A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. DNA Methylation in Pediatric ALL
2.1. Hypermethylated Denes and Altered Methylation Profiles in Pediatric ALL
2.2. Methylation Patterns as a Tool of Assessing Prognosis of Pediatric T-ALL
2.3. Methylation Patterns Combined with Minimal Residual Disease (MRD) as an Improvement of Risk Stratification in Pediatric ALL
2.4. Hypomethylating Agents in Pediatric ALL
3. Modifications of Histones in Pediatric ALL
3.1. Acetylation of Histones
3.2. HDAC Inhibitors in ALL Treatment
3.3. Methylation of Histones
4. MiRNA in Pediatric ALL
4.1. Epigenetic Regulation of miRNA Expression in ALL
4.2. Use of miRNA in Diagnosis and Treatment of ALL
5. Conclusions
Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABCA3 | ATP Binding Cassette Subfamily A Member 3 protein coding gene |
ALL | Acute lymphoblastic leukemia |
AML | Acute myeloblastic leukemia |
ANTP homeobox oncogenes | Antennapedia homeobox oncogenes |
B-ALL | B-cell acute lymphoblastic leukemia |
Bcl-2 | B-cell lymphoma 2 |
BCP-ALL | B-cell progenitor acute lymphoblastic leukemia |
BCR-ABL | BCR ABL fusion genes |
BEX1 | Brain Expressed X-Linked 1 protein coding gene |
BFM therapy | Berlin-Frankfurt-Münster therapy |
CASP8AP2 | Caspase 8 associated protein 2 |
CDKN2A | Cyclin Dependent Kinase Inhibitor 2A |
CGIs | CpG islands |
CIMP | CpG Island Methylator Phenotype |
CIMP | negative CGI methylator phenotype |
CIMP+ | positive CGI methylator phenotype |
CIR3y | 3-year cumulative incidence of relapse |
CNS | Central nervous system; |
COSMe | CpG island and Open Sea Methylation |
COSMe-I | CpG island and Open Sea Methylation type I |
COSMe-II | CpG island and Open Sea Methylation type II |
CREBBP | CREB Binding Protein |
CSF | Cerebrospinal fluid |
DMR | Differentially methylated region |
DNMT inhibitors | Inhibitors of DNA methyltransferases |
DOT1L | Disruptor of telomeric silencing 1 |
EPZ-5676 | Pinometostat |
ETV6 | ETS translocation variant gene 6 |
ETV6-RUNX | ETV6 RUNX fusion gene |
FDA | Food and Drug Administration |
H3K79me | Histone H3 lysine methylation |
H4R3sme2 | symmetric dimethylation of H4R3 |
HAT | histone acetyltransferase |
HDAC | histone deacetylase |
HDACi | HDAC Inhibitors |
HMAs | Hypomethylating agents |
Hyper-CVAD | Hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone |
KMT2A | lysine methyltransferase 2A protein coding gene |
MDS | Myelodysplastic syndromes |
MiRNA | Micro RNA; |
MLL | Mixed Lineage Leukaemia |
MRD | Minimal Residual Disease |
MYO18B | Myosin XVIIIB protein coding gene |
NR3C1 protein | Nuclear Receptor Subfamily 3 Group C Member 1 protein |
P2RY8-CRLF2 | P2RY8-CRLF2 fusion gene |
PCDH17 | Protocadherin 17 protein coding gene |
Ph+ | Philadelphia chromosome positive |
PLCB4 | Phospholipase C Beta 4 protein coding gene |
PLXND1 | Plexin D1 protein coding gene |
PRC2 | Polycomb Repressor Complex 2 |
PRMT5 | Protein arginine methyltransferase 5 |
SNP | Single Nucleotide Polymorphism |
STIL-TAL1 | STIL TAL1 fusion genes |
TAL1 | TAL BHLH Transcription Factor 1 coding gene |
T-ALL | T-cell acute lymphoblastic leukemia |
TCF3-PBX1 | TCF3-PBX1 fusion gene |
TET | Ten-eleven translocation |
VEGF-A | Vascular endothelial growth factor A |
WIF1 | Wnt Inhibitory Factor 1 |
References
- Sasaki, K.; Jabbour, E.; Short, N.J.; Jain, N.; Ravandi, F.; Pui, C.H.; Kantarjian, H. Acute lymphoblastic leukemia: A population-based study of outcome in the United States based on the surveillance, epidemiology, and end results (SEER) database, 1980–2017. Am. J. Hematol. 2021, 96, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Jeha, S.; Pei, D.; Choi, J.; Cheng, C.; Sandlund, J.T.; Coustan-Smith, E.; Campana, D.; Inaba, H.; Rubnitz, J.E.; Ribeiro, R.C.; et al. Improved CNS Control of Childhood Acute Lymphoblastic Leukemia Without Cranial Irradiation: St Jude Total Therapy Study 16. J. Clin. Oncol. 2019, 37, 3377–3391. [Google Scholar] [CrossRef]
- Teachey, D.T.; Pui, C.H. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet. Oncol. 2019, 20, e142–e154. [Google Scholar] [CrossRef]
