Immunotherapy for Diffuse Large B-Cell Lymphoma: Current Landscape and Future Directions
Abstract
:Simple Summary
Abstract
1. Introduction
2. CD20 Directed Monoclonal Antibody (mAb)
3. Autologous Stem Cell Transplant
Factors Affecting Outcomes of AutoSCT
4. Allogeneic Stem Cell Transplant
5. Chimeric Antigen Receptor T-Cell Therapy
6. Immune Checkpoint Inhibitor Therapy
7. Anti-CD47 Antibody
8. Bispecific T-Cell Engager (BiTE) Antibody
9. Antibody Drug Conjugates (ADC)
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; et al. Distinct types of diffuse large B-cell lym-phoma identified by gene expression profiling. Nature 2000, 403, 503–511. [Google Scholar] [CrossRef]
- Lenz, G.; Wright, G.; Dave, S.; Xiao, W.; Powell, J.; Zhao, H.; Xu, W.; Tan, B.; Goldschmidt, N.; Iqbal, J.; et al. Stromal Gene Signatures in Large-B-Cell Lymphomas. N. Engl. J. Med. 2008, 359, 2313–2323. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.W.; Mottok, A.; Ennishi, D.; Wright, G.W.; Farinha, P.; Ben-Neriah, S.; Kridel, R.; Barry, G.S.; Hother, C.; Abrisqueta, P.; et al. Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Bi-opsies. J. Clin. Oncol. 2015, 33, 2848–2856. [Google Scholar] [CrossRef]
- Cuccuini, W.; Briere, J.; Mounier, N.; Voelker, H.U.; Rosenwald, A.; Sundstrom, C.; Cogliatti, S.; Hirchaud, E.; Ysebaert, L.; Bron, D.; et al. MYC+ diffuse large B-cell lym-phoma is not salvaged by classical R-ICE or R-DHAP followed by BEAM plus autologous stem cell transplantation. Blood 2012, 119, 4619–4624. [Google Scholar] [CrossRef]
- Scott, D.W.; King, R.L.; Staiger, A.M.; Ben-Neriah, S.; Jiang, A.; Horn, H.; Mottok, A.; Farinha, P.; Slack, G.W.; Ennishi, D.; et al. High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood 2018, 131, 2060–2064. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Oki, Y.; Westin, J.R.; Turturro, F. A clinician’s guide to double hit lymphomas. Br. J. Haematol. 2014, 168, 784–795. [Google Scholar] [CrossRef]
- Green, T.M.; Young, K.H.; Visco, C.; Xu-Monette, Z.Y.; Orazi, A.; Go, R.S.; Nielsen, O.; Gadeberg, O.V.; Mourits-Andersen, T.; Frederiksen, M.; et al. Immunohistochemical Double-Hit Score Is a Strong Predictor of Outcome in Patients with Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J. Clin. Oncol. 2012, 30, 3460–3467. [Google Scholar] [CrossRef]
- Landsburg, D.J.; Petrich, A.M.; Abramson, J.; Sohani, A.R.; Press, O.; Cassaday, R.D.; Chavez, J.C.; Song, K.; Zelenetz, A.D.; Gandhi, M.; et al. Impact of oncogene rearrangement patterns on outcomes in patients with double-hit non-Hodgkin lymphoma. Cancer 2015, 122, 559–564. [Google Scholar] [CrossRef]
- Oki, Y.; Noorani, M.; Lin, P.; Davis, R.E.; Neelapu, S.S.; Ma, L.; Ahmed, M.; Rodriguez, M.A.; Hagemeister, F.B.; Fowler, N.; et al. Double hit lymphoma: The MD Anderson Cancer Center clinical experience. Br. J. Haematol. 2014, 166, 891–901. [Google Scholar] [CrossRef]
- Herrera, A.F.; Mei, M.; Low, L.; Kim, H.T.; Griffin, G.K.; Song, J.Y.; Merryman, R.W.; Bedell, V.; Pak, C.; Sun, H.; et al. Relapsed or Refractory Double-Expressor and Dou-ble-Hit Lymphomas Have Inferior Progression-Free Survival After Autologous Stem-Cell Transplantation. J. Clin. Oncol. 2017, 35, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Staiger, A.M.; Ziepert, M.; Horn, H.; Scott, D.W.; Barth, T.F.E.; Bernd, H.W.; Feller, A.C.; Klapper, W.; Szczepanowski, M.; Hummel, M.; et al. German High-Grade Lymphoma Study Group. Clinical Impact of the Cell-of-Origin Clas-sification and the MYC/BCL2 Dual Expresser Status in Diffuse Large B-Cell Lymphoma Treated Within Prospective Clinical Trials of the German High-Grade Non-Hodgkin’s Lymphoma Study Group. J. Clin. Oncol. 2017, 35, 2515–2526. [Google Scholar]
- Hu, S.; Xu-Monette, Z.Y.; Tzankov, A.; Green, T.; Wu, L.; Balasubramanyam, A.; Liu, W.M.; Visco, C.; Li, Y.; Miranda, R.N.; et al. MYC/BCL2 protein coexpression con-tributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: A report from The International DLBCL Rituximab-CHOP Consortium Program. Blood 2013, 121, 4021–4031. [Google Scholar] [CrossRef] [Green Version]
- Ennishi, D.; Jiang, A.; Boyle, M.; Collinge, B.; Grande, B.M.; Ben-Neriah, S.; Rushton, C.; Tang, J.; Thomas, N.; Slack, G.W.; et al. Double-Hit Gene Expression Signature De-fines a Distinct Subgroup of Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2019, 37, 190–201. [Google Scholar] [CrossRef]
- Schmitz, R.; Wright, G.W.; Huang, D.W.; Johnson, C.A.; Phelan, J.D.; Wang, J.Q.; Roulland, S.; Kasbekar, M.; Young, R.M.; Shaffer, A.L.; et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018, 378, 1396–1407. [Google Scholar] [CrossRef]
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018, 24, 679–690. [Google Scholar] [CrossRef]
- Wright, G.W.; Huang, D.W.; Phelan, J.D.; Coulibaly, Z.A.; Roulland, S.; Young, R.M.; Wang, J.Q.; Schmitz, R.; Morin, R.; Tang, J.; et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020, 37, 551–568.e14. [Google Scholar] [CrossRef]
- Lacy, S.E.; Barrans, S.L.; Beer, P.A.; Painter, D.; Smith, A.G.; Roman, E.; Cooke, S.L.; Ruiz, C.; Glover, P.; Van Hoppe, S.J.L.; et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: A Haematological Malignancy Research Network report. Blood 2020, 135, 1759–1771. [Google Scholar] [CrossRef]
- Coiffier, B.; Lepage, E.; Briere, J.; Herbrecht, R.; Tilly, H.; Bouabdallah, R.; Morel, P.; Van Den Neste, E.; Salles, G.; Gaulard, P.; et al. Gisselbrecht CCHOP chemotherapy plus rituximab com-pared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002, 346, 235–242. [Google Scholar] [CrossRef]
