diagnosis of Helicobacter pylori Infection Based on Endoscopic Images. EBioMedicine 2017, 25, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Zhang, X.; Kim, J.J.; Zhu, X.; Ye, G.; Ye, B.; Wang, J.; Luo, S.; Li, J.; Yu, T.; et al. High Accuracy of Convolutional Neural Network for Evaluation of Helicobacter pylori Infection Based on Endoscopic Images: Preliminary Experience. Clin. Transl. Gastroenterol. 2019, 10, e00109. [Google Scholar] [CrossRef]
- Nakashima, H.; Kawahira, H.; Kawachi, H.; Sakaki, N. Artificial intelligence diagnosis of Helicobacter pylori infection using blue laser imaging-bright and linked color imaging: A single-center prospective study. Ann. Gastroenterol. 2018, 31, 462–468. [Google Scholar] [CrossRef]
- Bang, C.S.; Lee, J.J.; Baik, G.H. Artificial Intelligence for the Prediction of Helicobacter Pylori Infection in Endoscopic Images: Systematic Review and Meta-Analysis Of Diagnostic Test Accuracy. J. Med. Internet Res. 2020, 22, e21983. [Google Scholar] [CrossRef]
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer 2021, 24, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, Y.; Hirasawa, T.; Ishizuka, N.; Tokai, Y.; Namikawa, K.; Yoshimizu, S.; Ishiyama, A.; Yoshio, T.; Tsuchida, T.; Fujisaki, J.; et al. Performance of a computer-aided diagnosis system in diagnosing early gastric cancer using magnifying endoscopy videos with narrow-band imaging (with videos). Gastrointest. Endosc. 2020, 92, 856–865.e851. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Q.C.; Xu, M.D.; Zhang, Z.; Cheng, J.; Zhong, Y.S.; Zhang, Y.Q.; Chen, W.F.; Yao, L.Q.; Zhou, P.H.; et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest. Endosc. 2019, 89, 806–815.e801. [Google Scholar] [CrossRef]
- Cho, B.J.; Bang, C.S.; Lee, J.J.; Seo, C.W.; Kim, J.H. Prediction of Submucosal Invasion for Gastric Neoplasms in Endoscopic Images Using Deep-Learning. J. Clin. Med. 2020, 9, 1858. [Google Scholar] [CrossRef]
- Ali, H.; Yasmin, M.; Sharif, M.; Rehmani, M.H. Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images. Comput. Methods Programs Biomed. 2018, 157, 39–47. [Google Scholar] [CrossRef]
- Kanesaka, T.; Lee, T.C.; Uedo, N.; Lin, K.P.; Chen, H.Z.; Lee, J.Y.; Wang, H.P.; Chang, H.T. Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest. Endosc. 2018, 87, 1339–1344. [Google Scholar] [CrossRef]
- Kailin, J.; Xiaotao, J.; Jinglin, P.; Yi, W.; Yuanchen, H.; Senhui, W.; Shaoyang, L.; Kechao, N.; Zhihua, Z.; Shuling, J.; et al. Current Evidence and Future Perspective of Accuracy of Artificial Intelligence Application for Early Gastric Cancer Diagnosis with Endoscopy: A Systematic and Meta-Analysis. Front. Med. 2021, 8, 629080. [Google Scholar]
- Joo, M.; Park, A.; Kim, K.; Son, W.J.; Lee, H.S.; Lim, G.; Lee, J.; Lee, D.H.; An, J.; Kim, J.H.; et al. A Deep Learning Model for Cell Growth Inhibition IC50 Prediction and Its Application for Gastric Cancer Patients. Int. J. Mol. Sci. 2019, 20, 6276. [Google Scholar] [CrossRef] [Green Version]
- Miyaki, R.; Yoshida, S.; Tanaka, S.; Kominami, Y.; Sanomura, Y.; Matsuo, T.; Oka, S.; Ryetchev, B.; Tamaki, T.; Koide, T.; et al. A computer system to be used with laser-based endoscopy for quantitative diagnosis of early gastric cancer. J. Clin. Gastroenterol. 2015, 49, 108–115. [Google Scholar] [CrossRef]
- Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.; et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric. Cancer 2018, 21, 653–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, C.; Hu, Y.; Zeng, Z.; Bai, J.; Liao, G. Transfer Learning with Convolutional Neural Network for Early Gastric Cancer Classification on Magnifiying Narrow-Band Imaging Images. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018. [Google Scholar]
- Horiuchi, Y.; Aoyama, K.; Tokai, Y.; Hirasawa, T.; Yoshimizu, S.; Ishiyama, A.; Yoshio, T.; Tsuchida, T.; Fujisaki, J.; Tada, T. Convolutional Neural Network for Differentiating Gastric Cancer from Gastritis Using Magnified Endoscopy with Narrow Band Imaging. Dig. Dis. Sci. 2020, 65, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, P.; Keller, A.; Fehlmann, T.; Lammert, F.; Casper, M. Deep-learning based detection of gastric precancerous conditions. Gut 2020, 69, 4–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuda, T.; Hiroyasu, T.; Hiwa, S.; Okada, Y.; Hayashi, S.; Nakahata, Y.; Yasuda, Y.; Omatsu, T.; Obora, A.; Kojima, T. Potential of automatic diagnosis system with linked color imaging for diagnosis of Helicobacter pylori infection. Dig. Endosc. 2020, 32, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; He, X.; Liu, M.; Xie, H.; An, P.; Zhang, J.; Zhang, H.; Ai, Y.; Tong, Q.; Guo, M.; et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: A randomized controlled trial. Endoscopy 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Xia, J.; Xia, T.; Pan, J.; Gao, F.; Wang, S.; Qian, Y.Y.; Wang, H.; Zhao, J.; Jiang, X.; Zou, W.-B.; et al. Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy. Gastrointest. Endosc. 2021, 93, 133–139.e4. [Google Scholar] [CrossRef]
- Institute NC. Surveillance Epidemiology and End Results (SEER) database. National Cancer Institute (NCI). Available online: https://seer.cancer.gov/statfacts/html/colorect.html. (accessed on 3 August 2021).
