Impact of Blinatumomab Treatment on Bone Marrow Function in Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Design, Oversight, and Participants
2.2. Treatment
2.3. Assessments
2.4. Statistical Analyses
3. Results
3.1. Peripheral Blood WBC, Neutrophil, and Platelet Count Changes with Blinatumomab or Chemotherapy Treatment
3.2. Proportion of CRs among Responders
3.3. EFS in Patients Achieving CR versus CRh/CRi
3.4. OS in Patients Achieving CR versus CRh/CRi
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsushima, S.; Kobayashi, R.; Sano, H.; Hori, D.; Yanagi, M.; Kodama, K.; Suzuki, D.; Kobayashi, K. Comparison of myelosuppression using the D-index between children and adolescents/young adults with acute lymphoblastic leukemia during induction chemotherapy. Pediatr. Blood Cancer 2021, 68, e28763. [Google Scholar] [CrossRef] [PubMed]
- Glisovic, S.J.; Pastore, Y.D.; Gagne, V.; Plesa, M.; Laverdière, C.; Leclerc, J.M.; Sinnett, D.; Krajinovic, M. Impact of genetic polymorphisms determining leukocyte/neutrophil count on chemotherapy toxicity. Pharmacogenomics J. 2018, 18, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Dolan, G.; Lilleyman, J.S.; Richards, S.M. Prognostic importance of myelosuppression during maintenance treatment of lymphoblastic leukaemia. Leukaemia in Childhood Working Party of the Medical Research Council. Arch. Dis. Child. 1989, 64, 1231–1234. [Google Scholar] [CrossRef]
- Crawford, J.; Dale, D.C.; Lyman, G.H. Chemotherapy-induced neutropenia: Risks, consequences, and new directions for its management. Cancer 2004, 100, 228–237. [Google Scholar] [CrossRef]
- Nägele, V.; Kratzer, A.; Zugmaier, G.; Holland, C.; Hijazi, Y.; Topp, M.S.; Gökbuget, N.; Baeuerle, P.A.; Kufer, P.; Wolf, A.; et al. Changes in clinical laboratory parameters and pharmacodynamic markers in response to blinatumomab treatment of patients with relapsed/refractory ALL. Exp. Hematol. Oncol. 2017, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Lustberg, M.B. Management of neutropenia in cancer patients. Clin. Adv. Hematol. Oncol. 2012, 10, 825–826. [Google Scholar]
- Nesher, L.; Rolston, K.V. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection 2014, 42, 5–13. [Google Scholar] [CrossRef]
- Bochud, P.Y.; Eggiman, P.; Calandra, T.; Van Melle, G.; Saghafi, L.; Francioli, P. Bacteremia due to viridans streptococcus in neutropenic patients with cancer: Clinical spectrum and risk factors. Clin. Infect. Dis. 1994, 18, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Gómez, H.; Hidalgo, M.; Casanova, L.; Colomer, R.; Pen, D.L.; Otero, J.; Rodríguez, W.; Carracedo, C.; Cortés-Funes, H.; Vallejos, C. Risk factors for treatment-related death in elderly patients with aggressive non-Hodgkin’s lymphoma: Results of a multivariate analysis. J. Clin. Oncol. 1998, 16, 2065–2069. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, C.C.; Li, K. Prognostic value of chemotherapy-induced leukopenia in small-cell lung cancer. Cancer Biol. Med. 2013, 10, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Bakhshi, S.; Padmanjali, K.S.; Arya, L.S. Infections in childhood acute lymphoblastic leukemia: An analysis of 222 febrile neutropenic episodes. Pediatr. Hematol. Oncol. 2008, 25, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Brown, P.A.; Ji, L.; Xu, X.; Devidas, M.; Hogan, L.E.; Borowitz, M.J.; Raetz, E.A.; Zugmaier, G.; Sharon, E.; Bernhardt, M.B.; et al. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-Cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA 2021, 325, 833–842. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.; Thomas, D.A.; Ravandi, F.; Faderl, S.; Pierce, S.; Kantarjian, H. Results of the hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone regimen in elderly patients with acute lymphocytic leukemia. Cancer 2008, 113, 2097–2101. [Google Scholar] [CrossRef] [Green Version]