- Feugier, P.; Van Hoof, A.; Sebban, C.; Solal-Celigny, P.; Bouabdallah, R.; Fermé, C.; Christian, B.; Lepage, E.; Tilly, H.; Morschhauser, F.; et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: A study by the Groupe d’Etude des Lym-phomes de l’Adulte. J. Clin. Oncol. 2005, 23, 4117–4126. [Google Scholar] [CrossRef] [Green Version]
- Habermann, T.M.; Weller, E.A.; Morrison, V.A.; Gascoyne, R.D.; Cassileth, P.A.; Cohn, J.B.; Dakhil, S.R.; Woda, B.; Fisher, R.I.; Peterson, B.A.; et al. Rituximab-CHOP Versus CHOP Alone or With Maintenance Rituximab in Older Patients With Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2006, 24, 3121–3127. [Google Scholar] [CrossRef]
- Pfreundschuh, M.; Schubert, J.; Ziepert, M.; Schmits, R.; Mohren, M.; Lengfelder, E.; Reiser, M.; Nickenig, C.; Clemens, M.; Peter, N.; et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: A randomised controlled trial (RICOVER-60). Lancet Oncol. 2008, 9, 105–116. [Google Scholar] [CrossRef]
- Pfreundschuh, M.; Trümper, L.; Österborg, A.; Pettengell, R.; Trneny, M.; Imrie, K.; Ma, D.; Gill, D.; Walewski, J.; Zinzani, P.L.; et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006, 7, 379–391. [Google Scholar] [CrossRef]
- Pfreundschuh, M.; Kuhnt, E.; Trümper, L.; Österborg, A.; Trneny, M.; Shepherd, L.; Gill, D.S.; Walewski, J.; Pettengell, R.; Jaeger, U.; et al. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol. 2011, 12, 1013–1022. [Google Scholar] [CrossRef]
- Mössner, E.; Brünker, P.; Moser, S.; Püntener, U.; Schmidt, C.; Herter, S.; Grau, R.; Gerdes, C.; Nopora, A.; van Puijenbroek, E.; et al. Increasing the efficacy of CD20 antibody ther-apy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 2010, 115, 4393–4402. [Google Scholar] [CrossRef]
- Vitolo, U.; Trneny, M.; Belada, D.; Burke, J.M.; Carella, A.M.; Chua, N.; Abrisqueta, P.; Demeter, J.; Flinn, I.; Hong, X.; et al. Obinutuzumab or Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Previously Untreated Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2017, 35, 3529–3537. [Google Scholar] [CrossRef]
- Baetz, T.; Chen, B.E.; Couban, S.; Tom Kouroukis, C.; Buckstein, R.; Kuruvilla, J.; Howson-Jan, K.; Szwajcer, D.; Federico, M.; Meyer, R.M.; et al. Effect of the addition of rituximab to sal-vage chemotherapy prior to autologous stem cell transplant in aggressive CD20+ lymphoma: A cohort comparison from the NCIC Clinical Trials Group Study LY.12. Leuk. Lymphoma 2017, 58, 64–69. [Google Scholar] [CrossRef]
- Crump, M.; Kuruvilla, J.; Couban, S.; MacDonald, D.A.; Kukreti, V.; Kouroukis, C.T.; Rubinger, M.; Buckstein, R.; Imrie, K.R.; Federico, M.; et al. Randomized Comparison of Gemcitabine, Dexamethasone, and Cisplatin Versus Dexamethasone, Cytarabine, and Cisplatin Chemotherapy Before Autologous Stem-Cell Transplantation for Relapsed and Refractory Aggressive Lymphomas: NCIC-CTG LY.12. J. Clin. Oncol. 2014, 32, 3490–3496. [Google Scholar] [CrossRef] [Green Version]
- Gisselbrecht, C.; Glass, B.; Mounier, N.; Gill, D.S.; Linch, D.C.; Trneny, M.; Bosly, A.; Ketterer, N.; Shpilberg, O.; Hagberg, H.; et al. Salvage Regimens With Autologous Transplantation for Relapsed Large B-Cell Lymphoma in the Rituximab Era. J. Clin. Oncol. 2010, 28, 4184–4190. [Google Scholar] [CrossRef] [Green Version]
- Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; et al. Polatuzumab Vedotin in Re-lapsed or Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2020, 38, 155–165. [Google Scholar] [CrossRef]
- Coiffier, B.; Thieblemont, C.; Van Den Neste, E.; Lepeu, G.; Plantier, I.; Castaigne, S.; Lefort, S.; Marit, G.; Macro, M.; Sebban, C.; et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL pa-tients: A study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood 2010, 116, 2040–2045. [Google Scholar] [CrossRef]
- Philip, T.; Guglielmi, C.; Hagenbeek, A.; Somers, R.; Van der Lelie, H.; Bron, D.; Sonneveld, P.; Gisselbrecht, C.; Cahn, J.Y.; Harousseau, J.L.; et al. Autologous bone marrow transplanta-tion as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N. Engl. J. Med. 1995, 333, 1540–1545. [Google Scholar] [CrossRef]
- Vose, J.M.; Carter, S.; Burns, L.J.; Ayala, E.; Press, O.W.; Moskowitz, C.H.; Stadtmauer, E.A.; Mineshi, S.; Ambinder, R.; Fenske, T.; et al. Phase III randomized study of rituxi-mab/carmustine, etoposide, cytarabine, and melphalan (BEAM) compared with iodine-131 tositumomab/BEAM with au-tologous hematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: Results from the BMT CTN 0401 trial. J. Clin. Oncol. 2013, 31, 1662–1668. [Google Scholar]
- Jagadeesh, D.; Majhail, N.S.; He, Y.; Ahn, K.W.; Ms, C.L.; Ahmed, S.; Aljurf, M.; Bacher, U.; Badawy, S.M.; Bejanyan, N.; et al. Outcomes of rituximab-BEAM versus BEAM conditioning regimen in patients with diffuse large B cell lymphoma undergoing autologous transplantation. Cancer 2020, 126, 2279–2287. [Google Scholar] [CrossRef]
- Hamlin, P.A.; Zelenetz, A.D.; Kewalramani, T.; Qin, J.; Satagopan, J.M.; Verbel, D.; Noy, A.; Portlock, C.S.; Straus, D.J.; Yahalom, J.; et al. Age-adjusted International Prog-nostic Index predicts autologous stem cell transplantation outcome for patients with relapsed or primary refractory diffuse large B-cell lymphoma. Blood 2003, 102, 1989–1996. [Google Scholar] [CrossRef] [Green Version]
