Human Papillomavirus-Related Non-Metastatic Oropharyngeal Carcinoma: Current Local Treatment Options and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Epidemiology
1.2. Biology of HPV+ OPSCC
1.3. A Unique Staging System
2. Prognostic Factors and Risk Subgroup Identification
3. Current Treatment Options in Non-Metastatic HPV+ OPSCC by Stage
3.1. Early-Stage (T1-2), Node Negative Disease
3.1.1. Surgery
3.1.2. Radiation Therapy
3.2. Early-Stage (T1-2), Single Node (≤3 cm) Positive Disease
3.2.1. Radiation Therapy as a Single Modality
3.2.2. Primary CRT
3.2.3. Surgery
3.2.4. Adjuvant RT with or without CHT
3.3. Locoregionally Advanced Disease (T3-4, Single Positive LN >3 cm, Multiple Positive LNs)
3.3.1. Concurrent CRT
3.3.2. Concurrent CRT vs. Surgery + Adjuvant CRT
3.3.3. The Choice of a Sensitizing Agent with CRT
4. Treatment Deintensification
4.1. Minimally-Invasive Surgery
4.2. Dose Reduction of Adjuvant RT
4.3. Dose Reduction of Primary RT
4.4. Omission of Concurrent CHT
4.5. Dose Reduction of Chemosensitizing Agent with RT
4.6. Substitution of Concurrent Cisplatin with Cetuximab
4.7. Induction CHT Followed by Dose-Reduced RT
4.8. Current Practices in Deintensification
Risk Stratification for Treatment Deintensification following TORS According to the Resection Margin Status
5. Ongoing Clinical Trials
6. Future Perspectives
6.1. Novel Biomarkers
6.1.1. Cell-Free HPV DNA
6.1.2. PIK3CA Mutation
6.2. Increased Radiosensitivity
6.3. Proton-Based RT
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mehta, V.; Yu, G.P.; Schantz, S.P. Population-based analysis of oral and oropharyngeal carcinoma: Changing trends of histopathologic differentiation, survival and patient demographics. Laryngoscope 2010, 120, 2203–2212. [Google Scholar] [CrossRef] [PubMed]
- Faraji, F.; Rettig, E.M.; Tsai, H.L.; El Asmar, M.; Fung, N.; Eisele, D.W.; Fakhry, C. The prevalence of human papillomavirus in oropharyngeal cancer is increasing regardless of sex or race, and the influence of sex and race on survival is modified by human papillomavirus tumor status. Cancer 2019, 125, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.; Jones, O.S.; Breeze, C.E.; Gilson, R. Gender-neutral HPV vaccination in the UK, rising male oropharyngeal cancer rates, and lack of HPV awareness. Lancet Infect. Dis. 2019, 19, 131–132. [Google Scholar] [CrossRef] [Green Version]
- Carlander, A.F.; Jakobsen, K.K.; Bendtsen, S.K.; Garset-Zamani, M.; Lynggaard, C.D.; Jensen, J.S.; Grønhøj, C.; Buchwald, C.V. A Contemporary Systematic Review on Repartition of HPV-Positivity in Oropharyngeal Cancer Worldwide. Viruses 2021, 13, 1326. [Google Scholar] [CrossRef] [PubMed]
- Wittekindt, C.; Wagner, S.; Bushnak, A.; Prigge, E.S.; von Knebel Doeberitz, M.; Würdemann, N.; Bernhardt, K.; Pons-Kühnemann, J.; Maulbecker-Armstrong, C.; Klussmann, J.P. Increasing Incidence rates of Oropharyngeal Squamous Cell Carcinoma in Germany and Significance of Disease Burden Attributed to Human Papillomavirus. Cancer Prev. Res. 2019, 12, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Rietbergen, M.M.; van Bokhoven, A.A.J.D.; Lissenberg-Witte, B.I.; Heideman, D.A.M.; Leemans, C.R.; Brakenhoff, R.H.; Bloemena, E. Epidemiologic associations of HPV-positive oropharyngeal cancer and (pre)cancerous cervical lesions. Int. J. Cancer 2018, 143, 283–288. [Google Scholar] [CrossRef]
- Zamani, M.; Grønhøj, C.; Jensen, D.H.; Carlander, A.F.; Agander, T.; Kiss, K.; Olsen, C.; Baandrup, L.; Nielsen, F.C.; Andersen, E.; et al. The current epidemic of HPV-associated oropharyngeal cancer: An 18-year Danish population-based study with 2169 patients. Eur. J. Cancer 2020, 134, 52–59. [Google Scholar] [CrossRef]