- Zauber, A.G.; Winawer, S.J.; O’Brien, M.J.; Lansdorp-Vogelaar, I.; van Ballegooijen, M.; Hankey, B.F.; Shi, W.; Bond, J.H.; Schapiro, M.; Panish, J.F.; et al. Colonoscopic Polypectomy and Long-Term Prevention of Colorectal-Cancer Deaths. N. Engl. J. Med. 2012, 366, 687–696. [Google Scholar] [CrossRef]
- Pannala, R.; Krishnan, K.; Melson, J.; Parsi, M.A.; Schulman, A.R.; Sullivan, S.; Trikudanathan, G.; Trindade, A.J.; Watson, R.R.; Maple, J.T.; et al. Artificial intelligence in gastrointestinal endoscopy. VideoGIE 2020, 5, 598–613. [Google Scholar] [CrossRef]
- Nazarian, S.; Glover, B.; Ashrafian, H.; Darzi, A.; Teare, J. Diagnostic Accuracy of Artificial Intelligence and Computer-Aided Diagnosis for the Detection and Characterization of Colorectal Polyps: Systematic Review and Meta-analysis. J. Med. Internet Res. 2021, 23, e27370. [Google Scholar] [CrossRef]
- Robertson, A.R.; Segui, S.; Wenzek, H.; Koulaouzidis, A. Artificial intelligence for the detection of polyps or cancer with colon capsule endoscopy. Ther Adv. Gastrointest. Endosc. 2021, 14, 26317745211020277. [Google Scholar]
- Laiz, P.; Vitrià, J.; Wenzek, H.; Malagelada, C.; Azpiroz, F.; Seguí, S. WCE polyp detection with triplet based embeddings. Comput. Med. Imaging Graph. 2020, 86, 101794. [Google Scholar] [CrossRef]
- Tischendorf, J.J.; Gross, S.; Winograd, R.; Hecker, H.; Auer, R.; Behrens, A.; Trautwein, C.; Aach, T.; Stehle, T. Computer-aided classification of colorectal polyps based on vascular patterns: A pilot study. Endoscopy 2010, 42, 203–207. [Google Scholar] [CrossRef]
- Takemura, Y.; Yoshida, S.; Tanaka, S.; Kawase, R.; Onji, K.; Oka, S.; Tamaki, T.; Tyetchev, B.; Kaneda, K.; Yoshihara, M.; et al. Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video). Gastrointest. Endosc. 2012, 75, 179–185. [Google Scholar] [CrossRef]
- Mori, Y.; Kudo, S.E.; Wakamura, K.; Misawa, M.; Ogawa, Y.; Kutsukawa, M.; Kudo, T.; Hayashi, T.; Miyachi, H.; Ishida, F.; et al. Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointest. Endosc. 2015, 81, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Esparrach, G.; Bernal, J.; López-Cerón, M.; Córdova, H.; Sánchez-Montes, C.; Rodríguez de Miguel, C.; Javier Sanchez, F. Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps. Endoscopy 2016, 48, 837–842. [Google Scholar] [CrossRef]
- Kominami, Y.; Yoshida, S.; Tanaka, S.; Sanomura, Y.; Hirakawa, T.; Raytchev, B.; Tamaki, T.; Koide, T.; Kaneda, K.; Chayama, K. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest. Endosc. 2016, 83, 643–649. [Google Scholar] [CrossRef]
- Sun Young, P.; Dusty, S. Colonoscopic polyp detection using convolutional neural networks. ProcSPIE 2016, 9785, 978528. [Google Scholar]
- Tamai, N.; Saito, Y.; Sakamoto, T.; Nakajima, T.; Matsuda, T.; Sumiyama, K.; Tajire, H.; Koyama, R.; Kido, S. Effectiveness of computer-aided diagnosis of colorectal lesions using novel software for magnifying narrow-band imaging: A pilot study. Endosc. Int. Open. 2017, 5, E690–E694. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zheng, Y.; Mak, T.W.; Yu, R.; Wong, S.H.; Lau, J.Y.; Poon, C.C.Y. Automatic Detection and Classification of Colorectal Polyps by Transferring Low-Level CNN Features From Nonmedical Domain. IEEE J. Biomed. Health Inform. 2017, 21, 41–47. [Google Scholar] [CrossRef]
- Misawa, M.; Kudo, S.E.; Mori, Y.; Cho, T.; Kataoka, S.; Yamauchi, A.; Ogawa, Y.; Maeda, Y.; Takeda, K.; Ichimasa, K.; et al. Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience. Gastroenterology 2018, 154, 2027–2029.e3. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Kudo, S.E.; Misawa, M.; Saito, Y.; Ikematsu, H.; Hotta, K.; Ohtsuka, K.; Urushibara, F.; Kataoka, S.; Ogawa, Y.; et al. Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy: A Prospective Study. Ann. Intern. Med. 2018, 169, 357–366. [Google Scholar] [CrossRef]