- Guglielmi, C.; Gomez, F.; Philip, T.; Hagenbeek, A.; Martelli, M.; Sebban, C.; Milpied, N.; Bron, D.; Cahn, J.Y.; Somers, R.; et al. Time to relapse has prognostic value in patients with aggressive lymphoma enrolled onto the Parma trial. J. Clin. Oncol. 1998, 16, 3264–3269. [Google Scholar] [CrossRef]
- Vose, J.M.; Weisenburger, D.D.; Loberiza, F.R.; Arevalo, A.; Bast, M.; Armitage, J.; Bierman, P.J.; Bociek, R.G.; Armitage, J.O. Late relapse in patients with diffuse large B-cell lymphoma. Br. J. Haematol. 2010, 151, 354–358. [Google Scholar] [CrossRef]
- Crump, M.; Neelapu, S.S.; Farooq, U.; Neste, E.V.D.; Kuruvilla, J.; Westin, J.; Link, B.K.; Hay, A.; Cerhan, J.R.; Zhu, L.; et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood 2017, 130, 1800–1808. [Google Scholar] [CrossRef]
- Vardhana, S.A.; Sauter, C.S.; Matasar, M.J.; Zelenetz, A.D.; Galasso, N.; Woo, K.M.; Zhang, Z.; Moskowitz, C.H. Outcomes of primary refractory diffuse large B-cell lymphoma (DLBCL) treated with salvage chemotherapy and intention to transplant in the rituximab era. Br. J. Haematol. 2016, 176, 591–599. [Google Scholar] [CrossRef]
- Terasawa, T.; Dahabreh, I.J.; Nihashi, T. Fluorine-18-fluorodeoxyglucose positron emission tomography in response as-sessment before high-dose chemotherapy for lymphoma: A systematic review and meta-analysis. Oncologist 2010, 15, 750–759. [Google Scholar] [CrossRef]
- Sauter, C.S.; Matasar, M.J.; Meikle, J.; Schoder, H.; Ulaner, G.A.; Migliacci, J.C.; Hilden, P.; Devlin, S.M.; Zelenetz, A.D.; Moskowitz, C.H. Prognostic value of FDG-PET prior to autologous stem cell transplantation for relapsed and refractory diffuse large B-cell lymphoma. Blood 2015, 125, 2579–2581. [Google Scholar] [CrossRef] [Green Version]
- Armand, P.; Welch, S.; Kim, H.T.; LaCasce, A.S.; Jacobsen, E.D.; Davids, M.S.; Jacobson, C.; Fisher, D.C.; Brown, J.R.; Coughlin, E.; et al. Prognostic factors for patients with dif-fuse large B cell lymphoma and transformed indolent lymphoma undergoing autologous stem cell transplantation in the positron emission tomography era. Br. J. Haematol. 2013, 160, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Ahn, K.W.; Litovich, C.; Fenske, T.; Hamadani, M. Is autologous transplantation (autoHCT) in relapsed diffuse large B-cell lymphoma (DLBCL) patients achieving only a PET/CT positive partial remission (PR) appropriate in the CAR-T cell era? J. Clin. Oncol. 2020, 38, 8000. [Google Scholar] [CrossRef]
- Chow, V.A.; Gopal, A.K.; Maloney, D.G.; Turtle, C.J.; Smith, S.D.; Ujjani, C.S.; Shadman, M.; Cassaday, R.D.; Till, B.G.; Tseng, Y.D.; et al. Outcomes of patients with large B-cell lymphomas and progressive disease following CD19-specific CAR T-cell therapy. Am. J. Hematol. 2018, 94, E209–E213. [Google Scholar] [CrossRef]
- Spiegel, J.Y.; Dahiya, S.; Jain, M.D.; Tamaresis, J.; Nastoupil, L.J.; Jacobs, M.T.; Ghobadi, A.; Lin, Y.; Lunning, M.; Lekakis, L.; et al. Outcomes of patients with large B-cell lymphoma progressing after axicabtagene ciloleucel therapy. Blood 2021, 137, 1832–1835. [Google Scholar] [PubMed]
- Shadman, M.; Gauthier, J.; Hay, K.A.; Voutsinas, J.M.; Milano, F.; Li, A.; Hirayama, A.V.; Sorror, M.L.; Cherian, S.; Chen, X.; et al. Safety of allogeneic hematopoietic cell trans-plant in adults after CD19-targeted CAR T-cell therapy. Blood Adv. 2019, 3, 3062–3069. [Google Scholar] [CrossRef] [Green Version]
- Fenske, T.S.; Ahn, K.W.; Graff, T.M.; DiGilio, A.; Bashir, Q.; Kamble, R.T.; Ayala, E.; Bacher, U.; Brammer, J.E.; Cairo, M.; et al. Allogeneic transplantation provides durable remission in a subset of DLBCL patients relapsing after autologous transplantation. Br. J. Haematol. 2016, 174, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Herrera, A.F.; Rodig, S.J.; Song, J.Y.; Kim, Y.; Griffin, G.K.; Yang, D.; Nikolaenko, L.; Mei, M.; Bedell, V.; Dal Cin, P.; et al. Outcomes after Allogeneic Stem Cell Transplanta-tion in Patients with Double-Hit and Double-Expressor Lymphoma. Biol. Blood Marrow Transpl. 2018, 24, 514–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, N.; Ahmed, S.; Ahn, K.W.; Khanal, M.; Litovich, C.; Aljurf, M.; Bacher, V.U.; Bredeson, C.; Epperla, N.; Farhadfar, N.; et al. Association of Reduced-Intensity Conditioning Regimens With Overall Survival Among Patients With Non-Hodgkin Lymphoma Undergoing Allogeneic Transplant. JAMA Oncol. 2020, 6, 1011–1018. [Google Scholar] [CrossRef]
- Modi, D.; Kim, S.; Surapaneni, M.; Ayash, L.; Alavi, A.; Ratanatharathorn, V.; Deol, A.; Uberti, J.P. R-BEAM versus Reduced-Intensity Con-ditioning Regimens in Patients Undergoing Allogeneic Stem Cell Transplantation for Relapsed Refractory Diffuse Large B Cell Lymphoma. Biol. Blood Marrow Transpl. 2020, 26, 683–690. [Google Scholar] [CrossRef]
- van Kampen, R.J.; Canals, C.; Schouten, H.C.; Nagler, A.; Thomson, K.J.; Vernant, J.P.; Buzyn, A.; Boogaerts, M.A.; Luan, J.J.; Maury, S.; et al. Allogeneic stem-cell transplan-tation as salvage therapy for patients with diffuse large B-cell non-Hodgkin’s lymphoma relapsing after an autologous stem-cell transplantation: An analysis of the European Group for Blood and Marrow Transplantation Registry. J. Clin. Oncol. 2011, 29, 1342–1348. [Google Scholar] [CrossRef]
- Bacher, U.; Klyuchnikov, E.; Le-Rademacher, J.; Carreras, J.; Armand, P.; Bishop, M.R.; Bredeson, C.N.; Cairo, M.S.; Fenske, T.S.; Freytes, C.O.; et al. Conditioning regimens for al-lotransplants for diffuse large B-cell lymphoma: Myeloablative or reduced intensity? Blood 2012, 120, 4256–4262. [Google Scholar] [CrossRef] [Green Version]
