Efficacy and Safety of Immunotherapy for Cervical Cancer—A Systematic Review of Clinical Trials
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
- P (patients/participants)—Adult patients with histologically proven cervical cancer;
- I (intervention)—Any form of immunotherapy;
- C (comparison)—Any (including chemotherapy, targeted therapy, surgery or placebo) or no comparison;
- O (outcome)—At least one measure of survival outcomes, response rates or adverse events;
- S (study design)—All types of prospective study designs.
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Risk of Bias Assessment
3. Results
3.1. Study Selection
3.2. Immune Checkpoint Inhibitors
3.2.1. Clinical Trials in Cervical Cancer
3.2.2. Efficacy of Immune Checkpoint Inhibitors Based on PD-L1 Status in Cervical Cancer
3.2.3. Efficacy and Safety of Checkpoint Inhibitors with or after (Chemo)Radiotherapy
3.3. Therapeutic Vaccines
Clinical Vaccine Trials in Cervical Cancer
3.4. Adoptive T Cell Transfer Therapy
Clinical Trials in Cervical Cancer Patients
3.5. Nonspecific Immune System Modulators/Immunomodulating Agents
3.6. Risk of Bias Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, D.K.; AWMF). S3-Leitline Diagnostik, Therapie und Nachsorge der Patientin mit Zervixkarzinom, Langversion 2.0. 2021. Available online: https://www.awmf.org/uploads/tx_szleitlinien/032-033OLl_S3_Diagnostik_Therapie_Nachsorge_Zervixkarzinom_2021-05.pdf (accessed on 12 December 2021).
- Cohen, E.E.W.; Moore, K.N.; Slomovitz, B.M.; Chung, C.H.; Anderson, M.L.; Morris, S.R.; Mauro, D.; Burtness, B. Phase I/II study of ADXS11-001 or MEDI4736 immunotherapies alone and in combination, in patients with recurrent/metastatic cervical or human papillomavirus (HPV)-positive head and neck cancer. J. Immunother. Cancer 2015, 3 (Suppl 2), P147. [Google Scholar] [CrossRef] [Green Version]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; et al. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Monk, B.J.; Sill, M.W.; Burger, R.A.; Gray, H.J.; Buekers, T.E.; Roman, L.D. Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: A gynecologic oncology group study. J. Clin. Oncol. 2009, 27, 1069. [Google Scholar] [CrossRef] [Green Version]
- Alberts, D.S.; Blessing, J.A.; Landrum, L.M.; Warshal, D.P.; Martin, L.P.; Rose, S.L.; Bonebrake, A.J.; Ramondetta, L.M. Phase II trial of nab-paclitaxel in the treatment of recurrent or persistent advanced cervix cancer: A gynecologic oncology group study. Gynecol. Oncol. 2012, 127, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Santin, A.D.; Sill, M.W.; McMeekin, D.S.; Leitao, M.M.; Brown, J.; Sutton, G.P.; Van Le, L.; Griffin, P.; Boardman, C.H. Phase II trial of cetuximab in the treatment of persistent or recurrent squamous or non-squamous cell carcinoma of the cervix: A Gynecologic Oncology Group study. Gynecol. Oncol. 2011, 122, 495–500. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Cancer. Immunotherapy. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/immunotherapy (accessed on 1 December 2021).
- Schepisi, G.; Cadadei, C.; Toma, I.; Poti, G.; Iaia, M.L.; Farolfi, A.; Conteduca, V.; Lolli, C.; Ravaglia, G.; Brighi, N.; et al. Immunotherapy and its development for gynecological (ovarian, endometrial and cervical) tumors: From immune checkpoint inhibitors to Chimeric Antigen Receptor (CAR)-T cell therapy. Cancers 2021, 13, 840. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar]
- Goossen, K.; Tenckhoff, S.; Probst, P.; Grummich, K.; Mihaljevic, A.L.; Buechler, M.W.; Diener, M.K. Optimal literature search for systematic reviews in surgery. Langenbeck’s Arch. Surg. 2018, 403, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.M.d.C.; Pimenta, C.A.d.M.; Nobre, M.R.C. The PICO strategy for the research question construction and evidence search. Rev. Lat.-Am. Enferm. 2007, 15, 508–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.; Savovic, J.; Page, M.; Elbers, R.; Boutron, I.; Cates, C.; Cheng, V.; Corbett, M.; Eldrige, S.; Emberson, J.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, A.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Jullien, S.; Ryan, H.; Modi, M.; Bhatia, R. Six months therapy for tuberculous meningitis. Cochrane Database Syst. Rev. 2016, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin-Acevedo, J.A.; Dholaria, B.; Soyano, A.E.; Knutson, K.L.; Chumsri, S.; Lou, Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J. Hematol. Oncol. 2018, 11, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yanez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.C.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef]
- Frenel, J.-S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; Van Brummelen, M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar]
- Duska, L.R.; Scalici, J.M.; Temkin, S.M.; Schwarz, J.K.; Crane, E.K.; Moxley, K.M.; Hamiltion, C.A.; Wethington, S.L.; Petronie, G.R.; Varhegyi, N.E.; et al. Results of an early safety analysis of a study of the combination of pembrolizumab and pelvic chemoradiation in locally advanced cervical cancer. Cancer 2020, 126, 4948–4956. [Google Scholar] [CrossRef]
- Youn, J.W.; Hur, S.-Y.; Woo, J.W.; Kim, Y.-M.; Lim, M.C.; Park, S.Y.; Seo, S.S.; No, J.H.; Kim, B.-G.; Lee, J.-K.; et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: Interim results of a single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 1653–1660. [Google Scholar] [CrossRef]
- Frumovitz, M.; Westin, S.N.; Salvo, G.; Zarifa, A.; Xu, M.; Yap, T.A.; Rodon, A.J.; Karp, D.D.; Abonofal, A.; Jazaeri, A.; et al. Phase II study of pembrolizumab efficacy and safety in women with recurrent small cell neuroendocrine carcinoma of the lower genital tract. Gynecol. Oncol. 2020, 158, 570–575. [Google Scholar] [CrossRef]
- Qiao, G.; Wang, X.; Zhou, X.; Morse, M.A.; Wu, J.; Wang, S.; Song, Y.; Jang, N.; Zhao, Y.; Zhou, L.; et al. Immune correlates of clinical benefit in a phase I study of hyperthermia with adoptive T cell immunotherapy in patients with solid tumors. Int. J. Hyperth. 2019, 36 (Suppl. 1), 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santin, A.D.; Deng, W.; Frumovitz, M.; Buza, N.; Bellone, S.; Huh, W.; Khleif, S.; Lankes, H.A.; Ratner, E.S.; O’Cearbhaill, R.E.; et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol. Oncol. 2020, 157, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Hasegawa, K.; Katsumata, N.; Matsumoto, K.; Mukai, H.; Takahashi, S.; Nomura, H.; Minami, H. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma: Multicenter, open-label phase 2 trial. Cancer Sci. 2019, 110, 2894–2904. [Google Scholar] [CrossRef]
- Naumann, R.W.; Hollebecque, A.; Meyer, T.; Devlin, M.-J.; Oaknin, A.; Kerger, J.; Lopez-Picazo, J.M.; Machiels, J.-P.; Delord, J.-P.; Evans, T.R.J.; et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II CheckMate 358 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2825–2834. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Guo, W.; Sun, X.; Li, R.; Feng, C.; Tan, Y. TILs and Anti-PD1 Therapy: An Alternative Combination Therapy for PDL1 Negative Metastatic Cervical Cancer. J. Immunol. Res. 2020, 2020, 8345235. [Google Scholar] [CrossRef] [PubMed]
- Friedman, C.F.; Snyder Charen, A.; Zhou, Q.; Carducci, M.A.; Buckley De Meritens, A.; Corr, B.R.; Fu, S.; Hollmann, T.J.; Iasonos, A.; Konner, J.A.; et al. Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. J. Immunother. Cancer 2020, 8, e001126. [Google Scholar] [CrossRef]
- Jung, K.H.; LoRusso, P.; Burris, H.; Gordon, M.; Bang, Y.-J.; Hellmann, M.D.; Cervantes, A.; Ochoa de Olza, M.; Marabelle, A.; Hodi, F.S.; et al. Phase I Study of the Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Navoximod (GDC-0919) Administered with PD-L1 Inhibitor (Atezolizumab) in Advanced Solid Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3220–3228. [Google Scholar] [CrossRef] [Green Version]