- Kantarjian, H.; Thomas, D.; Jorgensen, J.; Kebriaei, P.; Jabbour, E.; Rytting, M.; York, S.; Ravandi, F.; Garris, R.; Kwari, M.; et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer 2013, 119, 2728–2736. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.; Gökbuget, N.; Advani, A.; Stelljes, M.; Stock, W.; Liedtke, M.; Martinelli, G.; O’Brien, S.; Wang, T.; Laird, A.D.; et al. Impact of minimal residual disease status in patients with relapsed/refractory acute lymphoblastic leukemia treated with inotuzumab ozogamicin in the phase III INO-VATE trial. Leuk. Res. 2020, 88, 106283. [Google Scholar] [CrossRef]
- Paul, S.; Rausch, C.R.; Jain, N.; Kadia, T.; Ravandi, F.; DiNardo, C.D.; Welch, M.A.; Dabaja, B.S.; Daver, N.; Garcia-Manero, G.; et al. Treating leukemia in the time of COVID-19. Acta Haematol. 2020, 144, 1–13. [Google Scholar] [CrossRef]
- Patel, R.; Park, J.; Shah, A.; Saif, M.W. COVID-19 and cancer patients. Cancer Med. J. 2020, 3, 40–48. [Google Scholar]
- Ribera, J.-M.; Morgades, M.; Coll, R.; Barba, P.; López-Lorenzo, J.-L.; Montesinos, P.; Foncillas, M.-A.; Cabrero, M.; Gómez-Centurión, I.; Morales, M.-D.; et al. Frequency, clinical characteristics and outcome of adults with acute lymphoblastic leukemia and COVID 19 infection in the first vs. second pandemic wave in Spain. Clin. Lymphoma Myeloma Leuk. 2021, 21, e801–e809. [Google Scholar] [CrossRef]
- Bargou, R.; Leo, E.; Zugmaier, G.; Klinger, M.; Goebeler, M.; Knop, S.; Noppeney, R.; Viardot, A.; Hess, G.; Schuler, M.; et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008, 321, 974–977. [Google Scholar] [CrossRef]
- Hoffmann, P.; Hofmeister, R.; Brischwein, K.; Brandl, C.; Crommer, S.; Bargou, R.; Itin, C.; Prang, N.; Baeuerle, P.A. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int. J. Cancer 2005, 115, 98–104. [Google Scholar] [CrossRef]
- Gökbuget, N.; Dombret, H.; Bonifacio, M.; Reichle, A.; Graux, C.; Faul, C.; Diedrich, H.; Topp, M.S.; Brüggemann, M.; Horst, H.A.; et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 2018, 131, 1522–1531. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, F.; Zugmaier, G.; Mergen, N.; Bader, P.; Jeha, S.; Schlegel, P.G.; Bourquin, J.P.; Handgretinger, R.; Brethon, B.; Rossig, C.; et al. Blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia: Results of the RIALTO trial, an expanded access study. Blood Cancer J. 2020, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Zugmaier, G.; Rizzari, C.; Morris, J.D.; Gruhn, B.; Klingebiel, T.; Parasole, R.; Linderkamp, C.; Flotho, C.; Petit, A.; et al. Effect of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-Cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA 2021, 325, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Franquiz, M.J.; Short, N.J. Blinatumomab for the treatment of adult B-cell acute lymphoblastic leukemia: Toward a new era of targeted immunotherapy. Biologics 2020, 14, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouttet, B.; Vinti, L.; Ancliff, P.; Bodmer, N.; Brethon, B.; Cario, G.; Chen-Santel, C.; Elitzur, S.; Hazar, V.; Kunz, J.; et al. Durable remissions in TCF3-HLF positive acute lymphoblastic leukemia with blinatumomab and stem cell transplantation. Haematologica 2019, 104, e244–e247. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, G.; Boissel, N.; Chevallier, P.; Ottmann, O.; Gökbuget, N.; Topp, M.S.; Fielding, A.K.; Rambaldi, A.; Ritchie, E.K.; Papayannidis, C.; et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia Chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: Results from a phase II, single-arm, multicenter study. J. Clin. Oncol. 2017, 35, 1795–1802. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, M.B.; Maher, K.E. Chemotherapy-induced myelosuppression. Semin. Oncol. Nurs. 1992, 8, 113–123. [Google Scholar] [CrossRef]
- Klinger, M.; Brandl, C.; Zugmaier, G.; Hijazi, Y.; Bargou, R.C.; Topp, M.S.; Gökbuget, N.; Neumann, S.; Goebeler, M.; Viardot, A.; et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012, 119, 6226–6233. [Google Scholar] [CrossRef]
- Mansson, R.; Zandi, S.; Anderson, K.; Martensson, I.-L.; Jacobsen, S.E.W.; Bryder, D.; Sigvardsson, M. B-lineage commitment prior to surface expression of B220 and CD19 on hematopoietic progenitor cells. Blood 2008, 112, 1048–1055. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wei, G.; Liu, D. CD19: A biomarker for B cell development, lymphoma diagnosis and therapy. Exp. Hematol. Oncol. 2012, 1, 36. [Google Scholar] [CrossRef] [Green Version]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 2016, 375, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Kebriaei, P.; Cutler, C.; de Lima, M.; Giralt, S.; Lee, S.J.; Marks, D.; Merchant, A.; Stock, W.; van Besien, K.; Stelljes, M. Management of important adverse events associated with inotuzumab ozogamicin: Expert panel review. Bone Marrow Transpl. 2018, 53, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Toor, S.M.; Saleh, R.; Nair, V.S.; Taha, R.Z.; Elkord, E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology 2021, 162, 30–43. [Google Scholar] [CrossRef]
- Shrotri, M.; van Schalkwyk, M.C.I.; Post, N.; Eddy, D.; Huntley, C.; Leeman, D.; Rigby, S.; Williams, S.V.; Bermingham, W.H.; Kellam, P.; et al. T cell response to SARS-CoV-2 infection in humans: A systematic review. PLoS ONE 2021, 16, e0245532. [Google Scholar] [CrossRef]
- Chandrashekar, A.; Liu, J.; Martinot, A.J.; McMahan, K.; Mercado, N.B.; Peter, L.; Tostanoski, L.H.; Yu, J.; Maliga, Z.; Nekorchuk, M.; et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 2020, 369, 812–817. [Google Scholar] [CrossRef]
- Sherina, N.; Piralla, A.; Du, L.; Wan, H.; Kumagai-Braesch, M.; Andréll, J.; Braesch-Andersen, S.; Cassaniti, I.; Percivalle, E.; Sarasini, A.; et al. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6–8 months after the infection. Medicine 2021, 2, 281–295. [Google Scholar] [CrossRef]
- Ogega, C.O.; Skinner, N.E.; Blair, P.W.; Park, H.S.; Littlefield, K.; Ganesan, A.; Dhakal, S.; Ladiwala, P.; Antar, A.A.; Ray, S.C.; et al. Durable SARS-CoV-2 B cell immunity after mild or severe disease. J. Clin. Investig. 2021, 131, e145516. [Google Scholar] [CrossRef] [PubMed]