- Thomson, K.J.; Morris, E.C.; Bloor, A.; Cook, G.; Milligan, D.; Parker, A.; Clark, F.; Yung, L.; Linch, D.C.; Chakraverty, R.; et al. Favorable long-term survival after re-duced-intensity allogeneic transplantation for multiple-relapse aggressive non-Hodgkin’s lymphoma. J. Clin. Oncol. 2009, 27, 426–432. [Google Scholar] [CrossRef]
- Sirvent, A.; Dhedin, N.; Michallet, M.; Mounier, N.; Faucher, C.; Yakoub-Agha, I.; Mohty, M.; Robin, M.; Tabrizi, R.; Clement, L.; et al. Low nonrelapse mortality and pro-longed long-term survival after reduced-intensity allogeneic stem cell transplantation for relapsed or refractory diffuse large B cell lymphoma: Report of the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Biol. Blood Marrow Transpl. 2010, 16, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, H.M.; Zhang, M.-J.; Carreras, J.; Hayes-Lattin, B.M.; Ataergin, A.S.; Bitran, J.D.; Bolwell, B.J.; Freytes, C.O.; Gale, R.P.; Goldstein, S.C.; et al. A Comparison of HLA-Identical Sibling Allogeneic versus Autologous Transplantation for Diffuse Large B Cell Lymphoma: A Report from the CIBMTR. Biol. Blood Marrow Transplant. 2010, 16, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for pa-tients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Hunter, B.D.; Redd, R.; Rodig, S.J.; Chen, P.-H.; Wright, K.; Lipschitz, M.; Ritz, J.; Kamihara, Y.; Armand, P.; et al. Axicabtagene Ciloleucel in the Non-Trial Setting: Outcomes and Correlates of Response, Resistance, and Toxicity. J. Clin. Oncol. 2020, 38, 3095–3106. [Google Scholar] [CrossRef] [PubMed]
- Jaglowski, S.; Hu, Z.-H.; Zhang, Y.; Kamdar, M.; Ghosh, M.; Lulla, P.; Sasine, J.; Perales, M.-A.; Hematti, P.; Nikiforow, S.; et al. Tisagenlecleucel Chimeric Antigen Receptor (CAR) T-Cell Therapy for Adults with Diffuse Large B-Cell Lymphoma (DLBCL): Real World Experience from the Center for International Blood & Marrow Transplant Research (CIBMTR) Cellular Therapy (CT) Registry. Blood 2019, 134, 766. [Google Scholar] [CrossRef]
- Nastoupil, L.J.; Jain, M.; Feng, L.; Spiegel, J.Y.; Ghobadi, A.; Lin, Y.; Dahiya, S.; Lunning, M.; Lekakis, L.; Reagan, P.; et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J. Clin. Oncol. 2020, 38, 3119–3128. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, M.C.; Locke, F.L.; Herrera, A.F.; Siddiqi, T.; Ghobadi, A.; Komanduri, K.V.; Hu, Z.-H.; Dong, H.; Hematti, P.; Nikiforow, S.; et al. Post-Marketing Use Outcomes of an Anti-CD19 Chimeric Antigen Receptor (CAR) T Cell Therapy, Axicabtagene Ciloleucel (Axi-Cel), for the Treatment of Large B Cell Lymphoma (LBCL) in the United States (US). Blood 2019, 134, 764. [Google Scholar] [CrossRef]
- Sesques, P.; Ferrant, E.; Safar, V.; Wallet, F.; Tordo, J.; Dhomps, A.; Karlin, L.; Brisou, G.; Vercasson, M.; Hospital-Gustem, C.; et al. Commercial anti-CD19 CAR T cell therapy for pa-tients with relapsed/refractory aggressive B cell lymphoma in a European center. Am. J. Hematol. 2020, 95, 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Jacobson, C.A.; Oluwole, O.O.; Munoz, J.; Deol, A.; Miklos, D.B.; Bartlett, N.; Braunschweig, I.; Jiang, Y.; Kim, J.J.; et al. Outcomes of older patients in ZUMA-1, a pivotal study of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood 2020, 135, 2106–2109. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, O.O.; Bouabdallah, K.; Muñoz, J.; De Guibert, S.; Vose, J.M.; Bartlett, N.L.; Lin, Y.; Deol, A.; McSweeney, P.A.; Goy, A.H.; et al. Prophylactic corticosteroid use in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br. J. Haematol. 2021, 194, 690–700. [Google Scholar] [CrossRef]
- Kenderian, S.S.; Oluwole, O.O.; McCarthy, P.L.; Reshef, R.; Shiraz, P.; Ahmed, O.; Le Gall, J.; Nahas, M.; Tang, L.; Neelapu, S.S. ZUMA-19: A Phase 1/2 Multicenter Study of Lenzilumab Use With Axicabtagene Ciloleucel (Axi-Cel) in Patients (Pts) With Relapsed or Refractory Large B Cell Lymphoma (R/R LBCL). Blood 2020, 136 (Suppl. 1), 6–7. [Google Scholar] [CrossRef]
- Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 2019, 17, 147–167. [Google Scholar] [CrossRef]
- Fry, T.J.; Shah, N.N.; Orentas, R.J.; Stetler-Stevenson, M.; Yuan, C.M.; Ramakrishna, S.; Wolters, P.; Martin, S.; Delbrook, C.; Yates, B.; et al. CD22-targeted CAR T cells in-duce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018, 24, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, N.N.; Johnson, B.D.; Schneider, D.; Zhu, F.; Szabo, A.; Keever-Taylor, C.A.; Krueger, W.; Worden, A.A.; Kadan, M.J.; Yim, S.; et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: A phase 1 dose escalation and expansion trial. Nat. Med. 2020, 26, 1569–1575. [Google Scholar] [CrossRef]
- Borchmann, P.; Jühling, A.; Gödel, P.; Balke-Want, H.; Schmid, C.; Ayuk, F.A.; Holtkamp, S.; Preussner, L.; Zadoyan, G.; Hanssens, L.; et al. Phase I Trial of MB-CART2019.1, a Novel CD20 and CD19 Targeting Tandem Chimeric Antigen Receptor, in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma. Blood 2020, 136, 48. [Google Scholar] [CrossRef]
- Osborne, W.; Marzolini, M.; Tholouli, E.; Ramakrishnan, A.; Bachier, C.R.; McSweeney, P.A.; Irvine, D.; Zhang, M.; Al-Hajj, M.A.; Pule, M.; et al. Phase I Alexander study of AUTO3, the first CD19/22 dual targeting CAR T cell therapy, with pembrolizumab in patients with relapsed/refractory (r/r) DLBCL. J. Clin. Oncol. 2020, 38, 8001. [Google Scholar] [CrossRef]