- Urban, G.; Tripathi, P.; Alkayali, T.; Mittal, M.; Jalali, F.; Karnes, W.; Baldi, P. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology 2018, 155, 1069–1078.e8. [Google Scholar] [CrossRef]
- Byrne, M.F.; Chapados, N.; Soudan, F.; Oertel, C.; Linares Pérez, M.; Kelly, R.; Iqbal, N.; Chandelier, F.; Rex, D.K. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 2019, 68, 94. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, P.N.; Figueiredo, I.N.; Pinto, L.; Kumar, S.; Tsai, Y.-H.R.; Mamonov, A.V. Polyp detection with computer-aided diagnosis in white light colonoscopy: Comparison of three different methods. Endosc. Int. Open. 2019, 7, E209–E215. [Google Scholar] [CrossRef]
- Horiuchi, H.; Tamai, N.; Kamba, S.; Inomata, H.; Ohya, T.R.; Sumiyama, K. Real-time computer-aided diagnosis of diminutive rectosigmoid polyps using an auto-fluorescence imaging system and novel color intensity analysis software. Scand. J. Gastroenterol. 2019, 54, 800–805. [Google Scholar] [CrossRef]
- Ito, N.; Kawahira, H.; Nakashima, H.; Uesato, M.; Miyauchi, H.; Matsubara, H. Endoscopic Diagnostic Support System for cT1b Colorectal Cancer Using Deep Learning. Oncology 2019, 96, 44–50. [Google Scholar] [CrossRef]
- Wang, P.; Berzin, T.M.; Glissen Brown, J.R.; Bharadwaj, S.; Becq, A.; Xiao, X.; Liu, P.; Li, L.; Song, Y.; Zhang, D.; et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled study. Gut 2019, 68, 1813–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, E.H.; Lee, D.; Bae, J.H.; Kang, H.Y.; Kwak, M.S.; Seo, J.Y.; Yang, J.I.; Yang, S.Y.; Lim, S.H.; Yim, J.Y.; et al. Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations. Gastroenterology 2020, 158, 2169–2179.e8. [Google Scholar] [CrossRef] [PubMed]
- Kudo, S.E.; Misawa, M.; Mori, Y.; Hotta, K.; Ohtsuka, K.; Ikematsu, H.; Saito, Y.; Takeda, K.; Nakmura, H.; Ichimasa, K.; et al. Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clin. Gastroenterol. Hepatol. 2020, 18, 1874–1881.e2. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Zhu, X.; Nemoto, D.; Li, Q.; Guo, Z.; Katsuki, S.; Hayashi, Y.; Utano, K.; Aizawa, M.; Takezawa, T.; et al. Diagnostic performance of artificial intelligence to identify deeply invasive colorectal cancer on non-magnified plain endoscopic images. Endosc. Int. Open. 2020, 8, E1341–E8. [Google Scholar] [PubMed]
- Ozawa, T.; Ishihara, S.; Fujishiro, M.; Kumagai, Y.; Shichijo, S.; Tada, T. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Ther. Adv. Gastroenterol. 2020, 13, 1756284820910659. [Google Scholar] [CrossRef] [Green Version]
- Repici, A.; Badalamenti, M.; Maselli, R.; Correale, L.; Radaelli, F.; Rondonotti, E.; Ferrara, E.; Spadaccini, M.; Alkandari, A.; Fugazza, A.; et al. Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology 2020, 159, 512–520.e7. [Google Scholar] [CrossRef]
- Lai, L.L.; Blakely, A.; Invernizzi, M.; Lin, J.; Kidambi, T.; Melstrom, K.A.; Yu, K.; Lu, T. Separation of color channels from conventional colonoscopy images improves deep neural network detection of polyps. J. Biomed. Opt. 2021, 26, 015001. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Liu, M.; Lai, Y.; Liu, P.; Wang, Z.; Xing, T.; Huang, Y.; Li, Y.; Li, A.; et al. Artificial Intelligence-Assisted Colonoscopy for Detection of Colon Polyps: A Prospective, Randomized Cohort Study. J. Gastrointest. Surg. 2021, 25, 2011–2018. [Google Scholar] [CrossRef]
- Kudo, S.E.; Ichimasa, K.; Villard, B.; Mori, Y.; Misawa, M.; Saito, S.; Hotta, K.; Saito, Y.; Matsuda, T.; Yamada, K.; et al. Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node. Gastroenterology 2021, 160, 1075–1084.e1072. [Google Scholar] [CrossRef]
- Ichimasa, K.; Kudo, S.E.; Mori, Y.; Misawa, M.; Matsudaira, S.; Kouyama, Y.; Baba, T.; Hidaka, E.; Wakamura, K.; Hayashi, T.; et al. Correction: Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy 2018, 50, C2. [Google Scholar] [CrossRef]
- Lippi, G.; Mattiuzzi, C. The global burden of pancreatic cancer. Arch. Med. Sci. 2020, 16, 820–824. [Google Scholar] [CrossRef]