- Haeggblom, L.; Attoff, T.; Jingru, Y.; Vlastos, A.; Mirzae, L.; Ährlund-Richter, A.; Munck-Wikland, E.; Marklund, L.; Hammarstedt-Nordenvall, L.; Ye, W.; et al. Changes in incidence and prevalence of human papillomavirus in tonsillar and base of tongue cancer during 2000–2016 in the Stockholm region and Sweden. Head Neck 2019, 41, 1583–1590. [Google Scholar] [CrossRef]
- Donà, M.G.; Rollo, F.; Pichi, B.; Spriano, G.; Moretto, S.; Covello, R.; Pellini, R.; Benevolo, M. Evolving profile of HPV-driven oropharyngeal squamous cell carcinoma in a national cancer institute in Italy: A 10-year retrospective study. Microorganisms 2020, 8, 1498. [Google Scholar] [CrossRef]
- Girardi, F.M.; Wagner, V.P.; Martins, M.D.; Abentroth, A.L.; Hauth, L.A. Prevalence of p16 expression in oropharyngeal squamous cell carcinoma in southern Brazil. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 681–691. [Google Scholar] [CrossRef]
- Argirion, I.; Zarins, K.R.; McHugh, J.; Cantley, R.L.; Teeramatwanich, W.; Laohasiriwong, S.; Kasemsiri, P.; Naruikon, J.; Srimanta, P.; Chinn, S.B.; et al. Increasing prevalence of HPV in oropharyngeal carcinoma suggests adaptation of p16 screening in Southeast Asia. J. Clin. Virol. 2020, 132, 104637. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, G.; Gross, N.D.; Pai, S.I.; Haddad, R.; Anderson, K.S.; Rajan, S.; Gerber, J.; Gillison, M.L.; Posner, M.R. Oral human papillomavirus (HPV) infection in HPV-positive patients with oropharyngeal cancer and their partners. J. Clin. Oncol. 2014, 32, 2408–2415. [Google Scholar] [CrossRef] [PubMed]
- Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J. Clin. Oncol. 2015, 33, 3235–3242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahal, B.A.; Catalano, P.J.; Haddad, R.I.; Hanna, G.J.; Kass, J.I.; Schoenfeld, J.D.; Tishler, R.B.; Margalit, D.N. Incidence and demographic burden of HPV-associated oropharyngeal head and neck cancers in the United States. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1660–1667. [Google Scholar] [CrossRef] [Green Version]
- Balachandra, S.; Kusin, S.B.; Lee, R.; Blackwell, J.M.; Tiro, J.A.; Cowell, L.G.; Chiang, C.M.; Wu, S.Y.; Varma, S.; Rivera, E.L.; et al. Blood-based biomarkers of human papillomavirus-associated cancers: A systematic review and meta-analysis. Cancer 2021, 127, 850–864. [Google Scholar] [CrossRef]
- Fakhry, C.; Lacchetti, C.; Perez-Ordonez, B. Human Papillomavirus Testing in Head and Neck Carcinomas: ASCO Clinical Practice Guideline Endorsement Summary of the CAP Guideline. J. Oncol. Pract. 2018, 14, 613–617. [Google Scholar] [CrossRef]
- Pannone, G.; Rodolico, V.; Santoro, A.; Lo Muzio, L.; Franco, R.; Botti, G.; Aquino, G.; Pedicillo, M.C.; Cagiano, S.; Campisi, G.; et al. Evaluation of a combined triple method to detect causative HPV in oral and oropharyngeal squamous cell carcinomas: p16 Immunohistochemistry, Consensus PCR HPV-DNA, and In Situ Hybridization. Infect. Agents Cancer 2012, 7, 4. [Google Scholar] [CrossRef]
- Fonmarty, D.; Cherrière, S.; Fleury, H.; Eimer, S.; Majoufre-Lefebvre, C.; Castetbon, V.; de Monès, E. Study of the concordance between p16 immunohistochemistry and HPV-PCR genotyping for the viral diagnosis of oropharyngeal squamous cell carcinoma. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2015, 3, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Edge, S.; Greene, F. AJCC Cancer Staging Manual; Springer: New York, NY, USA, 2017. [Google Scholar]