- Cheng, Y.; He, C.; Wang, M.; Ma, X.; Mo, F.; Yang, S.; Han, J.; Wei, X. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 2019, 4, 1–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.T.; Figueroa, M.E. Epigenetic deregulation in myeloid malignancies. Blood 2021, 138, 613–624. [Google Scholar] [CrossRef]
- Nordlund, J.; Syvänen, A.C. Epigenetics in pediatric acute lymphoblastic leukemia. Semin. Cancer Biol. 2018, 51, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Molloy, P.L. Early Insights into Cancer Epigenetics: Gene Promoter Hypermethylation Emerges as a Potential Biomarker for Cancer Detection. Cancer Res. 2022, 82, 1461–1463. [Google Scholar] [CrossRef]
- Luo, C.; Hajkova, P.; Ecker, J.R. Dynamic DNA methylation: In the right place at the right time. Science 2018, 361, 1336–1340. [Google Scholar] [CrossRef] [Green Version]
- Kagohara, L.T.; Stein-O’Brien, G.L.; Kelley, D.; Flam, E.; Wick, H.C.; Danilova, L.V.; Easwaran, H.; Favorov, A.V.; Qian, J.; Gaykalova, D.A.; et al. Epigenetic regulation of gene expression in cancer: Techniques, resources and analysis. Brief. Funct. Genom. 2018, 17, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, A.; Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021, 37, 1012–1027. [Google Scholar] [CrossRef]
- Meyer, L.K.; Hermiston, M.L. The epigenome in pediatric acute lymphoblastic leukemia: Drug resistance and therapeutic opportunities. Cancer Drug Resist. 2019, 2, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Hetzel, S.; Mattei, A.L.; Kretzmer, H.; Qu, C.; Chen, X.; Fan, Y.; Wu, G.; Roberts, K.G.; Luger, S.; Litzow, M.; et al. Acute lymphoblastic leukemia displays a distinct highly methylated genome. Nat. Cancer 2022, 3, 768–782. [Google Scholar] [CrossRef] [PubMed]
- del Pilar Navarrete-Meneses, M.; Pérez-Vera, P. Epigenetic alterations in acute lymphoblastic leukemia. Bol. Med. Hosp. Infant. Mex. 2017, 74, 243–264. [Google Scholar] [CrossRef]
- Figueroa, M.E.; Chen, S.C.; Andersson, A.K.; Phillips, L.A.; Li, Y.; Sotzen, J.; Kundu, M.; Downing, J.R.; Melnick, A.; Mullighan, C.G. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. J. Clin. Investig. 2013, 123, 3099–3111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, N.C.; Ashley, D.; Chatterton, Z.; Parkinson-Bates, M.; Ng, H.K.; Halemba, M.S.; Kowalczyk, A.; Bedo, J.; Wang, Q.; Bell, K.; et al. A distinct DNA methylation signature defines pediatric pre-B cell acute lymphoblastic leukemia. Epigenetics 2012, 7, 535–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borssén, M.; Palmqvist, L.; Karrman, K.; Abrahamsson, J.; Behrendtz, M.; Heldrup, J.; Forestier, E.; Roos, G.; Degerman, S. Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia. PLoS ONE 2013, 8, e65373. [Google Scholar] [CrossRef]
- Roman-Gomez, J.; Jimenez-Velasco, A.; Agirre, X.; Prosper, F.; Heiniger, A.; Torres, A. Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J. Clin. Oncol. 2005, 23, 7043–7049. [Google Scholar] [CrossRef]
- Roman-Gomez, J.; Jimenez-Velasco, A.; Agirre, X.; Castillejo, J.A.; Navarro, G.; Garate, L.; San Jose-Eneriz, E.; Cordeu, L.; Barrios, M.; Prosper, F.; et al. Promoter hypermethylation and global hypomethylation are independent epigenetic events in lymphoid leukemogenesis with opposing effects on clinical outcome. Leukemia 2006, 20, 1445–1448. [Google Scholar] [CrossRef] [Green Version]
- Borssén, M.; Haider, Z.; Landfors, M.; Norén-Nyström, U.; Schmiegelow, K.; Åsberg, A.E.; Kanerva, J.; Madsen, H.O.; Marquart, H.; Heyman, M.; et al. DNA Methylation Adds Prognostic Value to Minimal Residual Disease Status in Pediatric T-Cell Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 2016, 63, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Roels, J.; Thénoz, M.; Szarzyńska, B.; Landfors, M.; De Coninck, S.; Demoen, L.; Provez, L.; Kuchmiy, A.; Strubbe, S.; Reunes, L.; et al. Aging of preleukemic thymocytes drives CpG island hypermethylation in T-cell acute lymphoblastic leukemia. Blood Cancer Discov. 2020, 1, 274–289. [Google Scholar] [CrossRef]