- Laoveeravat, P.A.P.; Brenner, A.R.; Gabr, M.M.; Habr, F.G.; Atsawarungruangkit, A. Artificial intelligence for pancreatic cancer detection: Recent development and future direction. Artif. Intell. Gastroenterol. 2021, 2, 56–68. [Google Scholar] [CrossRef]
- Liu, S.L.; Li, S.; Guo, Y.T.; Zhou, Y.P.; Zhang, Z.D.; Li, S.; Lu, Y. Establishment and application of an artificial intelligence diagnosis system for pancreatic cancer with a faster region-based convolutional neural network. Chin. Med. J. 2019, 132, 2795–2803. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shi, K.; Reichert, M.; Lin, K.; Tselousov, N.; Braren, R.; Fu, D.; Schmid, R.; Li, J.; Menze, B. Differential Diagnosis for Pancreatic Cysts in CT Scans Using Densely-Connected Convolutional Networks. Annu. Int. Conf. IEEE Eng Med. Biol. Soc. 2019, 2019, 2095–2098. [Google Scholar]
- Chu, L.C.; Park, S.; Kawamoto, S.; Fouladi, D.F.; Shayesteh, S.; Zinreich, E.S.; Graves, J.S.; Horton, K.M.; Hruban, R.H.; Yuille, A.L.; et al. Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma from Normal Pancreatic Tissue. AJR Am. J. Roentgenol. 2019, 213, 349–357. [Google Scholar] [CrossRef]
- Wei, R.; Lin, K.; Yan, W.; Guo, Y.; Wang, Y.; Li, J.; Zhu, J. Computer-Aided Diagnosis of Pancreas Serous Cystic Neoplasms: A Radiomics Method on Preoperative MDCT Images. Technol. Cancer Res. Treat. 2019, 18, 1533033818824339. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Jiang, H.; Wang, Z.; Zhang, G.; Yao, Y.D. An effective computer aided diagnosis model for pancreas cancer on PET/CT images. Comput. Methods Programs Biomed. 2018, 165, 205–214. [Google Scholar] [CrossRef]
- Corral, J.E.; Hussein, S.; Kandel, P.; Bolan, C.W.; Bagci, U.; Wallace, M.B. Deep Learning to Classify Intraductal Papillary Mucinous Neoplasms Using Magnetic Resonance Imaging. Pancreas 2019, 48, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Kaissis, G.A.; Ziegelmayer, S.; Lohöfer, F.K.; Harder, F.N.; Jungmann, F.; Sasse, D.; Muckenhuber, A.; Yen, H.-Y.; Steiger, K.; Siveke, J.; et al. Image-Based Molecular Phenotyping of Pancreatic Ductal Adenocarcinoma. J. Clin. Med. 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, M.; Cakiroglu, M.; Kocaman, O.; Kurt, M.; Yilmaz, B.; Can, G.; Korkmaz, U.; Dandil, E.; Eksi, Z. Age-based computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound images. Endosc. Ultrasound 2016, 5, 101–107. [Google Scholar] [PubMed] [Green Version]
- Marya, N.B.; Powers, P.D.; Chari, S.T.; Gleeson, F.C.; Leggett, C.L.; Abu Dayyeh, B.K.; Chandrasekhara, V.; Iyer, P.G.; Majumder, S.; Pearson, R.K.; et al. Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis. Gut 2021, 70, 1335–1344. [Google Scholar] [CrossRef]
- Tonozuka, R.; Itoi, T.; Nagata, N.; Kojima, H.; Sofuni, A.; Tsuchiya, T.; Ishii, K.; Tanaka, R.; Nagakawa, Y.; Mukai, S. Deep learning analysis for the detection of pancreatic cancer on endosonographic images: A pilot study. J. Hepatobiliary Pancreat Sci. 2021, 28, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Săftoiu, A.; Vilmann, P.; Gorunescu, F.; Gheonea, D.I.; Gorunescu, M.; Ciurea, T.; Popescu, G.L.; Iordache, A.; Hassan, H.; Iordache, S. Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest. Endosc. 2008, 68, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Yang, H.; Jin, Z.D.; Yu, J.G.; Cai, Z.Y.; Li, Z.S. Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images. Gastrointest. Endosc. 2010, 72, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Săftoiu, A.; Vilmann, P.; Gorunescu, F.; Janssen, J.; Hocke, M.; Larsen, M.; Iglesias-Garcia, J.; Arcidiacono, P.; Will, U.; Giovannini, M.; et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clin. Gastroenterol. Hepatol. 2012, 10, 84–90.e81. [Google Scholar] [CrossRef]