- Mayadev, J.S.; Enserro, D.; Lin, Y.G.; Da Silva, D.M.; Lankes, H.A.; Aghajanian, C.; Ghamande, S.; Moore, K.N.; Kennedy, V.A.; Fracasso, P.M.; et al. Sequential Ipilimumab After Chemoradiotherapy in Curative-Intent Treatment of Patients With Node-Positive Cervical Cancer. Jama Oncol. 2020, 6, 92–99. [Google Scholar] [CrossRef]
- Lheureux, S.; Butler, M.O.; Clarke, B.; Cristea, M.C.; Martin, L.P.; Tonkin, K.; Fleming, G.F.; Tinker, A.V.; Hirte, H.W.; Tsoref, D.; et al. Association of Ipilimumab With Safety and Antitumor Activity in Women With Metastatic or Recurrent Human Papillomavirus-Related Cervical Carcinoma. JAMA Oncol. 2018, 4, e173776. [Google Scholar] [CrossRef]
- Lan, C.; Shen, J.; Wang, Y.; Li, J.; Liu, Z.; He, M.; Cao, X.; Ling, J.; Huang, J.; Zheng, M.; et al. Camrelizumab Plus Apatinib in Patients With Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 4095–4106. [Google Scholar] [CrossRef]
- Rischin, D.; Gil-Martin, M.; Gonzalez-Martin, A.; Brana, I.; Hou, J.Y.; Cho, D.; Falchook, G.S.; Formenti, S.; Jabbour, S.; Moore, K.; et al. PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer. Gynecol. Oncol. 2020, 159, 322–328. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Oaknin, A.; Monk, B.J.; Selle, F.; Rojas, C.; Gladieff, L.; Berton, D.; Leary, A.; Moore, K.N.; Estevez-Diz, M.D.P.; et al. Phase II study of the safety and efficacy of the anti-PD-1 antibody balstilimab in patients with recurrent and/or metastatic cervical cancer. Gynecol. Oncol. 2021, 163, 274–280. [Google Scholar] [CrossRef]
- Strauss, J.; Gatti-Mays, M.E.; Chul Cho, B.; Hill, A.; Salas, S.; McClay, E.; Redman, J.M.; Sater, H.A.; Donahue, R.N.; Jochems, C.; et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in patients with human papillomavirus-associated malignancies. J. Immunother. Cancer 2020, 8. [Google Scholar] [CrossRef]
- Tinker, A.V.; Hirte, H.W.; Provencher, D.; Butler, M.; Ritter, H.; Tu, D.; Azim, H.A., Jr.; Paralejas, P.; Grenier, N.; Hahn, S.-A.; et al. Dose-Ranging and Cohort-Expansion Study of Monalizumab (IPH2201) in Patients with Advanced Gynecologic Malignancies: A Trial of the Canadian Cancer Trials Group (CCTG): IND221. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 6052–6060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, H.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.; Xu, L.; Jin, F.; Norwood, K.; et al. Pembrolizumab treatment of advanced cervical cancer: Updated results from the phase II KEYNOTE-158 study. Gynecol. Oncol. 2021, 162, S27. [Google Scholar] [CrossRef]
- Luostarinen, T.; Apter, D.; Dillner, J.; Eriksson, T.; Harjula, K.; Natunen, K.; Paavonen, J.; Pukkala, E.; Lehtinen, M. Vaccination protects against invasive HPV-associated cancers. Int. J. Cancer 2018, 142, 2186–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 2018, 18, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Narisawa-Saito, M.; Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: Roles of E6 and E7 proteins. Cancer Sci. 2007, 98, 1505–1511. [Google Scholar] [CrossRef]
- Hasegawa, K.; Ikeda, Y.; Kunugi, Y.; Kurosaki, A.; Imai, Y.; Kohyama, S.; Nagao, S.; Kozawa, E.; Yoshida, K.; Tsunoda, T.; et al. Phase I Study of Multiple Epitope Peptide Vaccination in Patients With Recurrent or Persistent Cervical Cancer. J. Immunother. 2018, 41, 201–207. [Google Scholar] [CrossRef]
- Kenter, G.G.; Welters, M.J.P.; Valentijn, A.R.P.M.; Löwik, M.J.G.; Berends-van der Meer, D.M.A.; Vloon, A.P.G.; Drijfhout, J.W.; Wafelman, A.R.; Oostendorp, J.; Fleuren, G.J.; et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Melief, C.J.M.; Welters, M.J.P.; Vergote, I.; Kroep, J.R.; Kenter, G.G.; Ottevanger, P.B.; Tjalma, W.A.A.; Denys, H.; van Poelgeest, M.I.E.; Nijman, H.W.; et al. Strong vaccine responses during chemotherapy are associated with prolonged cancer survival. Sci. Transl. Med. 2020, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Reuschenbach, M.; Pauligk, C.; Karbach, J.; Rafiyan, M.-R.; Kloor, M.; Prigge, E.-S.; Sauer, M.; Al-Batran, S.-E.; Kaufmann, A.M.; Schneider, A.; et al. A phase 1/2a study to test the safety and immunogenicity of a p16(INK4a) peptide vaccine in patients with advanced human papillomavirus-associated cancers. Cancer 2016, 122, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Steller, M.A.; Gurski, K.J.; Murakami, M.; Daniel, R.W.; Shah, K.V.; Celis, E.; Sette, A.; Trimble, E.L.; Park, R.C.; Marincola, F.M. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1998, 4, 2103–2109. [Google Scholar]
- Takeuchi, S.; Kagabu, M.; Shoji, T.; Nitta, Y.; Sugiyama, T.; Sato, J.; Nakamura, Y. Anti-cancer immunotherapy using cancer-derived multiple epitope-peptides cocktail vaccination clinical studies in patients with refractory/persistent disease of uterine cervical cancer and ovarian cancer phase 2. Oncoimmunology 2020, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, N.; Mochizuki, K.; Harada, M.; Sukehiro, A.; Kawano, K.; Yamada, A.; Ushijima, K.; Sugiyama, T.; Nishida, T.; Yamana, H.; et al. Vaccination with predesignated or evidence-based peptides for patients with recurrent gynecologic cancers. J. Immunother. 2004, 27, 60–72. [Google Scholar] [CrossRef] [PubMed]
- van Driel, W.J.; Ressing, M.E.; Kenter, G.G.; Brandt, R.M.; Krul, E.J.; van Rossum, A.B.; Schuuring, E.; Offringa, R.; Bauknecht, T.; Tamm-Hermelink, A.; et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: Clinical evaluation of a phase I-II trial. Eur. J. Cancer 1999, 35, 946–952. [Google Scholar] [CrossRef]
- van Poelgeest, M.I.E.; Welters, M.J.P.; van Esch, E.M.G.; Stynenbosch, L.F.M.; Kerpershoek, G.; van Persijn van Meerten, E.L.; van den Hende, M.; Lowik, M.J.G.; Berends-van der Meer, D.M.A.; Fathers, L.M.; et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J. Transl. Med. 2013, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Welters, M.J.P.; Kenter, G.G.; Piersma, S.J.; Vloon, A.P.G.; Lowik, M.J.G.; Berends-van der Meer, D.M.A.; Drijfhout, J.W.; Valentijn, A.R.P.M.; Wafelman, A.R.; Oostendorp, J.; et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Welters, M.J.; van der Sluis, T.C.; van Meir, H.; Loof, N.M.; van Ham, V.J.; van Duikeren, S.; Santegoets, S.J.; Arens, R.; de Kam, M.L.; Cohen, A.F.; et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci. Transl. Med. 2016, 8, 12. [Google Scholar] [CrossRef]
- Choi, C.H.; Choi, H.J.; Lee, J.-W.; Kang, E.-S.; Cho, D.; Park, B.K.; Kim, Y.-M.; Kim, D.-Y.; Seo, H.; Park, M.; et al. Phase I Study of a B Cell-Based and Monocyte-Based Immunotherapeutic Vaccine, BVAC-C in Human Papillomavirus Type 16- or 18-Positive Recurrent Cervical Cancer. J. Clin. Med. 2020, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, A.; Nonn, M.; Sehr, P.; Schreckenberger, C.; Pawlita, M.; Durst, M.; Schneider, A.; Kaufmann, A.M. Dendritic cell-based tumor vaccine for cervical cancer II: Results of a clinical pilot study in 15 individual patients. J. Cancer Res. Clin. Oncol. 2003, 129, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Rahma, O.E.; Herrin, V.E.; Ibrahim, R.A.; Toubaji, A.; Bernstein, S.; Dakheel, O.; Steinberg, S.M.; Abu Eid, R.; Mkrtichyan, M.; Berzofsky, J.A.; et al. Pre-immature dendritic cells (PIDC) pulsed with HPV16 E6 or E7 peptide are capable of eliciting specific immune response in patients with advanced cervical cancer. J. Transl. Med. 2014, 12, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanathan, P.; Ganeshrajah, S.; Raghanvan, R.K.; Singh, S.S.; Thangarajan, R. Development and Clinical Evaluation of Dendritic Cell Vaccines for HPV Related Cervical Cancer—A Feasibility Study. Asian Pac. J. Cancer Prev. 2014, 15, 5909–5916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santin, A.D.; Bellone, S.; Palmieri, M.; Ravaggi, A.; Romani, C.; Tassi, R.; Roman, J.J.; Burnett, A.; Pecorelli, S.; Cannon, M.J. HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol. Oncol. 2006, 100, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Santin, A.D.; Bellone, S.; Palmieri, M.; Zanolini, A.; Ravaggi, A.; Siegel, E.R.; Roman, J.J.; Pecorelli, S.; Cannon, M.J. Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: A phase I escalating-dose trial. J. Virol. 2008, 82, 1968–1979. [Google Scholar] [CrossRef] [Green Version]