- Borssén, M.; Nordlund, J.; Haider, Z.; Landfors, M.; Larsson, P.; Kanerva, J.; Schmiegelow, K.; Flaegstad, T.; Jónsson, Ó.G.; Frost, B.M.; et al. DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia. Clin. Epigenetics 2018, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Haider, Z.; Larsson, P.; Landfors, M.; Köhn, L.; Schmiegelow, K.; Flægstad, T.; Kanerva, J.; Heyman, M.; Hultdin, M.; Degerman, S. An integrated transcriptome analysis in T-cell acute lymphoblastic leukemia links DNA methylation subgroups to dysregulated TAL1 and ANTP homeobox gene expression. Cancer Med. 2019, 8, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Maćkowska, N.; Drobna-śledzińska, M.; Witt, M.; Dawidowska, M. DNA Methylation in T-Cell Acute Lymphoblastic Leukemia: In Search for Clinical and Biological Meaning. Int. J. Mol. Sci. 2021, 22, 1388. [Google Scholar] [CrossRef] [PubMed]
- Tüfekçi, Ö.; Evim, M.S.; Güneş, A.M.; Celkan, T.; Karapinar, D.Y.; Kaya, Z.; Baysal, B.; Baytan, B.; Koçak, Ü.; Yilmaz, Ş.; et al. Assessment of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia: A Multicenter Study From Turkey. J. Pediatr. Hematol. Oncol. 2022, 44, E396–E402. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Jiao, Y.; Li, W.J.; Deng, G.R.; Cui, L.; Gao, C.; Zhao, X.X.; Wu, M.Y.; Jia, H.T. Hypermethylation of two CpG sites upstream of CASP8AP2 promoter influences gene expression and treatment outcome in childhood acute lymphoblastic leukemia. Leuk. Res. 2013, 37, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Wouters, B.J.; Delwel, R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood 2016, 127, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Ge, Z. Comparison Between Decitabine and Azacitidine for Patients With Acute Myeloid Leukemia and Higher-Risk Myelodysplastic Syndrome: A Systematic Review and Network Meta-Analysis. Front. Pharmacol. 2021, 12, 1919. [Google Scholar] [CrossRef]
- Andrade, A.F.; Borges, K.S.; Castro-Gamero, A.M.; Silveira, V.S.; Suazo, V.K.; Oliveira, J.C.; Moreno, D.A.; De Paula Queiroz, R.G.; Scrideli, C.A.; Tone, L.G. Zebularine induces chemosensitization to methotrexate and efficiently decreases AhR gene methylation in childhood acute lymphoblastic leukemia cells. Anticancer Drugs 2014, 25, 72–81. [Google Scholar] [CrossRef]
- Li, L.H.; Wang, J.; Ke, X.Y. Mechanism of A New DOT1L Inhibitor EPZ-5676 and Its Research Progress -Review. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2016, 24, 1909–1912. [Google Scholar] [CrossRef]
- Burke, M.J.; Lamba, J.K.; Pounds, S.; Cao, X.; Ghodke-Puranik, Y.; Lindgren, B.R.; Weigel, B.J.; Verneris, M.R.; Miller, J.S. A therapeutic trial of decitabine and vorinostat in combination with chemotherapy for relapsed/refractory acute lymphoblastic leukemia. Am. J. Hematol. 2014, 89, 889–895. [Google Scholar] [CrossRef]
- Benton, C.B.; Thomas, D.A.; Yang, H.; Ravandi, F.; Rytting, M.; O’Brien, S.; Franklin, A.R.; Borthakur, G.; Dara, S.; Kwari, M.; et al. Safety and clinical activity of 5-aza-2′-deoxycytidine (decitabine) with or without Hyper-CVAD in relapsed/refractory acute lymphocytic leukaemia. Br. J. Haematol. 2014, 167, 356–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, N.; Wetmore, C.; O’Brien, M.M.; Silverman, L.B.; Brown, P.; Cooper, T.M.; Thomson, B.; Blakemore, S.J.; Daigle, S.; Suttle, B.; et al. Final Report of Phase 1 Study of the DOT1L Inhibitor, Pinometostat (EPZ-5676), in Children with Relapsed or Refractory MLL-r Acute Leukemia. Blood 2016, 128, 2780. [Google Scholar] [CrossRef]