- O’Sullivan, B.; Huang, S.H.; Su, J.; Garden, A.S.; Sturgis, E.M.; Dahlstrom, K.; Lee, N.; Riaz, N.; Pei, X.; Koyfman, S.A.; et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): A multicentre cohort study. Lancet Oncol. 2016, 17, 440–451. [Google Scholar] [CrossRef]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef]
- Samuels, S.E.; Vainshtein, J.; Spector, M.E.; Ibrahim, M.; McHugh, J.B.; Tao, Y.; Schipper, M.; Worden, F.; Eisbruch, A. Impact of retropharyngeal adenopathy on distant control and survival in HPV-related oropharyngeal cancer treated with chemoradiotherapy. Radiother. Oncol. 2015, 116, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaty, B.T.; Moon, D.H.; Shen, C.J.; Amdur, R.J.; Weiss, J.; Grilley-Olson, J.; Patel, S.; Zanation, A.; Hackman, T.G.; Thorp, B.; et al. PIK3CA Mutation in HPV-Associated OPSCC Patients Receiving Deintensified Chemoradiation. J. Natl. Cancer Inst. 2020, 112, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Price, J.M.; Mistry, H.B.; Betts, G.; Cheadle, E.J.; Dixon, L.; Garcez, K.; Illidge, T.; Iyizoba-Ebozue, Z.; Lee, L.W.; McPartlin, A.; et al. Pretreatment Lymphocyte Count Predicts Benefit from Concurrent Chemotherapy with Radiotherapy in Oropharyngeal Cancer. J. Clin. Oncol. 2022, 40, 2203–2212. [Google Scholar] [CrossRef] [PubMed]
- Borsetto, D.; Tomasoni, M.; Payne, K.; Polesel, J.; Deganello, A.; Bossi, P.; Tysome, J.R.; Masterson, L.; Tirelli, G.; Tofanelli, M.; et al. Prognostic Significance of CD4+ and CD8+ Tumor-Infiltrating Lymphocytes in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. Cancers 2021, 4, 781. [Google Scholar] [CrossRef] [PubMed]
- Vokes, E.E.; Agrawal, N.; Seiwert, T.Y. HPV-Associated Head and Neck Cancer. J. Natl. Cancer Inst. 2015, 107, djv344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 2011, 29, 4294–4301. [Google Scholar] [CrossRef]
- Rischin, D.; Young, R.J.; Fisher, R.; Fox, S.B.; Le, Q.T.; Peters, L.J.; Solomon, B.; Choi, J.; O‘Sullivan, B.; Kenny, L.M.; et al. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J. Clin. Oncol. 2010, 28, 4142–4148. [Google Scholar] [CrossRef] [Green Version]
- NCCN Practice Guidelines Version 2.2022. Cancer of the Oropharynx (p16-HPV Positive). Available online: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (accessed on 5 September 2022).
- Miyamoto, S.; Nakayama, M.; Kano, K.; Tsutsumi, S.; Momiyama, K.; Matsuki, T.; Yamashita, T. Novel color fluorescence imaging for sentinel lymph node detection in oral and oropharyngeal cancer. Asia Pac. J. Clin. Oncol. [CrossRef]
- Ferris, R.L.; Flamand, Y.; Weinstein, G.S.; Li, S.; Quon, H.; Mehra, R.; Garcia, J.J.; Chung, C.H.; Gillison, M.L.; Duvvuri, U.; et al. Phase II Randomized Trial of Transoral Surgery and Low-Dose Intensity Modulated Radiation Therapy in Resectable p16+ Locally Advanced Oropharynx Cancer: An ECOG-ACRIN Cancer Research Group Trial (E3311). J. Clin. Oncol. 2022, 40, 138–149. [Google Scholar] [CrossRef]
- Wilkie, M.D.; Upile, N.S.; Lau, A.S.; Williams, S.P.; Sheard, J.; Helliwell, T.R.; Robinson, M.; Rodrigues, J.; Beemireddy, K.; Lewis-Jones, H.; et al. Transoral laser microsurgery for oropharyngeal squamous cell carcinoma: A paradigm shift in therapeutic approach. Head Neck 2016, 38, 1263–1270. [Google Scholar] [CrossRef]
- Lowe, V.J.; Duan, F.; Subramaniam, R.M.; Sicks, J.D.; Romanoff, J.; Bartel, T.; Yu, J.Q.M.; Nussenbaum, B.; Richmon, J.; Arnold, C.D.; et al. Multicenter Trial of [18F]fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging of Head and Neck Cancer and Negative Predictive Value and Surgical Impact in the N0 Neck: Results from ACRIN 6685. J. Clin. Oncol. 2019, 37, 1704–1712. [Google Scholar] [CrossRef]