- Hasan, Y.; Furtado, L.; Tergas, A.; Lee, N.; Brooks, R.; McCall, A.; Golden, D.; Jolly, S.; Fleming, G.; Morrow, M.; et al. A Phase 1 Trial Assessing the Safety and Tolerability of a Therapeutic DNA Vaccination Against HPV16 and HPV18 E6/E7 Oncogenes After Chemoradiation for Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 487–498. [Google Scholar] [CrossRef]
- Hui, K.M.; Ang, P.T.; Huang, L.; Tay, S.K. Phase I study of immunotherapy of cutaneous metastases of human carcinoma using allogeneic and xenogeneic MHC DNA-liposome complexes. Gene Ther. 1997, 4, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Borysiewicz, L.K.; Fiander, A.; Nimako, M.; Man, S.; Wilkinson, G.W.; Westmoreland, D.; Evans, A.S.; Adams, M.; Stacey, S.N.; Boursnell, M.E.; et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 1996, 347, 1523–1527. [Google Scholar] [CrossRef]
- Freedman, R.S.; Bowen, J.M.; Atkinson, E.N.; Wallace, S.; Lotzová, E.; Silva, E.; Edwards, C.L.; Delclos, L.; Scott, W.; Patenia, B. Randomized comparison of viral oncolysate plus radiation and radiation alone in uterine cervix carcinoma. Am. J. Clin. Oncol. 1989, 12, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.; Mehta, A.; Jain, M.; Gupta, S.; Nagarkar, R.V.; John, S.; Petit, R. A Randomized Phase 2 Study of ADXS11-001 Listeria monocytogenes-Listeriolysin O Immunotherapy With or Without Cisplatin in Treatment of Advanced Cervical Cancer. Int. J. Gynecol. Cancer 2018, 28, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Huh, W.K.; Brady, W.E.; Fracasso, P.M.; Dizon, D.S.; Powell, M.A.; Monk, B.J.; Leath, C.A.; Landrum, L.M.; Tanner, E.J.; Crane, E.K. Phase II study of axalimogene filolisbac (ADXS-HPV) for platinum-refractory cervical carcinoma: An NRG oncology/gynecologic oncology group study. Gynecol. Oncol. 2020, 158, 562–569. [Google Scholar] [CrossRef]
- Maciag, P.C.; Radulovic, S.; Rothman, J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: A Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 2009, 27, 3975–3983. [Google Scholar] [CrossRef]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef]
- Garrido, F.; Aptsiauri, N.; Doorduijn, E.M.; Lora, A.M.G.; van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 2016, 39, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liu, L.; Xu, H.; Yang, Y.; Zhang, L.; Zhang, F. Effectiveness of immune therapy combined with chemotherapy on the immune function and recurrence rate of cervical cancer. Exp. Ther. Med. 2015, 9, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Tian, Y.-W.; Xu, Y.; Meng, D.-D.; Gao, L.; Shen, W.-J.; Liu, Z.-L.; Xu, Z.-Q. Combined Treatment with Autologous CIK Cells, Radiotherapy and Chemotherapy in Advanced Cervical Cancer. Pathol. Oncol. Res. POR 2019, 25, 691–696. [Google Scholar] [CrossRef]
- Stevanovic, S.; Draper, L.M.; Langhan, M.M.; Campbell, T.E.; Kwong, M.L.; Wunderlich, J.R.; Dudley, M.E.; Yang, J.C.; Sherry, R.M.; Kammula, U.S.; et al. Complete Regression of Metastatic Cervical Cancer After Treatment With Human Papillomavirus-Targeted Tumor-Infiltrating T Cells. J. Clin. Oncol. 2015, 33, 1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevanovic, S.; Helman, S.R.; Wunderlich, J.R.; Langhan, M.M.; Doran, S.L.; Kwong, M.L.M.; Somerville, R.P.T.; Klebanoff, C.A.; Kammula, U.S.; Sherry, R.M.; et al. A Phase II Study of Tumor-infiltrating Lymphocyte Therapy for Human Papillomavirus-associated Epithelial Cancers. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 1486–1493. [Google Scholar] [CrossRef]
- Doran, S.L.; Stevanovic, S.; Adhikary, S.; Gartner, J.J.; Jia, L.; Kwong, M.L.M.; Faquin, W.C.; Hewitt, S.M.; Sherry, R.M.; Yang, J.C.; et al. T-Cell Receptor Gene Therapy for Human Papillomavirus-Associated Epithelial Cancers: A First-in-Human, Phase I/II Study. J. Clin. Oncol. 2019, 37, 2759–2768. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-C.; Parker, L.L.; Lu, T.; Zheng, Z.; Toomey, M.A.; White, D.E.; Yao, X.; Li, Y.F.; Robbins, P.F.; Feldman, S.A.; et al. Treatment of Patients With Metastatic Cancer Using a Major Histocompatibility Complex Class II-Restricted T-Cell Receptor Targeting the Cancer Germline Antigen MAGE-A3. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 3322–3329. [Google Scholar] [CrossRef]
- Nagarsheth, N.B.; Norberg, S.M.; Sinkoe, A.L.; Adhikary, S.; Meyer, T.J.; Lack, J.B.; Warner, A.C.; Schweitzer, C.; Doran, S.L.; Korrapati, S.; et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 2021, 27, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wadler, S.; Burk, R.D.; Neuberg, D.; Rameau, R.; Runowicz, C.D.; Goldberg, G.; McGill, F.; Tachezy, R.; Comis, R.; Edmonson, J.; et al. Lack of efficacy of interferon-α therapy in recurrent, advanced cervical cancer. J. Interferon Cytokine Res. 1995, 15, 1011–1016. [Google Scholar] [CrossRef]
- Wadler, S.; Schwartz, E.L.; Haynes, H.; Rameau, R.; Quish, A.; Mandeli, J.; Gallagher, R.; Hallam, S.; Fields, A.; Goldberg, G. All-trans retinoic acid and interferon-α-2a in patients with metastatic or recurrent carcinoma of the uterine cervix: Clinical and pharmacokinetic studies. Cancer 1997, 79, 1574–1580. [Google Scholar] [CrossRef]
- Wilailak, S.; Dangprasert, S.; Srisupundit, S. Phase I clinical trial of chemoimmunotherapy in combination with radiotherapy in stage IIIB cervical cancer patients. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 2003, 13, 652–656. [Google Scholar] [CrossRef]
- Look, K.Y.; Blessing, J.A.; Nelson, B.E.; Johnson, G.A.; Fowler, W.C.J.; Reid, G.C. A Phase II Trial of Isotretinoin and Alpha Interferon in Patients With Recurrent Squamous Cell Carcinoma of the Cervix: A Gynecologic Oncology Group Study. Am. J. Clin. Oncol. 1998, 21, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Braud, A.-C.; Gonzague, L.; Bertucci, F.; Genre, D.; Camerlo, J.; Gravis, G.; Goncalves, A.; Moutardier, V.; Viret, F.; Maraninchi, D. Retinoids, cisplatin and interferon-alpha in recurrent or metastatic cervical squamous cell carcinoma: Clinical results of 2 phase II trials. Eur. Cytokine Netw. 2002, 13, 115–120. [Google Scholar]
- Lippman, S.M.; Kavanagh, J.J.; Paredes-Espinoza, M.; Delgadillo-Madrueño, F.; Paredes-Casillas, P.; Hong, W.K.; Holderner, E.; Krakoff, I.H. 13-cis-Retinoic Acid Plus Interferon α-2a: Highly Active Systemic Theraphy for Squamous Cell Carcinoma of the Cervix. JNCI J. Natl. Cancer Inst. 1992, 84, 241–245. [Google Scholar] [CrossRef]
- Duenas-Gonzalez, A.; Verastegui, E.; Lopez-Graniel, C.; Gonzalez, A.; Mota, A.; Barrera-Franco, J.L.; Meneses, A.; Chanona, J.; de la Garza, J.; Chavez-Blanco, A.; et al. A pilot study of perilymphatic leukocyte cytokine mixture (IRX-2) as neoadjuvant treatment for early stage cervical carcinoma. Int. Immunopharmacol. 2002, 2, 1007–1016. [Google Scholar] [CrossRef]
- Wadler, S.; Levy, D.; Frederickson, H.L.; Falkson, C.I.; Wang, Y.; Weller, E.; Burk, R.; Ho, G.; Kadish, A.S. A phase II trial of interleukin-12 in patients with advanced cervical cancer: Clinical and immunologic correlates. Eastern Cooperative Oncology Group study E1E96. Gynecol. Oncol. 2004, 92, 957–964. [Google Scholar] [CrossRef]
- Cappello, F.; Corradi; Meli, G. Use of B.C.G. as loco-regional aspecific immunostimulator in cervical carcinoma. Clin. Exp. Obstet. Gynecol. 1984, 11, 156–157. [Google Scholar]
- DiSaia, P.J.; Bundy, B.N.; Curry, S.L.; Schlaerth, J.; Thigpen, J.T. Phase III study on the treatment of women with cervical cancer, stage IIB, IIIB, and IVA (confined to the pelvis and/or periaortic nodes), with radiotherapy alone versus radiotherapy plus immunotherapy with intravenous Corynebacterium parvum: A Gynecologic Oncology Group Study. Gynecol. Oncol. 1987, 26, 386–397. [Google Scholar]