- Cui, J.K.; Xiao, Y.; You, Y.; Shi, W.; Li, Q.; Luo, Y.; Jiang, L.; Zhong, Z.D. Decitabine for relapsed acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2017, 37, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Triche, T.; Malvar, J.; Gaynon, P.; Sposto, R.; Yang, X.; Bittencourt, H.; Place, A.E.; Messinger, Y.; Fraser, C.; et al. A phase 1 study of azacitidine combined with chemotherapy in childhood leukemia: A report from the TACL consortium. Blood 2018, 131, 1145–1148. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.; Cunningham, T.; Stookey, S.; Tai, C.H.; Burkett, S.; Jailwala, P.; Stevenson, M.S.; Cam, M.C.; Wayne, A.S.; Pastan, I. 5-Azacytidine prevents relapse and produces long-term complete remissions in leukemia xenografts treated with Moxetumomab pasudotox. Proc. Natl. Acad. Sci. USA 2018, 115, E1867–E1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, M.J.; Kostadinov, R.; Sposto, R.; Gore, L.; Kelley, S.M.; Rabik, C.; Trepel, J.B.; Lee, M.J.; Yuno, A.; Lee, S.; et al. Decitabine and Vorinostat with Chemotherapy in Relapsed Pediatric Acute Lymphoblastic Leukemia: A TACL Pilot Study. Clin. Cancer Res. 2020, 26, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Koyama, M.; Kurumizaka, H. Structural diversity of the nucleosome. J. Biochem. 2018, 163, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Zink, L.M.; Hake, S.B. Histone variants: Nuclear function and disease. Curr. Opin. Genet. Dev. 2016, 37, 82–89. [Google Scholar] [CrossRef]
- Ding, D.; Nguyen, T.T.; Pang, M.Y.H.; Ishibashi, T. Primate-specific histone variants. Genome 2021, 64, 337–346. [Google Scholar] [CrossRef]
- Qiu, L.; Hu, X.; Jing, Q.; Zeng, X.; Chan, K.M.; Han, J. Mechanism of cancer: Oncohistones in action. J. Genet. Genom. 2018, 45, 227–236. [Google Scholar] [CrossRef]
- Janczar, S.; Janczar, K.; Pastorczak, A.; Harb, H.; Paige, A.J.W.; Zalewska-Szewczyk, B.; Danilewicz, M.; Mlynarski, W. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia. Cancers 2017, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janczar, K.; Janczar, S.; Pastorczak, A.; Mycko, K.; Paige, A.J.W.; Zalewska-Szewczyk, B.; Wagrowska-Danilewicz, M.; Danilewicz, M.; Mlynarski, W. Preserved global histone H4 acetylation linked to ETV6-RUNX1 fusion and PAX5 deletions is associated with favorable outcome in pediatric B-cell progenitor acute lymphoblastic leukemia. Leuk. Res. 2015, 39, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Thanh Nha Uyen, L.; Amano, Y.; Al-Kzayer, L.F.Y.; Kubota, N.; Kobayashi, J.; Nakazawa, Y.; Koike, K.; Sakashita, K. PCDH17 functions as a common tumor suppressor gene in acute leukemia and its transcriptional downregulation is mediated primarily by aberrant histone acetylation, not DNA methylation. Int. J. Hematol. 2020, 111, 451–462. [Google Scholar] [CrossRef]
- Zhang, C.; Zhong, J.F.; Stucky, A.; Chen, X.L.; Press, M.F.; Zhang, X. Histone acetylation: Novel target for the treatment of acute lymphoblastic leukemia. Clin. Epigenetics 2015, 7, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attar, N.; Kurdistani, S.K. Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a026534. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Zhang, R.D.; Liu, S.G.; Zhao, X.X.; Cui, L.; Yue, Z.X.; Li, W.J.; Chen, Z.P.; Li, Z.G.; Rao, Q.; et al. Low CREBBP expression is associated with adverse long-term outcomes in paediatric acute lymphoblastic leukaemia. Eur. J. Haematol. 2017, 99, 150–159. [Google Scholar] [CrossRef]
- Gao, C.; Liu, S.G.; Lu, W.T.; Yue, Z.X.; Zhao, X.X.; Xing, T.Y.; Chen, Z.P.; Zheng, H.Y.; Li, Z.G. Downregulating CREBBP inhibits proliferation and cell cycle progression and induces daunorubicin resistance in leukemia cells. Mol. Med. Rep. 2020, 22, 2905–2915. [Google Scholar] [CrossRef]
- Ma, X.; Edmonson, M.; Yergeau, D.; Muzny, D.M.; Hampton, O.A.; Rusch, M.; Song, G.; Easton, J.; Harvey, R.C.; Wheeler, D.A.; et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat. Commun. 2015, 6, 6604. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect. Med. 2016, 6, a026831. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhao, K.; Yao, C.; Kahwash, S.; Tang, Y.; Zhang, G.; Patterson, K.; Wang, Q.E.; Zhao, W. Givinostat, a type II histone deacetylase inhibitor, induces potent caspase-dependent apoptosis in human lymphoblastic leukemia. Genes Cancer 2016, 7, 292–300. [Google Scholar] [CrossRef]