- Saito, Y.; Hayashi, R.; Iida, Y.; Mizumachi, T.; Fujii, T.; Matsumoto, F.; Beppu, T.; Yoshida, M.; Shinomiya, H.; Kamiyama, R.; et al. Optimization of therapeutic strategy for p16-positive oropharyngeal squamous cell carcinoma: Multi-institutional observational study based on the national Head and Neck Cancer Registry of Japan. Cancer 2020, 126, 4177–4187. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.R.; Garg, M.K.; Lawson, J.; McDonald, M.W.; Quon, H.; Ridge, J.A.; Saba, N.; Salama, J.K.; Smith, R.V.; Yom, S.S.; et al. ACR Appropriateness Criteria® ipsilateral radiation for squamous cell carcinoma of the tonsil. Head Neck 2012, 34, 613–616. [Google Scholar] [CrossRef]
- Debenham, B.J.; Banerjee, R.; Warkentin, H.; Ghosh, S.; Scrimger, R.; Jha, N.; Parliament, M. Survival Outcomes and Patterns of Recurrence in Patients with Stage III or IV Oropharyngeal Cancer Treated with Primary Surgery or Radiotherapy. Cureus 2016, 8, e713. [Google Scholar] [CrossRef] [PubMed]
- Gutiontov, S.; Leeman, J.; Lok, B.; Romesser, P.; Riaz, N.; Tsai, C.J.; Lee, N.; McBride, S. Cervical nodal level V can safely be omitted in the treatment of locally advanced oropharyngeal squamous cell carcinoma with definitive IMRT. Oral Oncol. 2016, 58, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavroidis, P.; Price, A.; Fried, D.; Kostich, M.; Amdur, R.; Mendenhall, W.; Liu, C.; Das, S.; Marks, L.B.; Chera, B. Dose-volume toxicity modeling for de-intensified chemo-radiation therapy for HPV-positive oropharynx cancer. Radiother. Oncol. 2017, 124, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Garden, A.S.; Fuller, C.D.; Rosenthal, D.I.; William, W.N., Jr.; Gunn, G.B.; Beadle, B.M.; Johnson, F.M.; Morrison, W.H.; Phan, J.; Frank, S.J.; et al. Radiation therapy (with or without neck surgery) for phenotypic human papillomavirus-associated oropharyngeal cancer. Cancer 2016, 122, 1702–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, S.F.; Liu, F.F.; O’Sullivan, B.; Shi, W.; Rohland, S.; Griffiths, R.; Groome, P. Did the addition of concurrent chemotherapy to conventional radiotherapy improve survival for patients with HPV+ ve and HPV− ve Oropharynx cancer? A population-based study. Br. J. Cancer 2017, 117, 1105–1112. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.F.; Irish, J.C.; Gregg, R.W.; Groome, P.A.; Rohland, S. Adherence to and uptake of clinical practice guidelines: Lessons learned from a clinical practice guideline on chemotherapy concomitant with radiotherapy in head-and-neck cancer. Curr. Oncol. 2015, 22, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Badhey, A.K.; Olson, A.; Kadakia, S.; Russo, J.; Ting, P.; Khalid, M.; Yao, M.; Teng, M.S.; Genden, E.M.; Miles, B.A.; et al. Application of the Eighth Edition American Joint Committee on Cancer Staging System for HPV-Related Oropharyngeal Cancer Treated with Transoral Robotic Surgery. Laryngoscope 2018, 128, 1133–1139. [Google Scholar] [CrossRef]
- Lang, S.; Mattheis, S.; Kansy, B. TORS in HPV-Positive Tumors—The New Standard? Recent Results Cancer Res. 2017, 206, 207–218. [Google Scholar] [CrossRef]
- Mehanna, H.; Evans, M.; Beasley, M.; Chatterjee, S.; Dilkes, M.; Homer, J.; O‘Hara, J.; Robinson, M.; Shaw, R.; Sloan, P. Oropharyngeal cancer: United Kingdom National Multidisciplinary Guidelines. J. Laryngol. Otol. 2016, 130, S90–S96. [Google Scholar] [CrossRef] [PubMed]