- Săftoiu, A.; Vilmann, P.; Dietrich, C.F.; Iglesias-Garcia, J.; Hocke, M.; Seicean, A.; Ignee, A.; Hassan, H.; Streba, C.T.; Ioncică, A.M.; et al. Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos). Gastrointest. Endosc. 2015, 82, 59–69. [Google Scholar] [CrossRef]
- Kuwahara, T.; Hara, K.; Mizuno, N.; Okuno, N.; Matsumoto, S.; Obata, M.; Kurita, Y.; Koda, H.; Toriyama, K.; Onishi, S.; et al. Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clin. Transl. Gastroenterol. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Goggins, M. Molecular markers of early pancreatic cancer. J. Clin. Oncol. 2005, 23, 4524–4531. [Google Scholar] [CrossRef]
- Macha, M.A.; Seshacharyulu, P.; Krishn, S.R.; Pai, P.; Rachagani, S.; Jain, M.; Batra, S.K. MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr. Pharm. Des. 2014, 20, 5287–5297. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Hu, D.; Li, M.; Chen, Y.; Wu, X.; Ye, Q.; Wang, Z.; He, L.; Zhu, J. The Serum MicroRNA Signatures for Pancreatic Cancer Detection and Operability Evaluation. Front. Bioeng. Biotechnol. 2020, 8, 379. [Google Scholar] [CrossRef]
- Alizadeh Savareh, B.; Asadzadeh Aghdaie, H.; Behmanesh, A.; Bashiri, A.; Sadeghi, A.; Zali, M.; Shams, R. A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures. Pancreatology 2020, 20, 1195–1204. [Google Scholar] [CrossRef]
- Sinkala, M.; Mulder, N.; Martin, D. Machine Learning and Network Analyses Reveal Disease Subtypes of Pancreatic Cancer and their Molecular Characteristics. Sci. Rep. 2020, 10, 1212. [Google Scholar] [CrossRef] [Green Version]
- (NCI) NCI. Surveillance Epidemiology and End Results (SEER) database. Available online: https://seer.cancer.gov/statfacts/html/livibd.html. (accessed on 15 August 2021).
- Virmani, J.; Kumar, V.; Kalra, N.; Khandelwal, N. SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. J. Digit. Imaging 2013, 26, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-C.; Lee, W.-L.; Chen, Y.-C.; Lai, C.-H.; Hsieh, K.-S. Ultrasonic liver tissue characterization by feature fusion. Expert Syst. Appl. 2012, 39, 9389–9397. [Google Scholar] [CrossRef]
- Lee, W.-L. An ensemble-based data fusion approach for characterizing ultrasonic liver tissue. Appl. Soft Comput. 2013, 13, 3683–3692. [Google Scholar] [CrossRef]
- Bharti, P.; Mittal, D.; Ananthasivan, R. Preliminary Study of Chronic Liver Classification on Ultrasound Images Using an Ensemble Model. Ultrason. Imaging 2018, 40, 357–379. [Google Scholar] [CrossRef] [PubMed]
- Schmauch, B.; Herent, P.; Jehanno, P.; Dehaene, O.; Saillard, C.; Aubé, C.; Luciani, A.; Lassau, N.; Jégou, S. Diagnosis of focal liver lesions from ultrasound using deep learning. Diagn. Interv. Imaging 2019, 100, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-E.; Zhang, L.-Q.; Kuang, S.-C.; Shi, W.-Q.; Hu, B.; Xie, S.-D.; Chen, Y.-N.; Liu, H.; Chen, S.-M.; Jiang, T.; et al. Multiphase convolutional dense network for the classification of focal liver lesions on dynamic contrast-enhanced computed tomography. World J. Gastroenterol. 2020, 26, 3660–3672. [Google Scholar] [CrossRef]
- Yasaka, K.; Akai, H.; Abe, O.; Kiryu, S. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study. Radiology 2018, 286, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Hamm, C.A.; Wang, C.J.; Savic, L.J.; Ferrante, M.; Schobert, I.; Schlachter, T.; Lin, M.; Duncan, J.S.; Weinreb, J.C.; Chapiro, J.; et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI. Eur. Radiol. 2019, 29, 3338–3347. [Google Scholar] [CrossRef]
- Oestmann, P.M.; Wang, C.J.; Savic, L.J.; Hamm, C.A.; Stark, S.; Schobert, I.; Gebauer, B.; Schlachter, T.; Lin, M.; Weinreb, J.C.; et al. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver. Eur. Radiol. 2021, 31, 4981–4990. [Google Scholar] [CrossRef]
- Qu, J.; Hiruta, N.; Terai, K.; Nosato, H.; Murakawa, M.; Sakanashi, H. Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks. J. Healthc. Eng. 2018, 2018, 8961781. [Google Scholar] [CrossRef]