- Savino, A.M.; Sarno, J.; Trentin, L.; Vieri, M.; Fazio, G.; Bardini, M.; Bugarin, C.; Fossati, G.; Davis, K.L.; Gaipa, G.; et al. The histone deacetylase inhibitor givinostat (ITF2357) exhibits potent anti-tumor activity against CRLF2-rearranged BCP-ALL. Leukemia 2017, 31, 2365–2375. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Qiu, Q.; Tang, M.; Wang, F.; Yi, Y.; Yi, D.; Yang, Z.; Zhu, Z.; Zheng, S.; Yang, J.; et al. Purinostat Mesylate Is a Uniquely Potent and Selective Inhibitor of HDACs for the Treatment of BCR-ABL-Induced B-Cell Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2019, 25, 7527–7539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido Castro, P.; Van Roon, E.H.J.; Pinhanços, S.S.; Trentin, L.; Schneider, P.; Kerstjens, M.; Te Kronnie, G.; Heidenreich, O.; Pieters, R.; Stam, R.W. The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia 2018, 32, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Karsa, M.; Ronca, E.; Bongers, A.; Kosciolek, A.; El-Ayoubi, A.; Revalde, J.L.; Seneviratne, J.A.; Cheung, B.B.; Cheung, L.C.; et al. The Combination of Curaxin CBL0137 and Histone Deacetylase Inhibitor Panobinostat Delays KMT2A-Rearranged Leukemia Progression. Front. Oncol. 2022, 12, 863329. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, M.N.; Ford, J.; Cheung, L.C.; Heng, J.; Singh, S.; Wells, J.; Failes, T.W.; Arndt, G.M.; Smithers, N.; Prinjha, R.K.; et al. Systematic chemical and molecular profiling of MLL-rearranged infant acute lymphoblastic leukemia reveals efficacy of romidepsin. Leukemia 2017, 31, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, L.C.; Cruickshank, M.N.; Hughes, A.M.; Singh, S.; Chua, G.A.; Ford, J.; Ferrari, E.; Oommen, J.; Malinge, S.; Lock, R.B.; et al. Romidepsin enhances the efficacy of cytarabine in vivo, revealing histone deacetylase inhibition as a promising therapeutic strategy for KMT2A-rearranged infant acute lymphoblastic leukemia. Haematologica 2019, 104, e300–e303. [Google Scholar] [CrossRef] [Green Version]
- Mei, M.; Zhang, R.; Zhou, Z.W.; Ying, Z.; Wang, J.; Zhang, H.; Zheng, H.; Bao, S. PRMT5-mediated H4R3sme2 Confers Cell Differentiation in Pediatric B-cell Precursor Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2019, 25, 2633–2643. [Google Scholar] [CrossRef] [Green Version]
- El Chaer, F.; Keng, M.; Ballen, K.K. MLL-Rearranged Acute Lymphoblastic Leukemia. Curr. Hematol. Malig. Rep. 2020, 15, 83–89. [Google Scholar] [CrossRef]
- Godfrey, L.; Crump, N.T.; Thorne, R.; Lau, I.J.; Repapi, E.; Dimou, D.; Smith, A.L.; Harman, J.R.; Telenius, J.M.; Oudelaar, A.M.; et al. DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation. Nat. Commun. 2019, 10, 2803. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Ge, S. Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias. J. Hematol. Oncol. 2022, 15, 35. [Google Scholar] [CrossRef]
- Gutierrez-Camino, A.; Garcia-Obregon, S.; Lopez-Lopez, E.; Astigarraga, I.; Garcia-Orad, A. miRNA deregulation in childhood acute lymphoblastic leukemia: A systematic review. Epigenomics 2020, 12, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Heikkinen, L.; Wang, C.; Yang, Y.; Sun, H.; Wong, G. Trends in the development of miRNA bioinformatics tools. Brief. Bioinform. 2019, 20, 1836–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjbar, R.; Karimian, A.; Aghaie Fard, A.; Tourani, M.; Majidinia, M.; Jadidi-Niaragh, F.; Yousefi, B. The importance of miRNAs and epigenetics in acute lymphoblastic leukemia prognosis. J. Cell. Physiol. 2019, 234, 3216–3230. [Google Scholar] [CrossRef] [PubMed]
- Shafik, R.E.; Abd El Wahab, N.; Senoun, S.A.; Ebeid, E.; El Taweel, M.A. Expression of Micro-RNA 128 and Let-7b in Pediatric Acute Lymphoblastic Leukemia Cases. Asian Pac. J. Cancer Prev. 2018, 19, 2263–2267. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, P.; Singh, M.; Singh, A.; Sharma, P.; Trehan, A.; Varma, N. Epigenetic analysis reveals significant differential expression of miR-378C and miR-128-2-5p in a cohort of relapsed pediatric B-acute lymphoblastic leukemia cases. Int. J. Lab. Hematol. 2021, 43, 1016–1023. [Google Scholar] [CrossRef]
- Shafik, R.E.; El Wahab, N.A.; Mokhtar, M.M.; Taweel, M.A.E.; Ebeid, E. Expression of microRNA-181a and microRNA-196b in Egyptian Pediatric acute Lymphoblastic Leukemia. Asian Pac. J. Cancer Prev. 2020, 21, 3429–3434. [Google Scholar] [CrossRef]