- Kaczmar, J.M.; Tan, K.S.; Heitjan, D.F.; Lin, A.; Ahn, P.H.; Newman, J.G.; Rassekh, C.H.; Chalian, A.A.; O‘Malley, B.W., Jr.; Cohen, R.B.; et al. HPV-related oropharyngeal cancer: Risk factors for treatment failure in patients managed with primary transoral robotic surgery. Head Neck 2016, 38, 59–65. [Google Scholar] [CrossRef]
- Nichols, A.C.; Theurer, J.; Prisman, E.; Read, N.; Berthelet, E.; Tran, E.; Fung, K.; de Almeida, J.R.; Bayley, A.; Goldstein, D.P.; et al. Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): An open-label, phase 2, randomised trial. Lancet Oncol. 2019, 20, 1349–1359. [Google Scholar] [CrossRef]
- Teckie, S.; Gross, N.D. The ORATOR Trials Have Spoken—Where Do We Go from Here? JAMA Oncol. 2022, 8, 851–852. [Google Scholar] [CrossRef]
- McMullen, C.P.; Garneau, J.; Weimar, E.; Ali, S.; Farinhas, J.M.; Yu, E.; Som, P.M.; Sarta, C.; Goldstein, D.P.; Su, S.; et al. Occult Nodal Disease and Occult Extranodal Extension in Patients with Oropharyngeal Squamous Cell Carcinoma Undergoing Primary Transoral Robotic Surgery with Neck Dissection. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 701–707. [Google Scholar] [CrossRef]
- Chin, R.I.; Rao, Y.J.; Hwang, M.Y.; Spencer, C.R.; Pierro, M.; DeWees, T.; Patel, P.; Sinha, P.; Gay, H.A.; Daly, M.; et al. Comparison of unilateral versus bilateral intensity-modulated radiotherapy for surgically treated squamous cell carcinoma of the palatine tonsil. Cancer 2017, 123, 4594–4607. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Liu, J.; Miles, B.A.; Genden, E.M.; Misiukiewicz, K.J.; Posner, M.; Gupta, V.; Bakst, R.L. Adjuvant Radiation Therapy Alone for HPV Related Oropharyngeal Cancers with High Risk Features. PLoS ONE 2016, 11, e0168061. [Google Scholar] [CrossRef]
- Miles, B.A.; Posner, M.R.; Gupta, V.; Teng, M.S.; Bakst, R.L.; Yao, M.; Misiukiewicz, K.J.; Chai, R.L.; Sharma, S.; Westra, W.H.; et al. De-Escalated Adjuvant Therapy After Transoral Robotic Surgery for Human Papillomavirus-Related Oropharyngeal Carcinoma: The Sinai Robotic Surgery (SIRS) Trial. Oncologist 2021, 26, 504–513. [Google Scholar] [CrossRef]
- Kumar, B.; Cipolla, M.J.; Old, M.O.; Brown, N.V.; Kang, S.Y.; Dziegielewski, P.T.; Durmus, K.; Ozer, E.; Agrawal, A.; Carrau, R.L.; et al. Surgical management of oropharyngeal squamous cell carcinoma: Survival and functional outcomes. Head Neck 2016, 38, E1794–E1802. [Google Scholar] [CrossRef]
- Zhan, K.Y.; Puram, S.V.; Li, M.M.; Silverman, D.A.; Agrawal, A.A.; Ozer, E.; Old, M.O.; Carrau, R.L.; Rocco, J.W.; Higgins, K.M.; et al. National treatment trends in human papillomavirus-positive oropharyngeal squamous cell carcinoma. Cancer 2020, 126, 1295–1305. [Google Scholar] [CrossRef]
- Bourhis, J.; Sire, C.; Graff, P.; Grégoire, V.; Maingon, P.; Calais, G.; Gery, B.; Martin, L.; Alfonsi, M.; Desprez, P.; et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): An open-label phase 3 randomised trial. Lancet Oncol. 2012, 13, 145–153. [Google Scholar] [CrossRef]
- Spector, M.E.; Chinn, S.B.; Bellile, E.; Gallagher, K.K.; Ibrahim, M.; Vainshtein, J.; Chanowski, E.J.; Walline, H.M.; Moyer, J.S.; Prince, M.E.; et al. Matted nodes as a predictor of distant metastasis in advanced-stage III/IV oropharyngeal squamous cell carcinoma. Head Neck 2016, 38, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Vainshtein, J.M.; Spector, M.E.; Ibrahim, M.; Bradford, C.R.; Wolf, G.T.; Stenmark, M.H.; Worden, F.P.; McHugh, J.B.; Prince, M.E.; Carey, T.; et al. Matted nodes: High distant-metastasis risk and a potential indication for intensification of systemic therapy in human papillomavirus-related oropharyngeal cancer. Head Neck 2016, 38, E805–E814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.C.J.; Kelly, J.R.; Park, H.S.; An, Y.; Judson, B.L.; Burtness, B.A.; Husain, Z.A. Patterns of failure in high-metastatic node number human papillomavirus-positive oropharyngeal carcinoma. Oral Oncol. 