- Chong, E.A.; Svoboda, J.; Nasta, S.D.; Landsburg, D.J.; Winchell, N.; Napier, E.; Mato, A.R.; Melenhorst, J.J.; Ruella, M.; Lacey, S.F.; et al. Sequential Anti-CD19 Directed Chimeric Antigen Receptor Modified T-Cell Therapy (CART19) and PD-1 Blockade with Pembrolizumab in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphomas. Blood 2018, 132, 4198. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Locke, F.L.; Miklos, D.B.; Herrera, A.F.; Westin, J.R.; Lee, J.; Rossi, J.M.; Zheng, L.; Avanzi, M.P.; Roberts, Z.J.; et al. End of Phase 1 Results from Zuma-6: Axicabtagene Ciloleucel (Axi-Cel) in Combination with Atezolizumab for the Treatment of Patients with Refractory Diffuse Large B Cell Lymphoma. Blood 2018, 132, 4192. [Google Scholar] [CrossRef]
- Shah, B.D.; Jacobson, C.A.; Solomon, S.; Jain, N.; Vainorius, M.; Heery, C.R.; He, F.C.; Reshef, R.; Herrera, A.F.; Akard, L.P.; et al. Preliminary safety and efficacy of PBCAR0191, an allogeneic, off-the-shelf CD19-targeting CAR-T product, in relapsed/refractory (r/r) CD19+ NHL. J. Clin. Oncol. 2021, 39, 7516. [Google Scholar] [CrossRef]
- Roemer, M.G.; Advani, R.H.; Ligon, A.H.; Natkunam, Y.; Redd, R.A.; Homer, H.; Connelly, C.F.; Sun, H.H.; Daadi, S.E.; Freeman, G.J.; et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J. Clin. Oncol. 2016, 34, 2690–2697. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in re-lapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Armand, P.; Shipp, M.A.; Ribrag, V.; Michot, J.-M.; Zinzani, P.L.; Kuruvilla, J.; Snyder, E.S.; Ricart, A.D.; Balakumaran, A.; Rose, S.; et al. Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure. J. Clin. Oncol. 2016, 34, 3733–3739. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J. Clin. Oncol. 2017, 35, 2125–2132. [Google Scholar] [CrossRef]
- Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016, 17, 1283–1294. [Google Scholar] [CrossRef] [Green Version]
- Bröckelmann, P.J.; Goergen, H.; Keller, U.; Meissner, J.; Ordemann, R.; Halbsguth, T.V.; Sasse, S.; Sökler, M.; Kerkhoff, A.; Mathas, S.; et al. Efficacy of Nivolumab and AVD in Early-Stage Unfavorable Classic Hodgkin Lymphoma: The Randomized Phase 2 German Hodgkin Study Group NIVAHL Trial. JAMA Oncol. 2020, 6, 872–880. [Google Scholar] [CrossRef]
- Ramchandren, R.; Domingo-Domènech, E.; Rueda, A.; Trněný, M.; Feldman, T.A.; Lee, H.J.; Provencio, M.; Sillaber, C.; Cohen, J.B.; Savage, K.J.; et al. Nivolumab for Newly Di-agnosed Advanced-Stage Classic Hodgkin Lymphoma: Safety and Efficacy in the Phase II CheckMate 205 Study. J. Clin. Oncol. 2019, 37, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Menter, T.; Bodmer-Haecki, A.; Dirnhofer, S.; Tzankov, A. Evaluation of the diagnostic and prognostic value of PDL1 ex-pression in Hodgkin and B-cell lymphomas. Hum. Pathol. 2016, 54, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, J.; Tumuluru, S.; Bao, R.; Leukam, M.; Venkataraman, G.; Phillip, J.; Fitzpatrick, C.; McElherne, J.; MacNabb, B.W.; Orlowski, R.; et al. PD-L1 gene alterations identify a subset of diffuse large B-cell lymphoma harboring a T-cell–inflamed phenotype. Blood 2019, 133, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Kiyasu, J.; Miyoshi, H.; Hirata, A.; Arakawa, F.; Ichikawa, A.; Niino, D.; Sugita, Y.; Yufu, Y.; Choi, I.; Abe, Y.; et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood 2015, 126, 2193–2201. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D.; et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J. Clin. Oncol. 2016, 34, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.; Gutierrez, M.E.; Shipp, M.A.; Gladstone, D.; Moskowitz, A.; Borello, I.; Popa-McKiver, M.; Farsaci, B.; Zhu, M.L.; Lesokhin, A.M.; et al. A Phase 1 Study of Nivolumab in Combination with Ipilimumab for Relapsed or Refractory Hematologic Malignancies (CheckMate 039). Blood 2016, 128, 183. [Google Scholar] [CrossRef]
- Armand, P.; Nagler, A.; Weller, E.A.; Devine, S.M.; Avigan, D.E.; Chen, Y.B.; Kaminski, M.S.; Holland, H.K.; Winter, J.N.; Mason, J.R.; et al. Disabling immune tolerance by pro-grammed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: Results of an international phase II trial. J. Clin. Oncol. 2013, 31, 4199–4206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frigault, M.J.; Armand, P.; Redd, R.A.; Jeter, E.; Merryman, R.; Coleman, K.C.; Herrera, A.F.; Dahi, P.; Nieto, Y.; LaCasce, A.S.; et al. PD-1 blockade for diffuse large B-cell lymphoma after autologous stem cell transplantation. Blood Adv. 2020, 4, 122–126. [Google Scholar] [CrossRef]
- Ansell, S.M.; Minnema, M.C.; Johnson, P.; Timmerman, J.M.; Armand, P.; Shipp, M.A.; Rodig, S.J.; Ligon, A.H.; Roemer, M.G.M.; Reddy, N.; et al. Nivolumab for Re-lapsed/Refractory Diffuse Large B-Cell Lymphoma in Patients Ineligible for or Having Failed Autologous Transplantation: A Single-Arm, Phase II Study. J. Clin. Oncol. 2019, 37, 481–489. [Google Scholar] [CrossRef]
- Smith, S.D.; Till, B.G.; Shadman, M.S.; Lynch, R.C.; Cowan, A.J.; Wu, Q.V.; Voutsinas, J.; Rasmussen, H.A.; Blue, K.; Ujjani, C.S.; et al. Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: Potential for biomarker driven therapy. Br. J. Haematol. 2020, 189, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Younes, A.; Burke, J.M.; Cheson, B.D.; Diefenbach, C.; Ferrari, S.; Hahn, U.H.; Hawkes, E.A.; Khan, C.; Lossos, I.S.; Musuraca, G.; et al. Safety and Efficacy of Atezolizumab in Combination with Rituximab Plus CHOP in Previously Untreated Patients with Diffuse Large B-Cell Lymphoma (DLBCL): Updated Analysis of a Phase I/II Study. Blood 2019, 134, 2874. [Google Scholar] [CrossRef]