- Lyu, X.; Li, J.; Yun, X.; Huang, R.; Deng, X.; Wang, Y.; Chen, Y.; Xiao, G. miR-181a-5p, an inducer of Wnt-signaling, facilitates cell proliferation in acute lymphoblastic leukemia. Oncol. Rep. 2017, 37, 1469–1476. [Google Scholar] [CrossRef] [Green Version]
- Egyed, B.; Kutszegi, N.; Sági, J.C.; Gézsi, A.; Rzepiel, A.; Visnovitz, T.; Lorincz, P.; Müller, J.; Zombori, M.; Szalai, C.; et al. MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J. Transl. Med. 2020, 18, 250. [Google Scholar] [CrossRef]
- Egyed, B.; Horváth, A.; Semsei, Á.F.; Szalai, C.; Müller, J.; Erdélyi, D.J.; Kovács, G.T. Co-Detection of VEGF-A and Its Regulator, microRNA-181a, May Indicate Central Nervous System Involvement in Pediatric Leukemia. Pathol. Oncol. Res. 2022, 28, 1610096. [Google Scholar] [CrossRef]
- Durmaz, B.; Bagca, B.G.; Cogulu, O.; Susluer, S.Y.; Alpay, A.; Aksoylar, S.; Gunduz, C. Antileukemic Effects of Anti-miR-146a, Anti-miR-155, Anti-miR-181a, and Prednisolone on Childhood Acute Lymphoblastic Leukemia. Biomed. Res. Int. 2021, 2021, 3207328. [Google Scholar] [CrossRef]
- El-Khazragy, N.; Noshi, M.A.; Abdel-Malak, C.; Zahran, R.F.; Swellam, M. miRNA-155 and miRNA-181a as prognostic biomarkers for pediatric acute lymphoblastic leukemia. J. Cell. Biochem. 2019, 120, 6315–6321. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Li, Y.; Wang, L.N.; Zhang, X.L.; Luo, J.S.; Peng, C.J.; Tang, W.Y.; Huang, L.B.; Tang, Y.L.; Luo, X.Q. Up-regulated miR-155 is associated with poor prognosis in childhood acute lymphoblastic leukemia and promotes cell proliferation targeting ZNF238. Hematology 2021, 26, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.; Shahid, W.; Shaheen, J.; Akhtar, M.W.; Sadaf, S. Circulating miR-146a expression as a non-invasive predictive biomarker for acute lymphoblastic leukemia. Sci. Rep. 2021, 11, 22783. [Google Scholar] [CrossRef] [PubMed]
- Boldrin, E.; Gaffo, E.; Niedermayer, A.; Boer, J.M.; Zimmermann, M.; Weichenhan, D.; Claus, R.; Münch, V.; Sun, Q.; Enzenmüller, S.; et al. MicroRNA-497/195 is tumor suppressive and cooperates with CDKN2A/B in pediatric acute lymphoblastic leukemia. Blood 2021, 138, 1953–1965. [Google Scholar] [CrossRef] [PubMed]
- Nemes, K.; Csóka, M.; Nagy, N.; Márk, Á.; Váradi, Z.; Dankó, T.; Kovács, G.; Kopper, L.; Sebestyén, A. Expression of certain leukemia/lymphoma related microRNAs and its correlation with prognosis in childhood acute lymphoblastic leukemia. Pathol. Oncol. Res. 2015, 21, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, T.; Nie, L.; Zou, Y.; Zhang, Q. MicroRNA-223 decreases cell proliferation, migration, invasion, and enhances cell apoptosis in childhood acute lymphoblastic leukemia via targeting Forkhead box O 1. Biosci. Rep. 2020, 40, BSR20200485. [Google Scholar] [CrossRef]
- El-Khazragy, N.; Elshimy, A.A.; Hassan, S.S.; Matbouly, S.; Safwat, G.; Zannoun, M.; Riad, R.A. Dysregulation of miR-125b predicts poor response to therapy in pediatric acute lymphoblastic leukemia. J. Cell. Biochem. 2018, 120, 7428–7438. [Google Scholar] [CrossRef]
- Piatopoulou, D.; Avgeris, M.; Marmarinos, A.; Xagorari, M.; Baka, M.; Doganis, D.; Kossiva, L.; Scorilas, A.; Gourgiotis, D. miR-125b predicts childhood acute lymphoblastic leukaemia poor response to BFM chemotherapy treatment. Br. J. Cancer 2017, 117, 801–812. [Google Scholar] [CrossRef]
- Yadav, M.; Liu, J.; Song, F.; Mo, X.; Jacob, N.R.; Xu-Welliver, M.; Chakravarti, A.; Jacob, N.K. Utility of Circulating MicroRNA-150 for Rapid Evaluation of Bone Marrow Depletion After Radiation and Efficiency of Bone Marrow Reconstitution. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 964–974. [Google Scholar] [CrossRef]
- Zamani, A.; Fattahi Dolatabadi, N.; Houshmand, M.; Nabavizadeh, N. miR-324-3p and miR-508-5p expression levels could serve as potential diagnostic and multidrug-resistant biomarkers in childhood acute lymphoblastic leukemia. Leuk. Res. 2021, 109, 106643. [Google Scholar] [CrossRef]