2018, 85, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Szturz, P.; Wouters, K.; Kiyota, N.; Tahara, M.; Prabhash, K.; Noronha, V.; Adelstein, D.; Van Gestel, D.; Vermorken, J.B. Low-Dose vs. High-Dose Cisplatin: Lessons Learned from 59 Chemoradiotherapy Trials in Head and Neck Cancer. Front. Oncol. 2019, 9, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacas, B.; Carmel, A.; Landais, C.; Wong, S.J.; Licitra, L.; Tobias, J.S.; Burtness, B.; Ghi, M.G.; Cohen, E.E.W.; Grau, C.; et al. MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group. Radiother. Oncol. 2021, 156, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, M.; Bhasker, S.; Thakar, A.; Pramanik, R.; Biswas, A.; Kumar, A.; Sikka, K.; Singh, A.C.; Mallick, S.; et al. An open-label, noninferiority phase III RCT of weekly versus three weekly cisplatin and radical radiotherapy in locally advanced head and neck squamous cell carcinoma (ConCERT trial). J. Clin. Oncol. 2022, 40, 16S. [Google Scholar] [CrossRef]
- Fountzilas, G.; Ciuleanu, E.; Dafni, U.; Plataniotis, G.; Kalogera-Fountzila, A.; Samantas, E.; Athanassiou, E.; Tzitzikas, J.; Ciuleanu, T.; Nikolaou, A.; et al. Concomitant radiochemotherapy vs radiotherapy alone in patients with head and neck cancer: A Hellenic Cooperative Oncology Group Phase III Study. Med. Oncol. 2004, 21, 95–107. [Google Scholar] [CrossRef]
- Denis, F.; Garaud, P.; Bardet, E.; Alfonsi, M.; Sire, C.; Germain, T.; Bergerot, P.; Rhein, B.; Tortochaux, J.; Calais, G. Final results of the 94-01 French Head and Neck Oncology and Radiotherapy Group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. J. Clin. Oncol. 2004, 22, 69–76. [Google Scholar] [CrossRef]
- Haddad, R.; Sonis, S.; Posner, M.; Wirth, L.; Costello, R.; Braschayko, P.; Allen, A.; Mahadevan, A.; Flynn, J.; Burke, E.; et al. Randomized phase 2 study of concomitant chemoradiotherapy using weekly carboplatin/paclitaxel with or without daily subcutaneous amifostine in patients with locally advanced head and neck cancer. Cancer 2009, 115, 4514–4523. [Google Scholar] [CrossRef]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2006, 354, 567–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Cohen, R.B.; Jones, C.U.; Sur, R.K.; Raben, D.; Baselga, J.; Spencer, S.A.; Zhu, J.; et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010, 11, 21–28. [Google Scholar] [CrossRef]
- Wotman, M.T.; Miles, B.A.; Bakst, R.L.; Posner, M.R. A proposal for risk-based and strategy-adapted de-escalation in human papillomavirus-positive oropharyngeal squamous cell carcinoma. Cancer 2021, 127, 4330–4338. [Google Scholar] [CrossRef]
- Ferris, R.L.; Flamand, Y.; Weinstein, G.S.; Li, S.; Quon, H.; Mehra, R.; Garcia, J.J.; Chung, C.H.; Gillison, M.L.; Duvvuri, U.; et al. Updated report of a phase II randomized trial of transoral surgical resection followed by low-dose or standard postoperative therapy in resectable p16+ locally advanced oropharynx cancer: A trial of the ECOG-ACRIN cancer research group (E3311). J. Clin. Oncol. 2021, 39, 15S. [Google Scholar] [CrossRef]
- Haderlein, M.; von der Grun, J.; Roedel, C.; Hautmann, M.; Bohr, C.; Hehr, T.; Stromberger, C.; Budach, V.; Schymalla, M.M.; Engenhart-Cabillic, R.; et al. Deintensification of postoperative radiotherapy in head and neck cancer independent of human papillomavirus status: Results of a prospective multicenter phase II trial. J. Clin. Oncol. 2022, 40, 16S. [Google Scholar]