- Mignot, M.H.; Lens, J.W.; Drexhage, H.A.; von Blomberg, B.M.; Flier, V.D.; Oort, J.; Stolk, J.G. Lower relapse rates after neighbourhood injection of Corynebacterium parvum in operable cervix carcinoma. Br. J. Cancer 1981, 44, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Gall, S.A.; DiSaia, P.J.; Schmidt, H.; Mittelstaedt, L.; Newman, P.; Creasman, W. Toxicity manifestations following intravenous Corynebacterium parvum administration to patients with ovarian and cervical carcinoma. Am. J. Obstet. Gynecol. 1978, 132, 555–560. [Google Scholar] [CrossRef]
- Ahn, W.S.; Kim, D.J.; Chae, G.T.; Lee, J.M.; Bae, S.M.; Sin, J.I.; Kim, Y.W.; Namkoong, S.E.; Lee, I.P. Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. Int. J. Gynecol. Cancer 2004, 14, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, F.; Kawai, M.; Oguchi, H.; Kojima, M.; Ishikawa, H.; Iwata, M.; Maeda, O.; Tomoda, Y.; Arii, Y.; Kuzuya, K. Randomised study of immunotherapy with OK-432 in uterine cervical carcinoma. Eur. J. Cancer 1993, 29A, 1542–1546. [Google Scholar] [CrossRef]
- Noda, K.; Teshima, K.; Tekeuti, K.; Hasegawa, K.; Inoue, K.; Yamashita, K.; Sawaragi, I.; Nakajima, T.; Takashima, E.; Ikeuchi, M. Immunotherapy using the streptococcal preparation OK-432 for the treatment of uterine cervical cancer. Cervical Cancer Immunotherapy Study Group. Gynecol. Oncol. 1989, 35, 367–372. [Google Scholar] [CrossRef]
- Okamura, K.; Hamazaki, Y.; Yajima, A.; Noda, K. Adjuvant immunotherapy: Two randomized controlled studies of patients with cervical cancer. Biomed. Pharmacother. 1989, 43, 177–181. [Google Scholar] [CrossRef]
- Kucera, H.; Micksche, M. Adjuvanticity of vitamin A in advanced irradiated cervical cancer. Fortschr. Der Med. 1982, 100, 760–763. [Google Scholar]
- Mallmann, P.; Krebs, D. The effect of immunotherapy with thymopentin on the parameters of cellular immunity and the clinical course of gynecologic tumor patients. Onkologie 1989, 12 (Suppl. 3), 15–21. [Google Scholar] [PubMed]
- Noda, K.; Takeuchi, S.; Yajima, A.; Akiya, K.; Kasamatsu, T.; Tomoda, Y.; Ozawa, M.; Sekiba, K.; Sugimori, H.; Hashimoto, S. Clinical effect of sizofiran combined with irradiation in cervical cancer patients: A randomized controlled study. Cooperative Study Group on SPG for Gynecological Cancer. Jpn. J. Clin. Oncol. 1992, 22, 17–25. [Google Scholar]
- Noda, K.; Ohashi, Y.; Okada, H.; Ogita, S.; Ozaki, M.; Kikuchi, Y.; Takegawa, Y.; Niibe, H.; Fujii, S.; Horiuchi, J.; et al. Randomized phase II study of immunomodulator Z-100 in patients with stage IIIB cervical cancer with radiation therapy. Jpn. J. Clin. Oncol. 2006, 36, 570–577. [Google Scholar] [CrossRef]
- Noda, K.; Ohashi, Y.; Sugimori, H.; Ozaki, M.; Niibe, H.; Ogita, S.; Kohno, I.; Hasegawa, K.; Kikuchi, Y.; Takegawa, Y. Phase III double-blind randomized trial of radiation therapy for stage IIIb cervical cancer in combination with low-or high-dose Z-100: Treatment with immunomodulator, more is not better. Gynecol. Oncol. 2006, 101, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Fujiwara, K.; Ohashi, Y.; Yokota, H.; Hatae, M.; Ohno, T.; Nagai, Y.; Mitsuhashi, N.; Ochiai, K.; Noda, K. Phase III placebo-controlled double-blind randomized trial of radiotherapy for stage IIB-IVA cervical cancer with or without immunomodulator Z-100: A JGOG study. Ann. Oncol. 2014, 25, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Okawa, T.; Kita, M.; Arai, T.; Iida, K.; Dokiya, T.; Takegawa, Y.; Hirokawa, Y.; Yamazaki, K.; Hashimoto, S. Phase II randomized clinical trial of LC9018 concurrently used with radiation in the treatment of carcinoma of the uterine cervix. Its effect on tumor reduction and histology. Cancer 1989, 64, 1769–1776. [Google Scholar] [CrossRef]
- Okawa, T.; Niibe, H.; Arai, T.; Sekiba, K.; Noda, K.; Takeuchi, S.; Hashimoto, S.; Ogawa, N. Effect of LC9018 combined with radiation therapy on carcinoma of the uterine cervix. A phase III, multicenter, randomized, controlled study. Cancer 1993, 72, 1949–1954. [Google Scholar] [CrossRef]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. VP4-2021: EMPOWER-Cervical 1/GOG-3016/ENGOT-cx9: Interim analysis of phase III trial of cemiplimab vs. investigator’s choice (IC) chemotherapy (chemo) in recurrent/metastatic (R/M) cervical carcinoma. Ann. Oncol. 2021, 32, 940–941. [Google Scholar] [CrossRef]
- Otter, S.; Chatterjee, J.; Stewart, A.; Michael, A. The role of biomarkers for the prediction of response to checkpoint immunotherapy and the rationale for the use of checkpoint immunotherapy in cervical cancer. Clin. Oncol. 2019, 31, 834–843. [Google Scholar] [CrossRef]
- Naumann, R.W.; Oaknin, A.; Meyer, T.; Lopez-Picazo, J.M.; Lao, C.; Bang, Y.J.; Boni, V.; Sharfman, W.H.; Park, J.C.; Devriese, L.A. Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: Results from CheckMate 358. Ann. Oncol. 2019, 30, v898–v899. [Google Scholar] [CrossRef]
- Tseng, Y.-J.; Lee, C.H.; Chen, W.Y.; Yang, J.L.; Tzeng, H.T. Inhibition of PAI-1 Blocks PD-L1 Endocytosis and Improves the Response of Melanoma Cells to Immune Checkpoint Blockade. J. Investig. Dermatol. 2021, 141, 2690–2698.e6. [Google Scholar] [CrossRef]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Rumfield, C.S.; Roller, N.; Pellom, S.T.; Schlom, J.; Jochems, C. Therapeutic vaccines for HPV-associated malignancies. ImmunoTargets Ther. 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Coleman, S.; Clayton, A.; Mason, M.D.; Jasani, B.; Adams, M.; Tabi, Z. Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res. 2005, 65, 7000–7006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Feng, Q.-M.; Wang, Y.; Shi, J.; Ge, H.-L.; Di, W. The immunologic aspects in advanced ovarian cancer patients treated with paclitaxel and carboplatin chemotherapy. Cancer Immunol. Immunother. 2010, 59, 279. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, D.; Petrelli, F.; Coinu, A.; Raspagliesi, F.; Barni, S. A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol. 2014, 133, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Strauss, J.; Floudas, C.S.; Sater, H.A.; Manu, M.; Lamping, E.; Francis, D.C.; Cordes, L.M.; Marte, J.; Donahue, R.N.; Jochems, C. Phase II evaluation of the triple combination of PDS0101, M9241, and bintrafusp alfa in patients with HPV 16 positive malignancies. J. Clin. Oncol. 2021, 39, 2501. [Google Scholar] [CrossRef]
- Boilesen, D.R.; Nielsen, K.N.; Holst, P.J. Novel Antigenic Targets of HPV Therapeutic Vaccines. Vaccines 2021, 9, 1262. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Cao, J.-X.; Wang, M.; Li, D.; Cui, Y.-X.; Zhang, X.-Y.; Liu, J.-L.; Li, J.-L. Adoptive cellular immunotherapy for the treatment of patients with breast cancer: A meta-analysis. Cytotherapy 2014, 16, 934–945. [Google Scholar] [CrossRef]
- Dafni, U.; Michielin, O.; Lluesma, S.M.; Tsourti, Z.; Polydoropoulou, V.; Karlis, D.; Besser, M.; Haanen, J.; Svane, I.-M.; Ohashi, P. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: A systematic review and meta-analysis. Ann. Oncol. 2019, 30, 1902–1913. [Google Scholar] [CrossRef] [Green Version]
- Sutton, G.P.; Blessing, J.A.; McGuire, W.P.; Patton, T.; Look, K.Y. Phase II trial of ifosfamide and mesna in patients with advanced or recurrent squamous carcinoma of the cervix who had never received chemotherapy: A Gynecologic Oncology Group study. Am. J. Obstet. Gynecol. 1993, 168, 805–807. [Google Scholar] [CrossRef]
- Sutton, G.P.; Blessing, J.A.; Photopulos, G.; Berman, M.L.; Homesley, H.D. Early phase II Gynecologic Oncology Group experience with ifosfamide/mesna in gynecologic malignancies. Cancer Chemother. Pharmacol. 1990, 26, S55–S58. [Google Scholar] [CrossRef]
- Cao, J.; Chen, C.; Wang, Y.; Chen, X.; Chen, Z.; Luo, X. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro. Oncol. Lett. 2016, 12, 2033–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.; Yu, G.; Wang, H.; Tang, A.; Geng, P.; Zhang, H.; Zhu, Z.; Li, F.; Xie, X. Meta-analysis of chemotherapy and dendritic cells with cytokine-induced killer cells in the treatment of non-small-cell lung cancer. Int. J. Clin. Exp. Med. 2015, 8, 14527. [Google Scholar]