- Liang, Y.N.; Tang, Y.L.; Ke, Z.Y.; Chen, Y.Q.; Luo, X.Q.; Zhang, H.; Huang, L. Bin MiR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor. J. Steroid Biochem. Mol. Biol. 2017, 172, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Liu, L.; Zheng, M.; Ye, Z.; Chen, R.; Lan, X.; Lan, X. MiR-503 Contributes to Glucocorticoid Sensitivity in Acute Lymphoblastic Leukaemia via Targeting WNT3A (miR-503/glucocorticoids/sensitivity/acute lymphoblastic leukaemia). Folia Biol. 2021, 67, 199–207. [Google Scholar]
- Agirre, X.; Vilas-Zornoza, A.; Jiménez-Velasco, A.; Martin-Subero, J.I.; Cordeu, L.; Gárate, L.; José-Eneriz, E.S.; Abizanda, G.; Rodríguez-Otero, P.; Fortes, P.; et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009, 69, 4443–4453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, S.; Lu, J.; Sun, M.; Li, Z.; Zhang, H.; Neilly, M.B.; Wang, Y.; Qian, Z.; Jin, J.; Zhang, Y.; et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2007, 104, 19971–19976. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Wang, N.; Pan, J.; Hu, S.; Zhao, W.; He, H.; Wang, Y.; Gu, G.; Chai, Y. Clinical significance of microRNA-34b expression in pediatric acute leukemia. Mol. Med. Rep. 2016, 13, 2777–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaber, R.; Gurgul, A.; Tabarkiewicz, J.; Wróbel, G.; Szmatoła, T.; Jasielczuk, I.; Haus, O.; Lejman, M.; Rybka, B.; Ryczan-Krawczyk, R.; et al. MicroRNA gene methylation landscape in pediatric B-cell precursor acute lymphoblastic leukemia. Adv. Clin. Exp. Med. 2022, 31, 293–305. [Google Scholar] [CrossRef]
- Faber, J.; Gregory, R.I.; Armstrong, S.A. Linking miRNA regulation to BCR-ABL expression: The next dimension. Cancer Cell 2008, 13, 467–469. [Google Scholar] [CrossRef] [PubMed]
Author (Year)/National Clinical Number (Start Year) Additional Information | Hypomethylating Drug Other Drugs | Type of Leukemia | Age of Patients (Number of Patients)/Name of Cell Lines | Results | Grade 3 or 4 Toxic Effects |
---|---|---|---|---|---|
Andrade et al. (2014) [28] | Zebularine (ZB) alone or with methotrexate and vincristine | T-ALL (Jurkat cell line) and BCP-ALL (ReH cell line) | Childhood ALL cell lines (Jurkat and ReH cell lines) | In both cell lines: - ZB decreased clonogenic capacity and induced apoptosis; - combination of ZB with methotrexate resulted in a strong synergistic effect; - combination of ZB with vincristine led to an antagonistic effect. | - |
Burke et al. (2014) [30] | Decitabine, vorinostat + chemotherapy | relapsed/refractory ALL 1/13 (8%) patient had T-ALL; 12/13 (92%) patients had B-ALL | 0–60 years (n = 13) 9/13 (69%) patients were children | A significant genome-wide hypomethylation was observed. Decitabine with vorinostat followed by reinduction chemotherapy showed clinical benefit in relapsed patients with ALL and was tolerable. | infection with neutropenia, fever/ neutropenia |
Benton et al. (2014) [31] | Decitabine alone or with Hyper-CVAD (fractionated cyclophosphamide, vincristine, doxorubicin and dexamethasone alternating with high-dose methotrexate and cytarabine) | 32/39 (82%) patients had B-ALL; 7/39 (18%) patients had T-ALL | 4–67 years (n = 39) | Some patients who had previously progressed on Hyper-CVAD alone achieved a complete response when decitabine was added. Decitabine alone or given with Hyper-CVAD is safe and effective in patients with advanced ALL. | non-life-threatening hepatotoxicity, hyperglycemia |
Shukla et al. (2016) [32] Final Report of Phase 1 Study | Pinometostat (EPZ-5676) | relapsed/refractory MLL-rearranged acute leukemia | 3 months-18 years 9/18 (50%) patients had ALL, rest of the patients had AML or mixed phenotype acute leukemia) | Pinometostat was found safe. 40% of patients showed transient reductions in peripheral or bone marrow blasts, however no objective responses were observed. | - |