- Palomba, M.L.; Cartron, G.; Popplewell, L.; Ribrag, V.; Westin, J.; Chitra, S.; Huw, L.; Newberry, K.; Raval, A.; Xu, J.; et al. Safety and clinical activity of atezoli-zumab in combination with tazemetostat in relapsed or refractory diffuse large b-cell lymphoma: Primary analysis of a phase 1B study. Hematol. Oncol. 2019, 37, 517–519. [Google Scholar] [CrossRef]
- Herbaux, C.; Ghesquieres, H.; Bouabdallah, R.; Guidez, S.; Gyan, E.; Gressin, R.; Morineau, N.; Ysebaert, L.; Le Gouill, S.; Laurent, C.; et al. Atezolizumab + obinutuzumab + venetoclax in patients with relapsed or refractory indolent non-Hodgkin’s lymphoma (R/R iNHL): Primary analysis of a phase 2 trial from LYSA. J. Clin. Oncol. 2021, 39, 7544. [Google Scholar] [CrossRef]
- Nowakowski, G.; Willenbacher, W.; Greil, R.; Larsen, T.; Patel, K.; Jäger, U.; Manges, R.; Trümper, L.; Haioun, C.; Everaus, H.; et al. Safety and efficacy of the pd-l1 inhibitor durvalumab with r-chop or r2 -chop in subjects with previously untreated, high-risk dlbcl. Hematol. Oncol. 2019, 37, 132–134. [Google Scholar] [CrossRef] [Green Version]
- Herrera, A.F.; Goy, A.; Mehta, A.; Ramchandren, R.; Pagel, J.M.; Svoboda, J.; Guan, S.; Hill, J.S.; Kwei, K.; Liu, E.A.; et al. Safety and activity of ibrutinib in combi-nation with durvalumab in patients with relapsed or refractory follicular lymphoma or diffuse large B-cell lymphoma. Am. J. Hematol. 2020, 95, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.M.; Hurvitz, S.A.; Koenig, P.A.; LaPlant, B.R.; Kabat, B.F.; Fernando, D.; Habermann, T.M.; Inwards, D.J.; Verma, M.; Yamada, R.; et al. Phase I Study of Ipilimumab, an Anti–CTLA-4 Monoclonal Antibody, in Patients with Relapsed and Refractory B-Cell Non–Hodgkin Lymphoma. Clin. Cancer Res. 2009, 15, 6446–6453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuscano, J.M.; Maverakis, E.; Groshen, S.; Tsao-Wei, D.; Luxardi, G.; Merleev, A.A.; Beaven, A.; DiPersio, J.F.; Popplewell, L.; Chen, R.; et al. A Phase I Study of the Combination of Rituximab and Ipilimumab in Patients with Relapsed/Refractory B-Cell Lymphoma. Clin. Cancer Res. 2019, 25, 7004–7013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khouri, I.F.; Curbelo, I.F.; Bassett, R.L.; Allison, J.P.; Gulbis, A.M.; Sharma, P.; Turturro, F.; Jabbour, E.J.; Milton, D.R.; Vence, L.M. Ipilimumab plus Lenalidomide after Allogeneic and Autologous Stem Cell Transplantation for Patients with Lymphoid Malignancies. Clin. Cancer Res. 2017, 24, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Advani, R.; Flinn, I.; Popplewell, L.; Forero, A.; Bartlett, N.L.; Ghosh, N.; Kline, J.; Roschewski, M.; LaCasce, A.; Collins, G.P.; et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 2018, 379, 1711–1721. [Google Scholar] [CrossRef]
- Goebeler, M.-E.; Knop, S.; Viardot, A.; Kufer, P.; Topp, M.S.; Einsele, H.; Noppeney, R.; Hess, G.; Kallert, S.; Mackensen, A.; et al. Bispecific T-Cell Engager (BiTE) Antibody Construct Blinatumomab for the Treatment of Patients With Relapsed/Refractory Non-Hodgkin Lymphoma: Final Results From a Phase I Study. J. Clin. Oncol. 2016, 34, 1104–1111. [Google Scholar] [CrossRef]
- Viardot, A.; Goebeler, M.-E.; Hess, G.; Neumann, S.; Pfreundschuh, M.; Adrian, N.; Zettl, F.; Libicher, M.; Sayehli, C.; Stieglmaier, J.; et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood 2016, 127, 1410–1416. [Google Scholar] [CrossRef]
- Coyle, L.; Morley, N.J.; Rambaldi, A.; Mason, K.D.; Verhoef, G.; Furness, C.L.; Zhang, A.; Jung, A.S.; Cohan, D.; Franklin, J.L. Open-Label, phase 2 study of blina-tumomab as second salvage therapy in adults with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Leuk. Lymphoma 2020, 61, 2103–2112. [Google Scholar] [CrossRef]
- Bannerji, M.R.; Allan, J.N.; Arnason, J.E.; Brown, J.R.; Advani, R.; Ansell, S.M.; O’Brien, S.M.; Duell, J.; Martin, F.P.; Joyce, R.M.; et al. Odronextamab (REGN1979), a Human CD20 x CD3 Bispecific Antibody, Induces Durable, Complete Responses in Patients with Highly Refractory B-Cell Non-Hodgkin Lymphoma, Including Patients Refractory to CAR T Therapy. Blood 2020, 136, 42–43. [Google Scholar] [CrossRef]
- Budde, L.E.; Ghosh, N.; Chavez, J.C.; Lossos, I.S.; Mehta, A.; Dorritie, K.A.; Kamdar, M.K.; Negricea, R.; Pham, S.; Hristopoulos, M.; et al. Promising tolerability and efficacy results from dose-escalation in an ongoing phase Ib/II study of mosunetuzumab (M) with polatuzumab vedotin (Pola) in patients (pts) with relapsed/refractory (R/R) B-cell non-Hodgkin’s lymphoma (B-NHL). J. Clin. Oncol. 2021, 39, 7520. [Google Scholar] [CrossRef]
- Clausen, M.R.; Lugtenburg, P.; Hutchings, M.; Johnson, P.W.M.; Linton, K.M.; Lewis, D.J.; Chamuleau, M.; Balari, A.S.; Cunningham, D.; Elliott, B.; et al. Subcutaneous epcoritamab in patients with relapsed/refractory B-cell non-Hodgkin lymphoma: Safety profile and antitumor activity. J. Clin. Oncol. 2021, 39, 7518. [Google Scholar] [CrossRef]