- Mu, Y.; Zhou, C.-H.; Chen, S.-F.; Ding, J.; Zhang, Y.-X.; Yang, Y.-P.; Wang, W.-H. Effectiveness and safety of chemotherapy combined with cytokine-induced killer cell/dendritic cell–cytokine-induced killer cell therapy for treatment of gastric cancer in China: A systematic review and meta-analysis. Cytotherapy 2016, 18, 1162–1177. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Cao, J.-X.; Liu, Z.-P.; Cui, Y.-X.; Li, C.-Y.; Li, D.; Zhang, X.-Y.; Liu, J.-L.; Li, J.-L. Combination of chemotherapy and immunotherapy for colon cancer in China: A meta-analysis. World J. Gastroenterol. WJG 2014, 20, 1095. [Google Scholar] [CrossRef] [PubMed]
Study/ Author | Drug | Study Phase | Number of Patients | Line of Therapy Disease | PD-L1 Status | Treatment | Survival Outcomes + | Response Rates | Most Common TRAE/AE: |
---|---|---|---|---|---|---|---|---|---|
Keynote-826/ Colombo 2021 [17] | Pembrolizumab vs. placebo | III (RCT) | 617 | P/M/R, no prior CHT, no curative treatment available, 19.8% no prior therapy | CPS: <1 = 11.2% 1–10 = 37.4% >10 = 51.4% | Paclitaxel + platinum based CHT ±bevacizumab +pemroblizumab (200 mg) or placebo every three weeks for up to 35 cycles | Pembrolizumab vs. placebo | ||
PFS = 10.4 [9.1–12.1] vs. 8.2 [6.4–8.4] PFS in PD-L1+ = 10.4 [9.7–12.3] vs. 8.2 [6.3–8.5] OS = 24.4 vs. 16.3–16.5 OS in PD-L1+ = NR e2y OS = 50.4% [43.8–56.6] vs. 40.4 [34.0–46.6]% e2y OS in PD-L1+ = 53% [46.0–59.4] vs. 41.7% [34.9–48.2] | ORR = 65.9% vs. 50.8% ORR in PD-L1+ = 68.1% vs. 50.2% DOR= 18.0 m vs. 10.4 m DOR PD-L1+ = 18.0 m vs. 10.4 m | TRD: 0.7% vs. 1.3% Any TRAE: 97.1% vs. 97.1%, alopcia 55.7 vs. 55.7%, anemia 48.5 vs. 42.7%, nausea 33.9 vs. 38.8%, diarrhea 24.8% vs. 18.8%, peripheral neuropathy 24.4% vs. 25.2% Grade ≥3 TRAE: any 68.4 vs. 64.1%, anemia 24.8 vs. 21.0%, neutropenia 12.1 vs. 9.4%, thrombocytopenia 6.8 vs. 3.9%, hypertension 6.5 vs. 7.4% Potentially immune-mediated AE: 33.9% vs. 15.2% | |||||||
Keynote-158/Chung 2019 [18] | Pembrolizumab | II | 98 10.2 [0.6–22.7] | R/M (II-IVB) progression or intolerance in ≥1 lines of standard therapy | Positive (CPS ≥ 1): 83.7% Negative (CPS < 1): 15.3% | Pembrolizumab 200 mg q3w for up to 2 years | PFS = 2.1 [2.0–2.2] PFS in PD-L1+ = 2.1 [2.1–2.3] OS = 9.4 [7.7–13.1] OS in PD-L1+ = 11 [9.1–14.1] e12m OS: 41.4% e12m OS in PD-L1+ = 47.3% | ORR = 12.2% [6.5–20.4] ORR in PD-L1+ = 14.6% [7.8–24.2] DCR = 30.6% [21.7–40.7] DCR in PD-L1+ = 32.9% [22.9–44.2] DOR = Not been reached [≥3.7–≥18.6 months] | TRD = None Any TRAE: 65.3%, hypothyroidism (10.2%), decreased appetite (9.2%), fatigue (9.2%), diarrhea (8.2%) Grade ≥3 TRAE: any event 12.2% Potentially immune-mediated AE: hypothyroidism 11.2%, hyperthyroidism 9.2%, |
Keynote-028/Frenel et al., 2017 [19] | Pembrolizumab | Ib | 24 | M, PD-L1+, progressed on standard therapy or no adequate standard therapy available | Positive: 100% | Pembrolizumab 10 mg/kg q2w up to 2 years | PFS =: 2 [2,3] OS = 11 [4–15] 6 m OS = 67%: 12 m OS = 40% | ORR = 17% [5–37] DOR = 5.4 [4.1–7.5] | TRD = None Any TRAE: 75%, rash 21%, pyrexia 17% Grade ≥ 3 TRAE: any event 20.8%, rash 8% Potentially immune-mediated AE: 25% |
Duska et al., 2020 [20] | Pembrolizumab | II (RCT) | 52 | A (IB-IVA), first line | Not reported | Pembrolizumab 200 mg q3w for 3 cycles during vs. after CRT (Cisplatin) | Pembrolizumab after vs. during CRT | ||
Not reported | Not reported | TRD: None Grade ≥2 TRAE: 87.5% vs. 89.3%, nausea 45.8 vs. 41.6%, anemia 50% vs. 50%, decreased lymphocyte count 54.2% vs. 54.2%, decreased white blood cell count 41.7% vs. 54.2%, vomiting 29.2 vs. 16.7% Grade ≥3 TRAE: 62.5% vs. 67.9%, Lymphocytopenia 33.3% vs. 42.9%, leucopenia 16.7% vs. 25%, anemia 16.7% vs. 17.9%, neutropenia 16.7% vs. 10.7%, Potentially immune-mediated AE: 4.2% vs. 3.6% | |||||||
Youn et al., 2020 [21] | Pembrolizumab (GY-188E vaccine) | II | 36 | A/R (inoperable) HPV-16+ or HPV-18+, progression with available therapies | Positive (CPS ≥ 1): 72% Negative (CPS < 1): 28% | Pemprolizumab 200 mg q3w for up to 2 years + GX-188E (vaccine) 2 mg i.m. at week 1, 2, 4, 7, 13, 19, 46 | n = 26 PFS = 4.9 [2.1–6.7] OS = 10.2 [6.6–16.7] | n = 26 ORR = 42% [23–63] ORR in PD-L1+ = 50% [27–73] DCR = 58% [37–77] DCR in PD-L1+ = 65% [41–85] DOR = 4.0 [2.1–4.5] | TRD: None Any TRAE: 44%, hypothyroidism 11% Grade ≥ 3: any event 11% Potentially immune-mediated AE: 19% |
NRG-GY002/Santin et al., 2020 [24] | Nivolumab | II | 26 | P/R/M, progression on systemic therapy | CPS ≥1 = 77.3% <1 = 22.7% | Nivolumab 3 mg/kg q2w for up to 46 doses | PFS = 3.5 [90% CI: 1.9–5.1] OS = 14.5 [90%CI: 8.3–26.8] | ORR = 4% [90%-CI: 0.4–22.9] DCR = 40% DOR = 3.8 | TRD: None Any event: 96%, blood and lymphatic system disorder 56%, cardiac disorders 8%, endocrine disorders 24%, gastrointestinal disorders 80%, general disorders 72%, infections 28%, injury/poisoning/procedural complications 12%, investigations 52%, metabolism disorders 56%, musculoskeletal disorders 64%, neoplasms 8%, psychiatric disorders 20%, renal/urinary disorders 24%, reproductive system disorders 28%, respiratory/thoracic/mediastinal disorders 44%, skin disorders 28%, vascular disorders 36% Grade ≥ 3: any event 60%, blood and lymphatic system disorders 12%, gastrointestinal disorders 20%, investigations 20%, metabolism disorders 20%, neoplasms 8% |
Tamura et al., 2019 [25] | Nivolumab | II | 20 | A/R (III-IV), progressed on ≥ 1 CHT | Positive (TPS ≥ 1) = 75% Negative (TPS < 1) = 25% | Nivolumab 240 mg q2w | PFS = 5.6 [80% CI: 2.8–7.1] OS = NE 6m OS = 84% [80% CI: 70–92%] 6m OS in PD-L1+= 86% [80% CI: 69–94] | ORR = 25% [80 CI: 13–41] DCR = 75% [80%-CI: 59–87] ORR in PD-L1+ = 33% [80% CI: 17–53] DOR = NE [80% CI: 3.0-NE] | TRD: None Any TRAE: 65%, increased AST/ALT 15/10%, hypothyroidism 15%, pruritus 15%, anemia 10%, arthralgia 10%, diarrhea 10%, pyrexia 10%, increased lipase 15%, malaise 10%, rash 20% Grade ≥ 3: any event 20% |
Checkmate-358/Naumann et al., 2019 [26] | Nivolumab | I/II | 19 | M/R, ≥1st line | CPS ≥ 1% = 62.5% CPS < 1% = 37.5% Unknown: 15.8% | Nivolumab 240 mg q2w for up to 2 years | PFS = 5.1 [1.9–9.1] OS = 21.9 [15.1-NR] 12 m PFS = 26.3% [9.6–46.8] 12m OS = 77.5% [50.5–91.0] 24m OS = 49.8% [23.5–71.3] | ORR = 26.3% [9.1–51.2] DCR = 68.4% [43.3–87.4] DOR = NR (range: 23.3–29.5) | TRD: None Any TRAE: 63.2%, diarrhea 21.1%, fatigue 15.8%, pneumonitis 10.5%, abdominal pain 10.5%, stomatitis 10.5%, dry eye 10.5%, arthralgia 10.5%, skin disorders 21.1%, decreased appetite 5.3%, hepatocellulcar injury 5.3% Grade ≥ 3: any event 21.1%, diarrhea 5.3%, pneumonitis 5.3%, hepatocellular injury 5.3% Potentially immune-mediated AE: GI 21.1%, skin 21.1%, pulmonary 10.5% |
Yin et al., 2020 [27] | Nivolumab (TIL) | I | 80 | M, progression after first-line CHT | Negative = 100% | Nivolumab 3 mg/kg q2w + TILs (average 50 × 109) | PFS = 6.1 OS = 11.3 | ORR= 25% DCR= 62.5% | TRD: None Any TRAE: 91.3%, fever 67.5%, fatigue 22.5%, rash 20%, anorexia 15% Grade ≥ 3: Any TRAE 5%, fever 5% |
Mayadev et al., 2019 [30] | Ipilimumab | I | 34 | IB2-IVA LN+, first-line | Not reported | CRT followed by Ipilimumab 3 mg/kg q3w (4 cycles) or Ipilimumab 10 mg/kg q3w (4 cycles) | n = 21 PFS = not reached OS = not reached 12m OS = 90% | Not reported | TRD: None Any TREA: not reported Grade ≥ 3 TRAE: anemia 9.5%, GI disorders 9.5%, investigations 19%, |
Lhereux et al., 2019 [31] | Ipilimumab | I/II | 42 | M, progression on ≥1 line platinum based CHT | Negative = 47.6% 1–10% = 9.5% >10% = 9.5% | Phase I: Ipilimumab 3 mg/kg q3w for 4 cycles Phase II: Ipilimumab 10 mg/kg q3w for 4 cycles | PFS = 2.5 [2.1–3.2] OS = 8.5 [3.6- not reached] | n = 34 ORR = 2.94% | TRD: None Any TRAE: fatigue 38.1%, diarrhea 29%, rash 29%, anemia 26.2%, nausea 26.2%, anorexia 23.8%, pruritus 21%, increase in ASAT/ALAT 21%, vomiting 16.7%, dehydration 11.9%, decreased lymphocyte count 16.7%, hypoalbuminemia 16.7%, hypomagnesemia 11.9% Grade ≥ 3 TRAE: anemia 9.5%, diarrhea 9.5%, hyponatremia 7.1% Potentially immune-mediated AE: diarrhea 29%, rash 29%, pruritus 21%, increase in ASAT/ALAT 21%, arthralgia 7%, peripheral neuropathy 5%, hypothyroidism 5% |