Cui et al. (2017) [33] | Retrospective analysis of relapsed ALL after allogeneic hematopoietic stem cell transplant (alloSCT) who received decitabine therapy | 3/12 (25%) patients had T-ALL; 9/12 (75%) patients had B-ALL | 12–43 years (n = 12) 3/12 (25%) of patients were children) | 10/12 (83%) patients achieved complete remission. 1/12 (8%) achieved a partial remission. 1/12 (8%) had no response. | no side effects were observed |
Sun et al. (2018) [34] Phase 1 study | Azicitidine + chemotherapy | not specified | Children—age not specified (n = 2) | Neither of the 2 patients with ALL responded. | not specified |
Müller et al. (2018) [35] | Azacitidine, Moxetumomab pasudotox | BCP-ALL | NSG mice bearing KOPN-8 or Reh cells | Resistance to Moxe was prevented through a combination with azacitidine. Survival greatly improved in both KOPN-8 and Reh models. | - |
Burke et al. (2020) [36] | Decitabine, Vorinostat | B-ALL | 1–21 years (n = 23) | 9/23 (39%) subjects achieved a complete response. 5/23 (22%) subjects had stable disease. 9/23 subjects were not evaluable for response due to treatment-related toxicities. | hypokalemia, anemia, febrile neutropenia, hypophosphatemia, leukopenia, hyperbilirubinemia, thrombocytopenia, neutropenia, hypocalcemia, infections |
Author (Year) | MiRNA | Upregulated/ Downregulated | Usefulness |
---|---|---|---|
Shafik et al. (2018) [64] Bhatia et al. (2021) [65] | miR-128 | Upregulated | Biomarker for early detection of relapse ALL. |
Shafik et al. (2020) [66] Lyu et al. (2017) [67] Egyed et al. (2020) [68] Egyed et al. (2022) [69] Durmaz et al. (2021) [70] | miR-181a | Upregulated | Inhibition of miR-181a seems to be a therapeutic target; detecting miR-181a in CSF in future can be used as a marker of CNS involvement; overexpression in bone marrow cells is associated with a higher risk of recurrence and poor response to treatment; useful in monitoring it, anti-miR-181a may be useful in therapies for childhood ALL. |
El-Khazragy et al. (2019) [71] Liang et al. (2021) [72] Durmaz et al. (2021) [70] | miR-155 | Upregulated | Has potential value as a biomarker for predicting the prognosis and marker of successful therapy; anti-miR-155 may be useful in therapies for childhood ALL. |
Shahid et al. (2021) [73] Durmaz et al. (2021) [70] | miR-146a | Upregulated | Can be used to evaluate the response to treatment, anti-miR-146a may be useful in therapies for childhood ALL. |
Boldrin E et al. [74] | miR-497 and miR-195 | Downregulated | Lower expression is associated with early relapse and shorter relapse-free survival. |
Nemes et al. (2015) [75] Li et al. (2020) [76] | miR-223 | Downregulated | Can be used as a predictor of ALL relapse and in the monitoring of the treatment; potential therapeutic target. |
El-Khazragy et al. (2018) [77] Piatopoulou et al. (2017) [78] | miR-125b | Downregulated | Can be used for monitoring response to BFM therapy. |
Yadav et al. (2022) [79] | miR150 | - | Expression may be helpful in the estimate the efficiency of blood marrow ablation and reconstitution of marrow after transplantation. |
Zamani et al. (2021) [80] | miR-324-3p and miR-508-5p | Downregulated | Underexpression of these miRNAs suggest multidrug-resistant ALL. |
Liang et al. (2017) [81] | miR-124 | - | Expression of miR-124 is significantly higher in children with glucocorticoids insensitive ALL. |
Tian et al. (2021) [82] | miR-503 | - | Overexpression promotes sensitized for Dexamethasone. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drożak, P.; Bryliński, Ł.; Zawitkowska, J. A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia. Cancers 2022, 14, 5384. https://doi.org/10.3390/cancers14215384
Drożak P, Bryliński Ł, Zawitkowska J. A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia. Cancers. 2022; 14(21):5384. https://doi.org/10.3390/cancers14215384
Chicago/Turabian StyleDrożak, Paulina, Łukasz Bryliński, and Joanna Zawitkowska. 2022. "A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia" Cancers 14, no. 21: 5384. https://doi.org/10.3390/cancers14215384
APA StyleDrożak, P., Bryliński, Ł., & Zawitkowska, J. (2022). A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia. Cancers, 14(21), 5384. https://doi.org/10.3390/cancers14215384