- Hutchings, M.; Morschhauser, F.; Iacoboni, G.; Carlo-Stella, C.; Offner, F.C.; Sureda, A.; Salles, G.; Martínez-Lopez, J.; Crump, M.; Thomas, D.N.; et al. Glofitamab, a Novel, Bivalent CD20-Targeting T-Cell–Engaging Bispecific Antibody, Induces Durable Complete Remissions in Relapsed or Refractory B-Cell Lymphoma: A Phase I Trial. J. Clin. Oncol. 2021, 39, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Diefenbach, C.S.M.; Abrisqueta, P.; Gonzalez-Barca, E.; Panizo, C.; Perez, J.M.A.; Miall, F.; Bastos-Oreiro, M.; Lopez-Guillermo, A.; Banerjee, L.; McMillan, A.; et al. Polatuzumab vedotin (Pola) + rituximab (R) + lenalidomide (Len) in patients (pts) with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL): Primary analysis of a phase 1b/2 trial. J. Clin. Oncol. 2021, 39, 7512. [Google Scholar] [CrossRef]
- Caimi, P.F.; Ai, W.; Alderuccio, J.P.; Ardeshna, K.M.; Hamadani, M.; Hess, B.; Kahl, B.S.; Radford, J.; Solh, M.; Stathis, A.; et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): A multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021. [Google Scholar] [CrossRef]
- Duell, J.; Maddocks, K.J.; González-Barca, E.; Jurczak, W.; Liberati, A.M.; De Vos, S.; Nagy, Z.; Obr, A.; Gaidano, G.; Abrisqueta, P.; et al. Long-term outcomes from the phase II L-MIND study of tafasitamab (MOR208) plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma. Haematologica 2021, 106, 2417. [Google Scholar] [CrossRef]
- Oliai, C.; De Vos, S. Case Report: Sustained Remission Achieved from Anti-CD19 CAR T Cell Therapy Despite Prior Treatment with Anti-CD19 Antibody Tafasitamab (MOR208) in a Patient with Relapsed and Refractory Diffuse Large B-Cell Lymphoma. Blood 2019, 134, 5360. [Google Scholar] [CrossRef]
- Thapa, B.; Caimi, P.F.; Ardeshna, K.M.; Solh, M.; Carlo-Stella, C.; Kahl, B.S.; Hamadani, M. CD19 antibody-drug conjugate therapy in DLBCL does not preclude subsequent responses to CD19-directed CAR T-cell therapy. Blood Adv. 2020, 4, 3850–3852. [Google Scholar] [CrossRef] [PubMed]
Study | No of Pts | Conditioning Regimen | Acute GVHD (Grade 2–4) | Chronic GVHD (1-yr) | NRM (1-yr) | Relapse | PFS | OS |
---|---|---|---|---|---|---|---|---|
Thomson et al. [52], 2009 | 48 | RIC 100% | 17% | 22% | 29% | 33% (4-yr) | 48% (4-yr) | 47% (4-yr) |
Sirvent et al. [53], 2010 | 68 | RIC 100% | 39% | 41% | 23% | 41% (2-yr) | 44% (2-yr) | 49% (2-yr) |
Lazarus et al. [54], 2010 | 79 | MAC 100% | 42% (100-day) | 23% | 41% | 30% (1-yr) | 29% (1-yr) | 33% (1-yr) |
Van Kampen et al. [50], 2011 | 101 | MAC (37%) vs. RIC (63%) | 33% | 42% | 24.5% | 24% (1-yr) | 51.5% (1-yr) | 64.7% (1-yr) |
Bacher et al. [51], 2012 | 396 | MAC (n = 165) vs. RIC (n = 143) vs. NMA (n = 88) | 43% vs. 43% vs. 44% | 35% vs. 39% vs. 33% | 47% vs. 31% vs. 29% | 23% vs. 32% vs. 37% (1-yr) | 30% vs. 37% vs. 34% (1-yr) | 38% vs. 46% vs. 45% (1-yr) |
Fenske et al. [46], 2016 | 503 | MAC (25%) vs. RIC (75%) | 36% | 40% | 23% | 33% (1-yr) | 44% (1-yr) | 54% (1-yr) |
Modi et al. [49], 2020 | 70 | MAC (67%) vs. RIC (23%) | 36.2% vs. 8.7% (Grade 3–4) | 27.7% vs. 43.5% (Extensive) | 39.7% vs. 39.1% (3-yr) | 25.5% vs. 17.4% (3-yr) | 34.2% vs. 34.7% (3-yr) | 34.4% vs. 43.4% (3-yr) |
Trial | CAR-T Product | Costimulatory Domain | No of Pts | Bridging Chemotherapy | Lymphodepleting Chemotherapy | Patient Population | ORR/CR (%) | CRS/ Grade ≥ 3 (%) | ICANS/ Grade ≥ 3 (%) |
---|---|---|---|---|---|---|---|---|---|
ZUMA-1 [55] | Axi-cel | CD28 | 111 | No | Fludarabine (Flu) 30 mg/m2 and Cyclophosphamide (Cy) 500 mg/m2 × 3 days | DLBCL ≥ 2 lines, transformed FL (tFL), PMBCL | 82/58 | 93/13 | 64/28 |
JULIET [56] | Tisa-cel | 4-1BB | 165 | Yes (92%) | Flu 25 mg/m2 and Cy 250 mg/m2 × 3 days, or bendamustine 90 mg/m2 × 2 days | DLBCL ≥ 2 lines, tFL | 52/40 | 58/23 | 21/12 |
TRANSCEND-NHL 001 [57] | Liso-cel | 4-1BB | 342 | Yes (59%) | Flu 30 mg/m2 and Cy 300 mg/m2 × 3 days | DLBCL ≥ 2 lines, tFL, PMBCL | 73/53 | 42/2 | 30/10 |
Nastoupil et al. [60] | Axi-cel | CD28 | 165 | Yes (53%) | Flu 30 mg/m2 and Cy 500 mg/m2 × 3 days | DLBCL, PMBCL, tFL | 82/64 | 92/7 | 69/31 |
Jacobson et al. [58] | Axi-cel | CD28 | 122 | Yes (45%) | Not available | DLBCL, PMBCL, tFL, transformed marginal zone lymphoma (tMZL), transformed CLL | 70/50 | 93/16 | 70/35 |
Sesques et al. [62] | Axi-cel/ Tisa-cel | CD28/4-1BB | 70 | Yes (97%) | Bendamustine (2%); Flu and Cy | DLBCL, PMBCL, tFL, tMZL | 63/48 | 85/8 | 28/10 |
Jaglowski et al. (CIBMTR) [59] | Tisa-cel | 4-1BB | 70 | Not available | Not available | DLBCL, tFL | 59.6/38.3 | NA/4.3 | NA/4.3 |
Pasquini et al. (CIBMTR) [61] | Axi-cel | CD28 | 453 | Not available | Not available | Large B-cell lymphoma | 70/52 | 83/14 | 61/NA |
Intervention | Molecular Target | Trial | Phase | Indication | Primary Endpoint | Status |
---|---|---|---|---|---|---|
R-CHOP/PoV-R-CHP plus Glofitamab | BiTE (CD3/CD20) | NCT04914741/ COALITION | I/II | Untreated DLBCL | Safety | Recruiting |
Glofitamab plus R-CHOP | BiTE (CD3/CD20) | NCT04980222 | II | Untreated DLBCL | CR | Recruiting |
Mosunetuzumab or in combination with PoV | BiTE (CD3/CD20) | NCT03677154 | I/II | Untreated DLBCL | Safety, ORR, CR | Recruiting |
Tafasitamab plus lenalidomide plus R-CHOP vs. R-CHOP | Anti-CD19 mAb | NCT04824092/ FrontMIND | III | Untreated DLBCL | PFS | Recruiting |
Venetoclax plus PoV plus R-CHP | Anti-CD79b ADC | NCT04790903 | I | Untreated DLBCL | Safety | Recruiting |
Induction and Maintenance Avelumab | Anti-PD-L1 antibody | NCT03244176 | I | Untreated DLBCL | Safety | Recruiting |
Relapsed Refractory Setting | ||||||
Glofitamab plus GemOx vs. R-GemOx | BiTE (CD3/CD20) | NCT04408638 | III | RR DLBCL | OS | Recruiting |