- Swisher-McClure, S.; Lukens, J.N.; Aggarwal, C.; Ahn, P.; Basu, D.; Bauml, J.M.; Brody, R.; Chalian, A.; Cohen, R.B.; Fotouhi-Ghiam, A.; et al. Phase 2 Trial of Alternative Volumes of Oropharyngeal Irradiation for De-intensification (AVOID): Omission of the Resected Primary Tumor Bed after Transoral Robotic Surgery for Human Papilloma Virus-Related Squamous Cell Carcinoma of the Oropharynx. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.J.; Price, K.A.; Moore, E.J.; Patel, S.H.; Hinni, M.L.; Garcia, J.J.; Graner, D.E.; Foster, N.R.; Ginos, B.; Neben-Wittich, M.; et al. Phase II Evaluation of Aggressive Dose De-Escalation for Adjuvant Chemoradiotherapy in Human Papillomavirus-Associated Oropharynx Squamous Cell Carcinoma. J. Clin. Oncol. 2019, 37, 1909–1918. [Google Scholar] [CrossRef]
- Ma, D.M.; Price, K.; Moore, E.J.; Patel, S.S.; Hinni, M.L.; Fruth, B.; Foster, N.R.; Van Abel, K.; Yin, L.X.; Neben-Wittich, M.A.; et al. MC1675, a Phase III Evaluation of De-Escalated Adjuvant Radiation Therapy (DART) versus Standard Adjuvant Treatment for Human Papilloma Virus Associated Oropharyngeal Squamous Cell Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 1324. [Google Scholar] [CrossRef]
- Palma, D.A.; Prisman, E.; Berthelet, E.; Tran, E.; Hamilton, S.; Wu, J.; Eskander, A.; Higgins, K.; Karam, I.; Poon, I.; et al. Assessment of Toxic Effects and Survival in Treatment Deescalation with Radiotherapy vs. Transoral Surgery for HPV-Associated Oropharyngeal Squamous Cell Carcinoma: The ORATOR2 Phase 2 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 845–851. [Google Scholar] [CrossRef]
- Chera, B.S.; Amdur, R.J.; Tepper, J.; Qaqish, B.; Green, R.; Aumer, S.L.; Hayes, N.; Weiss, J.; Grilley-Olson, J.; Zanation, A.; et al. Phase 2 Trial of De-intensified Chemoradiation Therapy for Favorable-Risk Human Papillomavirus-Associated Oropharyngeal Squamous Cell Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 976–985. [Google Scholar] [CrossRef]
- Chera, B.S.; Amdur, R.J.; Tepper, J.E.; Tan, X.; Weiss, J.; Grilley-Olson, J.E.; Hayes, D.N.; Zanation, A.; Hackman, T.G.; Patel, S.; et al. Mature results of a prospective study of deintensified chemoradiotherapy for low-risk human papillomavirus-associated oropharyngeal squamous cell carcinoma. Cancer 2018, 124, 2347–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woody, N.M.; Koyfman, S.A.; Xia, P.; Yu, N.; Shang, Q.; Adelstein, D.J.; Scharpf, J.; Burkey, B.; Nwizu, T.; Saxton, J.; et al. Regional control is preserved after dose de-escalated radiotherapy to involved lymph nodes in HPV positive oropharyngeal cancer. Oral Oncol. 2016, 53, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Sher, D.J.; Pham, N.L.; Shah, J.L.; Sen, N.; Williams, K.A.; Subramaniam, R.M.; Moore, W.; Chorley, R.; Ahn, C.; Khan, S.M. Prospective Phase 2 Study of Radiation Therapy Dose and Volume De-escalation for Elective Neck Treatment of Oropharyngeal and Laryngeal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Deschuymer, S.; Nevens, D.; Duprez, F.; Daisne, J.F.; Dok, R.; Laenen, A.; Voordeckers, M.; De Neve, W.; Nuyts, S. Randomized clinical trial on reduction of radiotherapy dose to the elective neck in head and neck squamous cell carcinoma; update of the long-term tumor outcome. Radiother. Oncol. 2020, 143, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.J.; McBride, S.M.; Riaz, N.; Kang, J.J.; Spielsinger, D.J.; Waldenberg, T.; Gelblum, D.; Yu, Y.; Chen, L.C.; Zakeri, K.; et al. Evaluation of Substantial Reduction in Elective Radiotherapy Dose and Field in Patients with Human Papillomavirus-Associated Oropharyngeal Carcinoma Treated With Definitive Chemoradiotherapy. JAMA Oncol. 2022, 8, 364–372. [Google Scholar] [CrossRef]