Friedman et al., 2020 [28] | Atezolizumab | II | 11 | P/M/R, progression on ≥1 prior systemic therapies | Not reported | Atezolizumab 1200 mg q3w + bevacizumab 15 mg/kg q3w | PFS = 2.9 [1.8–6] OS = 8.9 [3.4–21.9] 1y OS = 36.4% [11.2–62.7%] | ORR = 0% DCR = 60% | TRD: None Any TRAE: hypertension 18%, diarrhea 27%, nausea 36%, ASAT/ALAT increase 27%/18%, gastrointestinal fistula 18%, fatigue 54%, fever 27%, dyspnea 185 Grade ≥ 3 TRAE: any 36.4%, thromboembolic event 9%, muscle weakness 9%, peripheral neuropathy 9%, arachnoiditis 9%, sensorineural hearing loss 9%, gastrointestinal bleeding 9%, anemia 9%, encephalopathy 9%, meningitis 9% |
CLAP trial/Lan et al., 2020 [32] | Camrelizumab | II | 45 | P/M/R, progression on ≥1 prior systemic therapies | CPS ≥1 = 66.7%, CPS < 1 = 22.2% | Camrelizumab 200 mg q2w (maximum of 24 months) + apatinib 250 mg p.o. 1x/d | PFS = 8.8 [5.6-NE] PFS in PD-L1+ = sign. longer OS = NR [11.6-NE] 9m OS= 69.2% [52.9–80.8] | ORR = 55.6% [40.0–70.4] ORR in PD-L1+=69% DCR = 82.2% [67.9–92.0] DOR = NR [5.6-NE] | TRD: None Any TRAE: 95.6%, hypertension 84.4%, anemia 60%, proteinuria 55.6%, increased liver enzymes in up to 46.7%, fatigue 51.1%, Grade ≥ 3 TRAE: any 71.1%, hypertension 24.4%, anemia 20%, fatigue 15.6%, increased yGT 15.6%, neutropenia 6.7%, thrombocytopenia 6.6% Potentially immune-mediated AE: 33.3% |
Rischin et al., 2020 [33] | Cemiplimab | I | 10/10 | M/R, Resistant or intolerant to platinum- plus taxane-based CHT | Not reported | Cemiplimab 3 mg/kg q2w for up to 48 weeks +/− hfRT | No hfRT: PFS = 1.9 [1.0–9.0] OS = 10.3 [2.1-NE] With hfRT: PFS = 3.6 [0.6–5.7] OS = 8.0 [1.7-NE] | No hfRT: ORR = 10% [0.3–44.5] DCR = 40% [12.2–73.8] DOR = 11.2 With hfRT: ORR = 10% [0.3–44.5] DCR = 60% [26.2–87.8] DOR = 6.4 | No hfRT: TRD: none Any TRAE: 70%, fatigue 30%, diarrhea 20%, hypothyroidism 20%, pneumonitis 10%, hyponatremia 10%, myalgia 10% Grade ≥ 3 TRAE: any 10%, fatigue 10%, myalgia 10% With hfRT: TRD = 10% (pneumonitis) Any TRAE: 60%, fatigue 10%, diarrhea 30%, pneumonitis 20%, hyponatremia 10% Grade ≥ 3 TRAE: any 30%, pneumonitis 20%, hyponatremia 10% |
O’Malley et al., 2021 [34] | Balstilimab | II | 161 | P/M/R, ≥1 platinum-based treatment regimen | CPS ≥ 1% = 61.5% CPS < 1% = 26.7% | Bastilimab 3 mg/kg q2w for up to 24 months | Will be reported separately | N = 140 ORR = 15% [10.0–21.8] ORR PD-L1+ = 20% DCR: 49.3% [41.1–57.5] DOR = 15.4 5.7-NR] | TRD: None Any TRAE: 71.4%, asthenia 23%, diarrhea 12.4%, pruritis 11.8%, fatigue 10.6% Grade ≥ 3 TRAE: any 11.8% Potentially immune-mediated AE: 6.8% |
Study/ Author/Year | Drug(s) | Study Phase | Number of Cervical Cancer Patients (All Patients) | Diseases Assessed | PD-L1/IDO1 Status | Treatment | Survival Outcomes + | Response Rates | Most Common TRAEs: |
---|---|---|---|---|---|---|---|---|---|
Frumovitz et al., 2020 [22] | Pembrolizumab | II | 6 (7) | Small cell neuroendocrine carcinoma, pretreated | Positive: 57.1% Negative: 28.6% | Pembrolizumab 200 mg q3w | PFS = 2.1 [0.8–3.2] | ORR = 0% | TRD: None Any TRAE: fatigue 29%, elevated ASAT/ALAT 29%, elevated alkaline phosphatase 14%, arthralgia 14%, rash 14% Grade ≥ 3 TRAE: any, elevated ASAT/ALAT 14%, elevated alkaline phosphatase 14%, |
Qiao et al., 2019 [23] | Pembrolizumab (hypothermia; Adoptive cell therapy, chemotherapy)) | I | 4 (33) | Solid tumors, heavily pretreated | Not reported | All groups received 2 cycles hypothermia + 2 cycles adoptive cell transfer (CIK) Group 1: No additional therapy Group 2: + pembrolizumab Group 3: +chemotherapy | Not reported | ORR = Group 1: 30% Group 2: 27.30% Group 3: 30% DCR = Group 1: 70% Group 2: 55% Group 3: 75% ORR in cervical cancer patients = 25% DCR in cervical cancer patients = 75% | Of pembrolizumab group 2: TRD: None Any TRAE: rash 18.2%, subcutaneous fat induration 18.2%, diarrhea 18.2%, fatigue 18.2% Grade ≥ 3 TRAE: subcutaneous fat induration 9.1% |
Jung et al., 2019 [29] | Atezolizumab + Navoximod | I | Dose escalation: 4(66) Dose expansion: 2(92) | A/M (incurable) solid tumors | Dose expansion: PD-L1+: 65.9% PD-L1-; 29.7% IDO-1+: 74.7% IDO-1-: 20.9% | Dose escalation: Atezolizumab 1200 mg q3w + navoximod (50–1000 mg twice daily per os) Dose expanding: Atezolizumab 1200 mg q3w + navoximod (600 or 1000 mg twice daily per os) | Not reported | Dose-escalation ORR = 9% ORR in PD-L1+ = 13% DCR = 26% Dose expansion: ORR = 11% ORR in PD-L1+ = 15% ORR in IDO1+ = 13% | TRD: One in prostate cancer Any TRAE: 75%, fatigue 22%, rash 22%, chromaturia 20%, decreased appetite 12%, nausea 12% Grade ≥ 3 TRAE: any 22%, rash 9% |
Tinker et al., 2019 [36] | Monolizumab (CD94/NKG2A) | I | Dose ranging 1(18) Cohort expansion: 9 (40) | A/M/R gynaecological cancers, pretreated | Not reported | Dose ranging: 1/4/10 mg/kg q2w Cohort expansion: 10 mg/kg q2w | Not reported | Dose ranging: ORR = 0% DCR = 41.2% DOR = 3.4 months (1.4–5.5) Cohort expansion: ORR = 0% DCR = 18.4% DOR = 3.4 months (2.6–14.8) | TRD: None Any TRAE: not clearly reported Grade ≥ 3 TRAE: any 15.5% (non-hematologic), hematologic: anemia 15.5%, lymphopenia 19.0%, hypoalbuminemia 8.6%, alkaline phosphatase elevation 5.2% |
Strauss et al., 2020 [35] | Bintrafusp alfa (TGF-ß and PD-L1 inhibitor) | I/II | Phase I: 25 (42) Phase II: 8 (16) | Phase I: heavily pretreated advanced solid tumors Phase II: Advanced HPV-associated cancers | Not reported | Phase I dose-escalation: Bintrafusp alfa 0.3–30 mg kg q2w Phase I cohort expansion and phase II: Bintrafusp alfa 1200 mg q2w | Overall analysis: PFS = 24.2 [22.4–46.4] OS = NR [8.6-NR] e12m OS = 58.8% [44.3–70.8] e18m OS = 51.4% [36.5–64.3] | Overall analysis ORR = 30.5% [19.2–43.9] DCR = 44.1% [31.2–57.6] DOR = 19.1 months [9.6–27.3] | TRD: None Any TRAE: any 83.1%, pruritus 25.4%, dermatitis 20.3%, keratoacanthoma 15.3%, hypothyroidism 15.3%, rash 15.3%, anemia 15.35, fatigue 11.9% Grade ≥ 3 TRAE: any 27.1%, anemia 6.8%, skin lesions 6.8% |
Study/ Author/ Year | Name of Vaccine/ Antigen | Study Phase | Number of Cervical Cancer Patients (All Patients) | Stage of Cervical Cancer | HPV Status | Treatment | Survival Outcomes + | Response Rates | Most Common TRAEs/AEs |
---|---|---|---|---|---|---|---|---|---|
Peptide-based | |||||||||
Hasegawa et al., 2018 [41] | FOXM1, MELK, HJURP, VEGFR1/2 | I | 9 | P/R HLA-A*2402 | Not reported | 0.5/1/2 mg of each peptide q1wk for up to 16 weeks, then q2w | PFS = 3.3 | ORR = 0% DCR = 77.8% DOR = 1.7–10.3 months | TRD: None, Any AE: injection site reactions 66.7%, anemia 66.7%, increased creatinine 44.4%, vaginal hemorrhage 33.3% Grade ≥ 3 AE: anemia 11.1% |
Kenter et al., 2008 [42] | HPV16 E6/E7 | I | 43 | A/R, no options for further treatment | Not reported | s.c. q3w 4 times 3 groups with different doses and combinations | 6 patients alive at 18–36 months, 4 of them received additional chemotherapy | 1 CR at 36 months (no additional chemotherapy received), 5 SD at 18–26 months | TRD: None Any AE: injection site reactions 100%, fever 14.3%, flu-like symptoms 20% Grade ≥3 AE: 0% |
Melief et al., 2020 [43] | ISA101 HPV 16 E6/E7 | I/II | 77 | IIIB-IVA/M/R HPV 16+ | HPV16+: 100% | 2 weeks after 2nd, 3rd, 4th cycle carboplatin/paclitaxel, 4 different doses ± pegylated INFα | OS in strong vaccine response = 16.8 months OS in low vaccine response = 11.2 (p = 0.012, HR 0.491) | ORR = 43% DCR = 86% DOR = 5.2 months [3.5–6.9] | TRD. None Any TRAE: 98.9%, injection site reactions 69.4% Grade ≥3 TRAE: 86.3% |
Reuschenbach et al., 2016 * [44] | VicOryx P16INK4a | I/IIa | 17 (26) | IV M cancers, HPV+, overexpressing p16INK4a | Not reported | s.c. q1w for 4 doses then 1 week rest, up to 12 doses | PFS = 3.5 OS = 11.9 | ORR = 0% DCR = 64% | TRD: None Any TRAE: mild injection site reactions 38.5%, rest not clearly reported Grade ≥3 TRAE: 0% |