- Sharma, H.; Zerbe, N.; Klempert, I.; Hellwich, O.; Hufnagl, P. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Comput. Med. Imaging Graph. 2017, 61, 2–13. [Google Scholar] [CrossRef]
- Iizuka, O.; Kanavati, F.; Kato, K.; Rambeau, M.; Arihiro, K.; Tsuneki, M. Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Sci. Rep. 2020, 10, 1504. [Google Scholar] [CrossRef] [Green Version]
- Momeni-Boroujeni, A.; Yousefi, E.; Somma, J. Computer-assisted cytologic diagnosis in pancreatic FNA: An application of neural networks to image analysis. Cancer Cytopathol. 2017, 125, 926–933. [Google Scholar] [CrossRef]
- Yu, C.; Helwig, E.J. Artificial intelligence in gastric cancer: A translational narrative review. Ann. Transl. Med. 2021, 9, 269. [Google Scholar] [CrossRef]
Author, Year, Reference | Dataset (Images Count and Lesions Type) | AI System | Modality | Results |
---|---|---|---|---|
Shin 2015 [35] | 375 images (esophageal squamous cell cancer) | Two-class linear discriminant analysis | HRME | Sensitivity 84%, specificity 95%, and AUC 0.95 |
Quang 2016 [36] | 375 images (esophageal squamous cell cancer) | Fully automated real-time analysis algorithm | HRME | Sensitivity 95%, specificity 91%, and AUC 0.937 |
Van der Sommen 2016 [37] | 100 images (60 early BE neoplasia and 40 BE) | SVM | WLI | Per image-sensitivity 83% and specificity 83%. For per patient sensitivity 86% and specificity 87%. |
Swager 2017 [24] | 60 images (30 early BE neoplasia and 30 BE) | SVM | VLE | Sensitivity 90%, specificity 93%, and AUC 0.95 |
Mendel 2017 [38] | 100 (50 BE and 50 esophageal adenocarcinoma) | CNN | WLI | Sensitivity 94% and specificity 88% |
Cai 2019 [25] | 2615 images (early esophageal squamous cell cancer) | DNN-CAD | WLI | Sensitivity 97.8%, specificity 85.4 %, and accuracy 91.4% |
Horie 2019 [26] | 9546 images (esophageal cancer) | CNN-SSD (single shot multibox detector) | WLI and NBI | Per image Sensitivity 72% (WLI) and 86% (NBI). Per case Sensitivity 79% (WLI) and 89% (NBI). |
Ebigbo 2019 [39] | 248 images. Two databases. [(a)- Augsburg dataset-148. (b) MICCAI dataset-100] | CNN-ResNet (residual net) | WLI and NBI | Augsburg database—WLE sensitivity 97% and specificity 88% and NBI sensitivity 94% and specificity 80% MICCAI database—sensitivity 92% and specificity 100% |
Everson 2019 [28] | 7046 images (Intrapapillary capillary loop patterns in early esophageal squamous cell cancer) | CNN | Magnified NBI | Sensitivity 89.3%, specificity 98%, and accuracy 93.7%. |
Zhao 2019 [40] | 1350 images (early esophageal squamous cell cancer) | Double labeling fully convolutional network (FCN) | Magnifying endoscopy with NBI | Diagnostic accuracy at the lesion level 89.2% and at the pixel level 93.0%. |
Nakagawa 2019 [41] | 15252 images (early esophageal squamous cell cancer) | CNN | Magnified and non-magnified WLI, NBI, and BLI | Sensitivity 90.1%, specificity 95.8%, and accuracy 91% |
Guo 2019 [42] | 6473 images and 47 videos (early esophageal squamous cell cancer) | CNN-SegNet | Non-magnified and magnified NBI | Per image sensitivity 98.04%, specificity 95.03%, and AUC 0.989 Per frame sensitivity 91.5% and specificity 99.9% |
Hashimoto 2020 [43] | 1832 images (916 early BE neoplasia and 916 BE) | CNN | WLI and NBI | WLI sensitivity 98.6% and specificity 88.8%. NBI sensitivity 92.4% and specificity 99.2% |
Ohmori 2020 [44] | 23289 (superficial early esophageal squamous cell cancer) | CNN | Non-magnified WLI, NBI, and BLI. Magnified NBI and BLI | Non-magnified NBI/BLI—sensitivity 100%, specificity 63%, and accuracy 77%. Non-magnified WLI—sensitivity 90%, specificity 76%, and accuracy 81%. Magnified NBI—sensitivity 98%, specificity 56%, and accuracy 77%. |
Tokai 2020 [27] | 1751 (superficial early esophageal squamous cell cancer) | CNN | WLI and NBI | Sensitivity 84.1%, specificity 73.3%, and accuracy 80.9% |