- Quast, I.; Tarlinton, D. B cell memory: Understanding COVID-19. Immunity 2021, 54, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Mato, A.R.; Roeker, L.E.; Lamanna, N.; Allan, J.N.; Leslie, L.; Pagel, J.M.; Patel, K.; Osterborg, A.; Wojenski, D.; Kamdar, M.; et al. Outcomes of COVID-19 in patients with CLL: A multicenter international experience. Blood 2020, 136, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Gesiotto, Q.; Cheema, A.; Avaiya, K.; Shah, B.; Greene, J. COVID-19 virus infection in three patients with hypogammaglobulinemia. Cureus 2021, 13, e15256. [Google Scholar] [CrossRef] [PubMed]
- Zugmaier, G.; Topp, M.S.; Alekar, S.; Viardot, A.; Horst, H.A.; Neumann, S.; Stelljes, M.; Bargou, R.C.; Goebeler, M.; Wessiepe, D.; et al. Long-term follow-up of serum immunoglobulin levels in blinatumomab-treated patients with minimal residual disease-positive B-precursor acute lymphoblastic leukemia. Blood Cancer J. 2014, 4, 244. [Google Scholar] [CrossRef] [PubMed]
- Doan, A.; Pulsipher, M.A. Hypogammaglobulinemia due to CAR T-cell therapy. Pediatr. Blood Cancer 2018, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, J.A.; Seo, S.K. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 2020, 136, 925–935. [Google Scholar] [CrossRef]
Characteristic | TOWER Phase 3 Trial [12] | ALCANTARA Phase 2 Trial [27] | |
---|---|---|---|
Blinatumomab Arm (n = 271) | Chemotherapy Arm (n = 134) | Blinatumomab Arm (n = 45) | |
Age—years | |||
Mean (range) | 40.8 (18–80) | 41.1 (18–78) | 52.8 (23–78) |
Sex—n (%) | |||
Male | 162 (59.8) | 77 (57.5) | 24 (53.3) |
Female | 109 (40.2) | 57 (42.5) | 21 (46.7) |
ECOG performance status—n (%) | |||
0 | 96 (35.4) | 52 (38.8) | 16 (35.6) |
1 | 134 (49.4) | 61 (45.5) | 20 (44.4) |
2 | 41 (15.1) | 20 (14.9) | 9 (20.0) |
Missing data | 0 | 1 (0.7) | N/A |
Prior alloHSCT—n (%) | |||
Yes | 94 (34.7) | 46 (34.3) | 20 (44.4) |
No | 176 (64.9) | 87 (64.9) | 25 (55.6) |
Unknown | 1 (0.4) | 1 (0.7) | N/A |
Prior salvage regimen—n (%) | |||
0 | N/A | N/A | 14 (31.1) |
1 | 114 (42.1) | 65 (48.5) | 12 (26.7) |
2 | 91 (33.6) | 43 (32.1) | 11 (24.4) |
≥3 | 66 (24.4) | 26 (19.4) | 8 (17.8) |
Prior tyrosine kinase inhibitor treatment—n (%) | |||
1 | N/A | N/A | 7 (15.6) |
2 | N/A | N/A | 21 (46.7) |
3 | N/A | N/A | 13 (28.9) |
4 | N/A | N/A | 4 (8.9) |
Bone marrow blasts—n (%) | |||
<10% | 9 (3.3) | 7 (5.2) | 2 (4.4) |
10 to <50% | 60 (22.1) | 23 (17.2) | 9 (20.0) |
≥50% | 201 (74.2) | 104 (77.6) | 34 (75.6) |
Unknown | 1 (0.4) | 0 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantarjian, H.M.; Zugmaier, G.; Brüggemann, M.; Wood, B.L.; Horst, H.A.; Zeng, Y.; Martinelli, G. Impact of Blinatumomab Treatment on Bone Marrow Function in Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers 2021, 13, 5607. https://doi.org/10.3390/cancers13225607
Kantarjian HM, Zugmaier G, Brüggemann M, Wood BL, Horst HA, Zeng Y, Martinelli G. Impact of Blinatumomab Treatment on Bone Marrow Function in Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers. 2021; 13(22):5607. https://doi.org/10.3390/cancers13225607
Chicago/Turabian StyleKantarjian, Hagop M., Gerhard Zugmaier, Monika Brüggemann, Brent L. Wood, Heinz A. Horst, Yi Zeng, and Giovanni Martinelli. 2021. "Impact of Blinatumomab Treatment on Bone Marrow Function in Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia" Cancers 13, no. 22: 5607. https://doi.org/10.3390/cancers13225607
APA StyleKantarjian, H. M., Zugmaier, G., Brüggemann, M., Wood, B. L., Horst, H. A., Zeng, Y., & Martinelli, G. (2021). Impact of Blinatumomab Treatment on Bone Marrow Function in Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers, 13(22), 5607. https://doi.org/10.3390/cancers13225607