Epcoritamab vs. standard of care | BiTE (CD3/CD20) | NCT04628494 | III | RR DLBCL | OS | Recruiting |
Blinatumomab plus lenalidomide | BiTE (CD3/CD20) | NCT02568553 | I | RR NHL | Safety | Recruiting |
TNB-486 (CD19/CD3 BiTE) | BiTE (CD3/CD20) | NCT04594642 | I | RR NHL | Safety | Recruiting |
Loncastutixmab plus rituximab vs. R-GemOx | Anti-CD19 ADC | NCT04384484/ LOTIS-5 | III | RR DLBCL | PFS | Recruiting |
Loncastuximab Tesirine and Ibrutinib | Anti-CD19 ADC | NCT03684694/ LOTIS-3 | I/II | RR DLBCL, MCL | Safety | Recruiting |
PoV plus R-GemOx vs. R-GemOx | Anti-CD79b ADC | NCT04182204/ POLARGO | III | RR DLBCL | OS | Recruiting |
PoV plus R-ICE vs. R-ICE | Anti-CD79b ADC | NCT04833114 | III | RR DLBCL | EFS | Recruiting |
Nivolumab plus ipilimumab and adaptive T-cell therapy | Anti-PD-1 and CTLA-4 antibody | NCT03305445 | Ib/II | RR DLBCL | Safety, CR | Recruiting |
Copanlisib and nivolumab | Anti-PD-1 antibody | NCT03484819 | II | RR DLBCL, PMBCL | ORR | Recruiting |
Pembrolizumab plus anti-CD20 antibody | Anti-PD-1 antibody | NCT03401853 | II | RR DLBCL, FL | ORR | Recruiting |
Atzolizumab plus R-GemOx | Anti-PD-L1 antibody | NCT03321643 | I | RR DLBCL | Safety | Recruiting |
Pembrolizumab Plus Vorinostat | Anti-PD-1 antibody | NCT03150329 | I | RR DLBCL, FL, HL | Safety | Recruiting |
Camrelizumab plus Apatinib | Anti-PD-1 antibody | NCT04476459 | I/II | RR DLBCL | ORR | Recruiting |
Tislelizumab plus Lenalidomide | Anti-PD-1 antibody | NCT04796857 | I/II | RR DLBCL | ORR | Recruiting |
Varlilumab plus Nivolumab | Anti-CD27/anti-PD-1antibody | NCT03038672 | II | RR NHL | ORR | Recruiting |
Nivolumab plus lenalidomide | Anti-PD-1 antibody | NCT03015896 | I/II | RR NHL, HL | Safety | Recruiting |
DPX-Survivac along or with pembrolizumab with or without low-dose cyclophosphamide | Anti-PD-1 antibody | NCT04920617 | II | RR DLBCL | ORR | Recruiting |
AUTO3 (CD19/CD22 CAR T) with Pembrolizumab | CAR T/Anti-PD-1 antibody | NCT03287817/ ALEXANDER | I/II | RR DLBCL | Safety, ORR | Recruiting |
CD19 CAR-T Expressing IL7 and CCL19 Combined with PD1 mAb | CAR T/Anti-PD-1 antibody | NCT04381741 | I | RR DLBCL | ORR | Recruiting |
C-CAR066 (anti-CD20 CAR T-cell therapy) | CAR T-cell | NCT04316624 | I | RR DLBCL who failed CD19 CAR T-cell therapy | Safety | Recruiting |
anti-CD19 and anti-CD20 dual specific CAR T-Cells | CAR T-cell | NCT04486872 | I | RR DLBCL | Safety | Recruiting |
MB-CART2019.1 (CD19/CD20 CAR T) vs. SOC | CAR T-cell | NCT04844866 | II | RR DLBCL | PFS | Recruiting |
LUCAR-20S (Anti-CD20 CAR T) | CAR T-cell | NCT04176913 | I | RR DLBCL, FL, MCL, CLL | Safety | Recruiting |
Autologous Anti-CD20 CAR-T | CAR T-cell | NCT03277729 | I/II | RR NHL | Safety | Recruiting |
Autologous Anti-CD22 CAR-T | CAR T-cell | NCT04088890 | I/Ib | RR NHL | Safety | Recruiting |
Autologous anti-CD19/CD20 CAR T | CAR T-cell | NCT04215016 | I | RR DLBCL | Safety | Recruiting |
Autologous anti-CD19/CD20 CAR T | CAR T-cell | NCT04007029 | I | RR NHL, CLL | Safety | Recruiting |
Autologous anti-CD19/CD22 CAR T | CAR T-cell | NCT03233854 | I | RR NHL | Safety | Recruiting |
Acalabrutinib with Anti-CD19 CAR-T | CAR T-cell | NCT04257578 | I/II | RR NHL | Safety | Recruiting |
BiTE Antibody | No of Pts | Pt Population | Dosing | ORR (%) | CR (%) | Median PFS (Months) | CRS | ICANS | ||
---|---|---|---|---|---|---|---|---|---|---|
Epcoritamab [104] | 68 | R/R NHL (DLBCL = 46; FL = 12; MCL = 4) | SC: 0.0128–60 mg R2PD = 48 mg | DLBCL 12–60 mg = 68%; 48–60 mg = 91% | FL 12–48 mg = 80% | DLBCL 12–60 mg = 46%; 48–60 mg = 55% | FL 12–48 mg = 60% | ≥12 mg = 9.1; ≥48 mg = NR | Grade 1–2 = 58% | Grade 3 = 3% |
Mosunetuzumab + Polatuzumab [103] | 22 | R/R NHL (DLBCL = 12; FL3B = 3; tFL = 4; FL 1-3A = 3) | IV: 1-2-60 mg; PoV 1.8 mg/kg every 3 weeks | Aggressive NHL = 63.2%; Post-CAR T = 57.1% | FL = 100% | Aggressive NHL = 47.4%; Post-CAR T = 28.6% | FL = 100% | Grade 1 = 9.1% | None | |
Odronextamab (REGN1979) [102] | 136 | R/R NHL (DLBCL = 78) | 0.03–320 mg weekly × 12, then every 2 weeks | DLBCL ≥ 80 mg, no Car-T = 55% | DLBCL≥80 mg, prior Car-T = 33% | DLBCL≥80 mg, no Car-T = 55% | DLBCL ≥ 80 mg, Prior Car-T = 21% | 61% all grades; Grade 3 ≥ 7% | Grade 3 = 3.7% | |
Glofitamab [105] | 171 | R/R NHL (DLBCL = 73; FL1-3A = 44; tFL = 29; Richter’s = 10; PMBCL = 3) | R2PD = 2.5/10/30 | Aggressive NHL = 48%; DLBCL = 41.4% | DLBCL ≥ 10 mg = 55.3%; tFL ≥ 10 mg = 64.3% | Aggressive NHL = 33.1%; DLBCL 28.8% | DLBCL ≥ 10 mg = 42.1%; tFL ≥ 10 mg = 64.3% | 50.3% all grades; grade 3–4 = 3.5% | 43.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modi, D.; Potugari, B.; Uberti, J. Immunotherapy for Diffuse Large B-Cell Lymphoma: Current Landscape and Future Directions. Cancers 2021, 13, 5827. https://doi.org/10.3390/cancers13225827
Modi D, Potugari B, Uberti J. Immunotherapy for Diffuse Large B-Cell Lymphoma: Current Landscape and Future Directions. Cancers. 2021; 13(22):5827. https://doi.org/10.3390/cancers13225827
Chicago/Turabian StyleModi, Dipenkumar, Bindu Potugari, and Joseph Uberti. 2021. "Immunotherapy for Diffuse Large B-Cell Lymphoma: Current Landscape and Future Directions" Cancers 13, no. 22: 5827. https://doi.org/10.3390/cancers13225827
APA StyleModi, D., Potugari, B., & Uberti, J. (2021). Immunotherapy for Diffuse Large B-Cell Lymphoma: Current Landscape and Future Directions. Cancers, 13(22), 5827. https://doi.org/10.3390/cancers13225827