Li 2021 [45] | 2167 images (early esophageal squamous cell cancer) | CAD | WLI and NBI | CAD-NBI sensitivity 91%, specificity 96.7%, and accuracy 94.3%. CAD-WLI sensitivity 98.5%, specificity 83.1%, and accuracy 89.5% |
Shiroma 2021 [32] | 8428 and 80 videos (T1 esophageal squamous cell cancer) | CNN | WLI and NBI | WLI sensitivity 75%, specificity 30% NBI sensitivity 55%, specificity 80% |
Ebigbo 2021 [46] | 230 WLI images (108 T1a, 122 T1b stage) | ANN | WLI | Sensitivity 77%, Specificity 64%, Diagnostic accuracy 71% to differentiate T1a from T1b lesions. Not significantly different from clinical experts |
Author, Year, Reference | Dataset (Images Count and Lesions Type) | AI System | Modality | Results |
---|---|---|---|---|
Miyaki 2015 [63] | 587 cut out images, early gastric cancer | SVM | Magnifying endoscopy-BLI | SVM output 0.846 ± 0.220 for cancerous lesions and 0.219 ± 0.277 for surrounding tissues |
Liu 2016 [23] | 400 images, early gastric cancer | JDPCA | WLI | AUC—0.9532, accuracy—90.75% |
Shichijo 2017 [39] | 32,208 images (CNN 1) and images classified based on 8 anatomic locations (CNN2), Helicobacter pylori infection | Deep CNN | WLI | CNN 1—Sensitivity 81.9%, specificity 83.4%, and accuracy 83.1% CNN2—Sensitivity 88.9%, specificity 87.4%, and accuracy 87.7% |
Ali 2018 [46] | 176 images, abnormal gastric mucosa including metaplasia and dysplasia | G2LCM | Chromoendoscopy | Sensitivity 91%, specificity 82%, accuracy 87%, and AUC 0.91 |
Hirasawa 2018 [64] | 13584 endoscopic images, gastric cancer | CNNS bases single shot Multibox Detector | WLE, NBI and chromoendoscopy | Sensitivity 92.2% |
Kanesaka 2018 [47] | 126 images, early gastric cancer | GLCM features, SVM | Magnifying endoscopy NBI | Sensitivity 96.7%, specificity 95%. and accuracy 96.3% |
Liu 2018 [65] | 1120 Magnifying endoscopy NBI images, early gastric cancer | Deep CNN | Magnifying endoscopy NBI | Top Sensitivity 96.7%, specificity 95%. and accuracy 98.5% |
Horiuchi 2019 [66] | 2828 images (1643 early gastric cancer, 1185 gastritis, early gastric cancer | CNN | Magnifying endoscopy NBI | Sensitivity 95.4%, specificity 71%, and accuracy 85.3% |
Zhu 2019 [45] | 993 images, Invasive depth of gastric cancer invasion | CNN-CAD system | WLI | Sensitivity 76.47%, specificity 95.56%, accuracy 89.1%, and AUC 0.98 |
Guimaraes 2020 [67] | 270 images, gastric precancerous condition such as atrophic gastritis | Deep learning, CNN | WLI | AUC 0.98, sensitivity 93% |
Yasuda 2020 [68] | 525 images, H. pylori infection | SVM | LCI | Sensitivity 90.4%, specificity 85.7%, and accuracy 87.6% |
Wu 2021 [69] | 1050 patients, early gastric cancer | ENDOANGEL- deep CNN based system | WLI | Per lesion, sensitivity 100%, specificity 84.3%, and accuracy 84.7% |
Xia 2021 [70] | 1,023,955 images, gastric lesion | Faster region-based convolutional neural network | Magnetically controlled capsule endoscopy | Sensitivity 96.2%, specificity 76.2%, and accuracy 77.1% |
Author, Year, and Reference | Dataset | AI System | Modality | Results |
---|---|---|---|---|
Tischendorf 2010 [77] | 209 polyps, colorectal polyps | Region growing algorithm | Magnifying NBI | Sensitivity 90% and specificity 70%. |
Takemura 2012 [78] | 371 colorectal lesions | SVM | Magnification chromoendoscopy | Sensitivity 97.8%, specificity 97.9%, and accuracy 97.8% |
Mori 2015 [79] | 176 colorectal lesions | SVM, EC-CAD | WLI, endocytoscopy | Sensitivity 92.0%, specificity 79.5%, and accuracy 89.2% |
Fernandez 2016 [80] | 31 colorectal polyps from 24 videos | WM-DOVA energy maps | WLI | Sensitivity 70.4% and specificity 72.4% |
Kominami 2016 [81] | 118 colorectal lesions | Real-time CAD and SVM | Magnifying NBI | Sensitivity 93.0%, specificity 93.3%, and accuracy 93.2% |
Park and Sargent 2016 [82] | 11802 images patches | CNN | WLI and NBI | Sensitivity 86% and specificity 85% |
Tamai 2017 [83] | 121 colorectal lesions | CAD | Magnifying NBI | Sensitivity 83.9%, specificity 82.6% ,and accuracy 82.8% |