Steller et al., 1998 [45] | HPV 16 E7 | I | 12 | P/R (IB1-IVA), not amenable to surgery or radiation therapy HLA-A2+ | HPV 16+: 75% | s.c. q3w for 4 doses, 4 different dose escalation groups | 2 SD at 6 and 3 months, 6 alive with PD at 2–7 months | ORR = 0% | TRD: None Any TRAE: mild injection site reactions, not clearly reported Grade ≥3 TRAE: not clearly reported |
Takeuchi et al., 2020 * [46] | URLC10/ HIG-2/FOYM1, MELK, HJURP | I/II | Phase I: 11 (23) Phase II: 20 (66) | P/R cervical or ovarian cancer, median 3–5 prior therapies, HLA-A*0201 orA*2402 | Not reported | s.c. q1w for 12 doses, followed by q2w for 8 doses, followed by q4w (after 1 year by choice q1m, q3m or q4m) | Cervical cancer n = 15: Physical state and treatment-related dermatological reactions (3.3 vs. 21.2 months, HR 6.4 [1.38–29.24] were strongly associated with prolonged OS. | Cervical cancer n = 15: ORR = 20% DCR = 80% | Whole population n = 64: TRD: None Any TRAE: injection site reactions Grade ≥ 3 TRAE: injection site ulceration 7.8%, lymphocytopenia 15.6% |
Tsuda et al., 2004 * [47] | Different peptides | I | 7 (14) | Ib-IVA Gynecologic cancer HLA-A2 or A24 + | Not reported | s.c.3 injections q2w, followed by 1 injection q2w | Not reported | Cervical cancer: ORR = 18.6% DCR = 57.1% | TRD: None Any TRAE: fever 31.4%, dermatologic 57.1% Grade ≥ 3 TRAE: 7.1% |
Van Driel et al., 1999 [48] | HPV16 E7 | I-II | 19 | IA-IVB P/R, not amenable to other treatments HPV 16+, HLA-A*201+ | HPV 16+: 100% | s.c. q3w for 4 doses, dose-escalation | OS = 7 (range: 0–22) | ORR = 0% DCR = 21.1% | TRD: None Any TRAE: Mild injection site reactions 21.1%, induration 10.5%, lymphocytopenia 57.9% Grade ≥ 3 TRAE: not clearly reported |
Van Poelgeest et al., 2013 * [49] | HPV16 E6/E7 | II | 17 (20) | A/R gynecological carcinoma HPV 16 + No curative treatment options | HPV 16 | s.c. q3w for 4 doses | Cervical cancer: OS = 8.8 (range 4–37) | All patients: ORR = 0% DCR = 27.3% DCR including non-target lesions= 0% | Overall population: TRD: none Any TRAE: Injection site reaction 100%, fever 40%. Chills 30%, fatigue 20%, nausea 30%, flu-like symptoms 35% Grade ≥ 3 TRAE: 0% |
Welters et al., 2008 [50] | HPV 16 E6/E7 | II | 6 | Resected IB1 HPV 16+ | HPV 16+: 100% | s.c. q3w for 4 doses | 3 patients free of disease at 10/13/24 months, 2 recurrences at 7 months after last vaccination and at the time of 3rd vaccination | RR= 33.3% | TRD: None Any TRAE: mild pain 100%, fever 50%, flu-like symptoms 50%, injection site reactions 100% Grade ≥3 TRAE: 0% |
Welters et al., 2016 [51] | HPV 16 E6/E7 | I | 13 | A/M/R | HPV 16+: 66.7% | Two weeks after second or third cycle of CHT (Carboplatin/Paclitaxel) | Not reported | Not reported | TRD: None Any AE: 58.3%, injection site reactions, fever Grade ≥ 3 TRAE (vaccine): 8% |
Cell-based (Dendritic cell/B-cell-Monocyte) | |||||||||
Choi et al., 2020 [52] | BVAC-C HPV 16/18 E6/E7 | I | 11 | M, progressed after platinum-based chemotherapy, HPV16/18+ | HPV 16+: 82% HPV 18+: 18% | i.v. injection q4w for 3 cycles | PFS = 6.8 [3.2-NR] OS = 12.0 [12-NR] 12mOS = 65% [39–100] | ORR = 11% [0–32] DCR = 67% | TRD: None Any TAE: pyrexia 55%, myalgia 36% Grade ≥ 3 TRAE: 0% |
Ferrara et al., 2003 [53] | HPV 16/18 E7 | I | 15 | P/R, with no other therapy option, HPV 16/18+ | HPV16 +: 80% HPV 18+: 20% | s.c. injection every 10–21 days | Not reported | ORR = 0% DCR = 0% | TRD. None No clearly vaccination related AE |
Rahma et al., 2014 [54] | HPV 16 E6/E7 | I | 18 (E6) 14 (E7) | A/P/R HPV 16 or 18+ | HPV 16+: 56.3% HPV 18+: 43.8% | i.v. q3w for 2 cycles, the q4w (maximum of 14 vaccinations) | PFS = 3.5 OS = 10.0 | ORR = 0% | TRD: None Any AE: Not clearly reported, fatigue 56.3% Grade ≥ 3 AE: No grade 3 events ≥ 5% |
Ramanathan et al., 2014 [55] | Primed by tumor RNA/tumor lysate/cervical cancer cell line | I (RCT) | 14 | R (after initial radical treatment) HPV+ | Not reported | i.d. q2w 3 times Group I: saline control Group II: unprimed matured DC Group III: primed mature DC | Not clearly reported 1 alive and disease free after additional CHT after 8 years | Not clearly reported | TRD: None Any grade: 21.4%, fever 14.2%, itching 7.1%, UTI 7.1%, elevated bilirubin and alkaline phosphatase 7.1% Grade ≥ 3: None Itching, fever, vomiting |
Santin et al., 2006 [56] | HPV 16/18 E7 | I | 4 | P/R, No other treatment option, HPV 16/18 positive | HPV 16+: 25% HPV 18+: 75% | s.c. q2w for 5 doses followed by q30d for 5 doses, followed by q60d for 3 doses, each with twice daily IL-2 from day 3 to7 post-vaccination | 2 patients died after 5 months, 2 after 13 months | ORR = 0% | TRD: None Any TRAE: injection site reactions 50%, flu-like symptoms 100%, draining lymph node enlargement 50% Grade ≥ 3 TRAE: Not clearly reported |
Santin et al., 2008 [57] | HPV 16/18 E7 | I | 10 | IB after rad. Hysterectomy, HPV 16 or 18 + | HPV 16+: 90% HPV 18+: 10% | s.c. q3w for 5 doses, dose escalation 3–4 patients per dose | All patients alive after 17–31 months | RR = 0% (follow-up time 17–31 months) | TRD: None Any TRAE: not clearly reported, mild but increasing injection site reactions, draining lymph node enlargement Grade ≥ 3 TRAE: Not clearly reported |
DNA-based | |||||||||
HPV-004/Hasan et al., 2020 [58] | MEDI0456 (INO-3112) HPV 16/18 E6/E7 | I/IIa | Cohort 1: 7 Cohort 2: 3 | Cohort 1: new, inoperable stage IB-IVB Cohort 2: persistent or recurrent cancer, All: HPV 16/18 +, after CRT | HPV 16+: 70% HPV 18+: 30% | i.m. injection of 6 mg VGX-3100 and 1 mg INO-9012 followed by electroporation q4w for up to 4 doses | Cohort 1: PFS = NR e1y PFS = 100% Cohort 2: PFS = NR e1y PFS = 50% | Cohort 1 ORR = 100% Cohort 2 ORR = At least 33% | TRD: None TRAE: 80%, injection site bruising 20% and pain 20%. Grade ≥ 3 TRAE: 0% |
Hui et al., 1997 [59] | HLA-A2/HLA-B/H-2Kk- | II | 3 (10) | M, refractory to all available therapies | Not reported | Injections. in cutaneous metastases q1w for four doses | Not reported | Cervical cancer 1 CR, 1 PR of injected cutaneous metastasis. All had systemic PD | TRD: None Any TRAE: Not adequately reported, no changes in hematological or liver function values Grade ≥ 3 TRAE: |
Youn et al., * 2020 [21] | GY-188E HPV DNA E6/E7 | II | 26 | A/R (inoperable) HPV-16+ or HPV-18+, progression with available therapies | Positive: 72% Negative: 28% | Pemprolizumab 200 mg q3w for up to 2 years + GX-188E (vaccine) 2 mg i.m. at week 1,2,4,7,13,19,46 | n = 26 PFS = 4.9 [2.1–6.7] OS = 10.2 [6.6–16.7] | n = 26 ORR = 42% [23–63] ORR in PD-L1+= 50% [27–73] DCR = 58% [37–77] DCR in PD-L1+= 65% [41–85] DOR = 4.0 months [2.1–4.5] TTR = 2.1 months [2.1–3.0] | TRD: None Any TRAE: 44%, hypothyroidism 11% Grade ≥ 3: any event 11% Potentially immune-mediated AE: 19% |
Virus-based | |||||||||
Borysiewicz et. al. 1996 [60] | TA-HPV HPV 16/18 E6/E7 | I/II | 8 | A/R, immunocompetent | HPV 16+: 100% | Single dose | 6 out of 8 patients died within 2–14 months post vaccination, 2 were alive after 15 months (recurrent) and 21 months (Stage Ib) post-vaccination | Two patients were tumor free at 15/21 months post vaccination | TRD: Not clearly reported Any TRAE: injection site reactions 100% Grade ≥ 3 TRAE: Not clearly reported, no serious TRAEs |
Freedmann et al., 1989 [61] | Viral oncolysate | II (RCT) | 75 | A (Lymph node metastases or large volume tumor) (No prior CHT or RT) | Not reported | RT ± i.d. viral oncolysate q1w RT then q2w for 12 months | PFS= 22.3 (RT + Viral oncolysate) vs. 15.1 months (RT) OS= 30.0 vs. 27.8 months | Not reported | TRD: None Any grade: delayed-type hypersensitivity reactions, chills and malaise, arthralgia Grade ≥ 3: Not reported Potentially immune-mediated AE: paraneoplastic syndrome 1.3% |
Bacterial-based | |||||||||
Basu et al., 2018 [62] | ADXS11-001 HPV 16 E7 | II (RCT) | 110 | P/R (Prior CHT/RT/RT) | HPV 16+: 73.4% HPV 18+: 15.6% | Monotherapy: i.v. ADXS11-001 d1 + d29 + d57 vs Combination with Cisplatin: ADXS11-001 d1, followed by 5 doses cisplatin q1w after 4 weeks, followed by 3x ADXS11-001 | ADXS11-001 monotherapy vs. ADXS11-001 + CHT | ||
n = 69 PFS = 6.1 [5.9-.4] vs. 6.4 [4.2–8.9] OS = 8.3 [5.6–10.5] vs. 8.8 [7.4–13.3] 12m OS = 30.9% vs. 38.9% | n = 69 ORR = 17.1% vs. 15.7% DCR = 62.9% vs. 58.8% DOR = 7.2 months vs. 9.4 months (excluding SD) | TRD: None Any grade AE: 87.3% vs. 88.9%, possibly drug related: chills 30.9 vs. 35.2, pyrexia 12.7 vs. 13.0, nausea 5.5 vs. 3.7, vomiting 5.5 vs. 7.4% Grade ≥ 3 AE: any 22.2% vs. 18% | |||||||
GOG-0265/ Huh et al., 2020 [63] | ADXS11-001 HPV 16 E7 | II | 54 | M pretreated | Not reported | i.v. q4w | PFS = 2.8 [2.6–3.0] OS = 6.1 [4.3–12.1] 12m OS: 38% | ORR = 6% DCR = 16% | TRD: None Any TRAE: 98%, chills 58%, fatigue 54%, fever 36%, headache 36%, nausea 32% Grade ≥ 3 TRAE: 42%, anemia 10%, hypotension 12%, cytokine release syndrome: 12% |
Maciag et al., 2009 [64] | ADXS11-001 HPV 16 E7 | I | 15 | A/M/R, pretreated | HPV 16 positive: 66.7% HPV 18+: 0% | i.v. q3w 2 times, 3 groups with different dosing | OS = 347 days 11 died (median 281 days, IQR 118–367), 3 alive at 707–838 days | ORR = 7.7% (unconfirmed response) DCR = 61.5% | TRD: None Any AE: pyrexia 100%, vomiting 60%, chills 53.3%, headache 53.3%, anemia 53.3% Grade ≥3 TRAE: any 40%, pyrexia 20%, increased liver enzymes 13.3%, fatigue 6.7% |
Study/ Author/Year | Type | Antigen | Adjuvant Chemotherapy | Study Phase | Number of Cervical Cancer Patients (All Patients) | Stage of Cervical Cancer | HPV | Treatment | Survival Outcomes + | Response Rates | Most Common Adverse Events |
---|---|---|---|---|---|---|---|---|---|---|---|
Lu et al., 2017 * [72] | TCR | MAGE-A3 | Cyclophosphamid + fludarabine | I | 3 (17) | M (recurrent) HLA-DPB1*0401 + > 50% MAGE-A + tumor cells | Not reported | Chemotherapy daily for 5 days followed by single-dose T-cell infusion and IL-2 | Not reported | Cervical cancer ORR = 33% | Overall population: TRD: None Any AE: 100%, prolonged fever after infusion 58.8% Grade ≥ 3 AE: any 100%, elevated liver enzymes 11.8%, elevated creatinine 11.8%, hypoxia 5.9%, dyspnoea 5.9%, atrial fibrillation 5.9%, renal failure 5.9%, confusion 5.9% |
Nagarsheth et al., 2021 * [73] | TCR | HPV E7 | Cyclophosphamid + fludarabine | I | 5 (12) | M, HPV-associated epithelial cancers, pretreated | Not reported | Chemotherapy daily for 5 days followed by single-dose T-cell infusion and aldesleukin | No reported | Cervical cancer: ORR =: 40% DCR = 60% | Overall population: TRD: none Any AE = 100%, hematologic disorders 100%, electrolyte disorders 91.7%, fever 91.7%, fatigue 83.3%, diarrhea 83.3% Grade ≥ 3 AE: any 100%, hematologic disorders 100%, febrile neutropenia 66.7%, electrolyte disorders 66.7%, fever 8.3%, pulmonary disorders 33.3%, hypertension 8.3%, hypotension 16.6%, increased liver enzymes 8.3%, acute kidney injury 8.3%, weakness 8.3%, soft tissue necrosis, peripheral ischemia 8.3% |
Doran et al., 2019 * [71] | TCR | HPV 16 E6 | Cyclophosphamid + fludarabine | I/II | 6 (12) | M HPV 16+ epithelial cancers, pretreated with platinum-based CHT | HPV 16+: 100% | Chemotherapy daily for 5 days followed by single-dose T-cell infusion and aldesleukin | Not reported | Cervical cancer: ORR= 0% DCR= 33.3% DOR = 4- 6 months | Overall population: TRD: None Any AE: 100% Grade ≥ 3 AE: hematologic disorders 100%, febrile neutropenia 38%, infection 31%, diarrhea 8%, rash 8%, pulmonary disorders 8%, syncope 8%, hyperbilirubinemia 8% |
Stevanovic et al., 2015 [69] | TIL | Selected for HPV E6/E7 reactivity | Cyclophosphamid + fludarabine | I | 9 | M, pretreated | HPV 16: 22.2% HPV 18: 77.8% | Chemotherapy daily for 5 days followed by single-dose T-cell infusion and aldesleukin | Not reported | ORR= 33.3% DOR= 3 months for PR, ongoing at 15 and 22 months for CR | TRD: None Any AE: 100% Grade ≥ 3 A: 100%, anemia, hematological disorders 100%, infection 66.7%, febrile neutropenia 55.5%, metabolic disorders 55.5%, nausea/vomiting 44.4%, fatigue 33.3%, diarrhea 22.2%, hypoxia 22.2%, syncope/hypotension/hemorrhage/urethral obstruction 11.1% each |
Stevanovic et al., 2019 * [70] | TIL | Selected for HPV E6/E7 reactivity | Cyclophosphamid + fludarabine | II | 18 (29) | M, pretreated | HPV 16+: 27.7% HPV 18+: 61.1% | Chemotherapy daily for 5 days followed by single-dose T-cell infusion and aldesleukin | Not reported | Cervical Cancer: ORR= 28% DOR= 3 months in PR, ongoing at 53 and 67 months for CR | Overall population: TRD: None Any AE: 100% Grade ≥ 3 AE: 100%, hematologic disorders 100%, infection 58.6%, febrile neutropenia 41.4%, metabolic disorders 41.4%, hypoxia 27.6%, nausea/vomiting 20.7%, dyspnea 13.8%, diarrhea 10.3%, fatigue 10.3%, hypotension 10.3%, cystitis 6.9%, hemorrhage 6.9%, oliguria 6.8%, renal failure 6.8%, syncope 6.8%, urethral obstruction 6.8% |
Yin et al., 2020 [27] | TIL | Nivolumab | I | 80 | M, persistent during 1st line CHT | Positive: 85% Negative: 15% | Nivolumab 3 mg/kg q2w + TILs (average 50 × 109) | PFS = 6.1 OS = 11.3 | ORR = 25% DCR = 62.5% DOR= 12.8 months | TRD: None Any TRAE: 91.3%, fever 67.5%, fatigue 22.5%, rash 20%, anorexia 15%, leucopenia 6.3% Grade ≥3 TRAE: any 5%, fever 5% | |
Chen et al., 2015 [67] | DC-CIK | Cisplatin | II (RCT) | 79 | IIa-IV (prior treatment unclear) | Not reported | Interven.: Cisplatin 20 mg/d day 2–10 + reinfusion of DC-CIK after CHT Control: Cisplatin 20 mg/d for 10 days Both treatments were repeated after 3 months | CHT + DC-CIK vs. CHT only | |||
1y RR = 5% vs. 28.2% 3y RR = 22.5% vs. 46.2 1y OS = 97.3% vs. 92.3% 3y OS = 80% vs. 56.4% (p < 0.005%) | Not reported | Not reported | |||||||||
Li et al., 2019 [68] | CIK | Paclitaxel or gemcitabine + cisplatin+ RT | II (RCT) | 89 | IIA-IV (40.1% had prior surgery or RT/CHT in the past 6 months) | Not reported | RT + CHT q4w± i.v. CIK once per day for 4 days followed by CHT (alternating for 4–6 courses) | CHT + RT + CIK vs. CHT + RT | |||
1y OS = 93.2% vs. 88.9% 3y OS = 47.7 vs. 42.2% (p > 0.05) | ORR = 88.6% vs. 68.9% (p < 0.05) | TRD: None Any grade AE: Not reported, transient hypothermia 34.1% after CIK infusion | |||||||||
Qiao et al., 2019 * [23] | CIK | I | Hypothermia ± CHT ± pembrolizumab | 4 (33) | Advanced solid tumors, heavily pretreated | Not reported | All groups received 2 cycles hypothermia + 2 cycles adoptive cell transfer (CIK) Group 1: No additional therapy Group 2: +pembrolizumab Group 3: +chemotherapy | Not reported | ORR = Group 1: 30% Group 2: 27.30% Group 3: 30% DCR= Group 1: 70% Group 2: 55% Group 3: 75% ORR in cervical cancer patients = 25% DCR in cervical cancer patients = 75% | Of pembrolizumab group 2: TRD: None Any TRAE: rash 18.2%, subcutaneous fat induration 18.2%, diarrhea 18.2%, fatigue 18.2% Grade ≥ 3 TRAE: subcutaneous fat induration 9.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, M.W.; Battista, M.J.; Schmidt, M.; Garcia, M.; Siepmann, T.; Hasenburg, A.; Anic, K. Efficacy and Safety of Immunotherapy for Cervical Cancer—A Systematic Review of Clinical Trials. Cancers 2022, 14, 441. https://doi.org/10.3390/cancers14020441
Schmidt MW, Battista MJ, Schmidt M, Garcia M, Siepmann T, Hasenburg A, Anic K. Efficacy and Safety of Immunotherapy for Cervical Cancer—A Systematic Review of Clinical Trials. Cancers. 2022; 14(2):441. https://doi.org/10.3390/cancers14020441
Chicago/Turabian StyleSchmidt, Mona W., Marco J. Battista, Marcus Schmidt, Monique Garcia, Timo Siepmann, Annette Hasenburg, and Katharina Anic. 2022. "Efficacy and Safety of Immunotherapy for Cervical Cancer—A Systematic Review of Clinical Trials" Cancers 14, no. 2: 441. https://doi.org/10.3390/cancers14020441
APA StyleSchmidt, M. W., Battista, M. J., Schmidt, M., Garcia, M., Siepmann, T., Hasenburg, A., & Anic, K. (2022). Efficacy and Safety of Immunotherapy for Cervical Cancer—A Systematic Review of Clinical Trials. Cancers, 14(2), 441. https://doi.org/10.3390/cancers14020441