Zhang 2017 [84] | 215 colorectal polyps | CNN | WLI and NBI | Precision 87.3 and accuracy 85.9% |
Misawa 2018 [85] | 155 polyps from 73 colonoscopy videos | CNN | WLI | Per frame: Sensitivity 90%, specificity 63.3%, and accuracy 76.5% |
Mori 2018 [86] | 466 diminutive colorectal polyps from 325 patient | CAD, SVM | NBI | Pathologic prediction rate 98.1% |
Urban 2018 [87] | 8,641 images from screening colonoscopy containing 4088 colorectal polyp detection | CNN | WLI | Accuracy 96.4%, AUC 0.991 |
Bryne 2019 [88] | 125 diminutive colorectal polyp videos | Deep CNN | NBI | Sensitivity 98%, specificity 83%, and accuracy 94% |
Figueiredo 2019 [89] | 1680 frames with polyps and 1360 frames without polyps from 42 patients | SVM binary classifiers | WLI | Sensitivity 99.7%, specificity 84.9%, and accuracy 91.1% |
Horiuchi 2019 [90] | 429 diminutive colorectal polyps (258 rectosigmoid and 171 non-rectosigmoid polyps) | Color intensity analysis software | Autofluorescence imaging | Sensitivity 80.0 %, specificity 95.3%, and accuracy 91.5% |
Ito 2019 [91] | 190 images of colon lesions, stage 1b colon cancer | CNN | WLI | Sensitivity 67.5%, specificity 89%, accuracy 81.2%, and AUC 0.871 |
Wang 2019 [92] | 1058 patients (536 randomized to standard colonoscopy and 522 to colonoscopy with computer aided diagnosis) | CNN | WLI | Adenoma detection rate 29.1% for standard colonoscopy and 20.3% for colonoscopy with computer-aided diagnosis group |
Jin 2020 [93] | 300 images of colorectal polyps (180 adenomatous polyps and 120 hyperplastic polyps) | CNN | NBI | Sensitivity 83.3 %, specificity 91.7%, and accuracy 86.7% |
Kudo 2020 [94] | 2000 images, colorectal polyps | Endocytoscopy with NBI and methylene blue staining modes | EndoBRAIN | Sensitivity 96.9%, specificity 100%, and accuracy 98% |
Nakajima 2020 [95] | 78 images, Colorectal cancer with deep submucosal invasion | CAD | Non magnified WLI | Sensitivity 81%, specificity 87%, and accuracy 84% |
Ozawa 2020 [96] | 1172 colorectal polyp images from 309 polyps. | CNN | NBI | Trained CNN detection—Sensitivity 92% and positive predictive value 86%. Colorectal polyp characterization with NBI—sensitivity 97% and positive predictive value 98%. |
Repici 2020 [97] | 685 patients who underwent screening colonoscopy | CADe | WLI | Adenoma detection rate for CADe (54.8%) higher than standard colonoscopy (40.4%) with relative risk 1.30, 95% Cl: 1.14–1.45 |
Lai 2021 [98] | 16 patients, colorectal polyps | DNN | WLI and NBI | Sensitivity 100%, specificity 100%, and accuracy 74–95% |
Luo 2021 [99] | 150 patients who underwent screening colonoscopy | CNN | WLI | Polyp detection rate for AI-assisted colonoscopy group (38.7%) higher than standard colonoscopy group (34.0%), p <0.001. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyal, H.; Sherazi, S.A.A.; Mann, R.; Gandhi, Z.; Perisetti, A.; Aziz, M.; Chandan, S.; Kopel, J.; Tharian, B.; Sharma, N.; et al. Scope of Artificial Intelligence in Gastrointestinal Oncology. Cancers 2021, 13, 5494. https://doi.org/10.3390/cancers13215494
Goyal H, Sherazi SAA, Mann R, Gandhi Z, Perisetti A, Aziz M, Chandan S, Kopel J, Tharian B, Sharma N, et al. Scope of Artificial Intelligence in Gastrointestinal Oncology. Cancers. 2021; 13(21):5494. https://doi.org/10.3390/cancers13215494
Chicago/Turabian StyleGoyal, Hemant, Syed A. A. Sherazi, Rupinder Mann, Zainab Gandhi, Abhilash Perisetti, Muhammad Aziz, Saurabh Chandan, Jonathan Kopel, Benjamin Tharian, Neil Sharma, and et al. 2021. "Scope of Artificial Intelligence in Gastrointestinal Oncology" Cancers 13, no. 21: 5494. https://doi.org/10.3390/cancers13215494
APA StyleGoyal, H., Sherazi, S. A. A., Mann, R., Gandhi, Z., Perisetti, A., Aziz, M., Chandan, S., Kopel, J., Tharian, B., Sharma, N., & Thosani, N. (2021). Scope of Artificial Intelligence in Gastrointestinal Oncology. Cancers, 13(21), 5494. https://doi.org/10.3390/cancers13215494