- Yom, S.S.; Torres-Saavedra, P.; Caudell, J.J.; Waldron, J.N.; Gillison, M.L.; Xia, P.; Truong, M.T.; Kong, C.; Jordan, R.; Subramaniam, R.M.; et al. Reduced-Dose Radiation Therapy for HPV-Associated Oropharyngeal Carcinoma (NRG Oncology HN002). J. Clin. Oncol. 2021, 39, 956–965. [Google Scholar] [CrossRef]
- Chera, B.S.; Amdur, R.J.; Green, R.; Shen, C.; Gupta, G.; Tan, X.; Knowles, M.; Fried, D.; Hayes, N.; Weiss, J.; et al. Phase II Trial of De-Intensified Chemoradiotherapy for Human Papillomavirus-Associated Oropharyngeal Squamous Cell Carcinoma. J. Clin. Oncol. 2019, 37, 2661–2669. [Google Scholar] [CrossRef]
- Mehanna, H.; Robinson, M.; Hartley, A.; Kong, A.; Foran, B.; Fulton-Lieuw, T.; Dalby, M.; Mistry, P.; Sen, M.; O‘Toole, L.; et al. De-ESCALaTE HPV Trial Group. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): An open-label randomised controlled phase 3 trial. Lancet 2019, 393, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Gillison, M.L.; Trotti, A.M.; Harris, J.; Eisbruch, A.; Harari, P.M.; Adelstein, D.J.; Jordan, R.C.K.; Zhao, W.; Sturgis, E.M.; Burtness, B.; et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): A randomised, multicentre, non-inferiority trial. Lancet 2019, 393, 40–50. [Google Scholar] [CrossRef]
- Mehanna, H.; Rischin, D.; Wong, S.J.; Gregoire, V.; Ferris, R.; Waldron, J.; Le, Q.T.; Forster, M.; Gillison, M.; Laskar, S.; et al. De-Escalation After DE-ESCALATE and RTOG 1016: A Head and Neck Cancer InterGroup Framework for Future De-Escalation Studies. J. Clin. Oncol. 2020, 38, 2552–2557. [Google Scholar] [CrossRef]
- Rischin, D.; King, M.; Kenny, L.; Porceddu, S.; Wratten, C.; Macann, A.; Jackson, J.E.; Bressel, M.; Herschtal, A.; Fisher, R.; et al. Randomized Trial of Radiation Therapy With Weekly Cisplatin or Cetuximab in Low-Risk HPV-Associated Oropharyngeal Cancer (TROG 12.01)—A Trans-Tasman Radiation Oncology Group Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Quon, H.; Vapiwala, N.; Forastiere, A.; Kennedy, E.B.; Adelstein, D.J.; Boykin, H.; Califano, J.A.; Holsinger, F.C.; Nussenbaum, B.; Rosenthal, D.I.; et al. Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma: American Society of Clinical Oncology Endorsement of the American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. J. Clin. Oncol. 2017, 35, 4078–4090. [Google Scholar] [CrossRef] [PubMed]
- Adelstein, D.J.; Ismaila, N.; Ku, J.A.; Burtness, B.; Swiecicki, P.L.; Mell, L.; Beitler, J.J.; Gross, N.; Jones, C.U.; Kaufman, M.; et al. Role of Treatment Deintensification in the Management of p16+ Oropharyngeal Cancer: ASCO Provisional Clinical Opinion. J. Clin. Oncol. 2019, 37, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.G.; Kang, E.J.; Keam, B.; Choi, J.H.; Kim, J.S.; Park, K.U.; Lee, K.E.; Kim, H.J.; Lee, K.W.; Kim, M.K.; et al. Induction Chemotherapy as a Prognostication Index and Guidance for Treatment of Locally Advanced Head and Neck Squamous Cell Carcinoma: The Concept of Chemo-Selection (KCSG HN13-01). Cancer Res. Treat. 2022, 54, 109–117. [Google Scholar] [CrossRef]
- Cohen, E.E.; Karrison, T.G.; Kocherginsky, M.; Mueller, J.; Egan, R.; Huang, C.H.; Brockstein, B.E.; Agulnik, M.B.; Mittal, B.B.; Yunus, F.; et al. Phase III randomized trial of induction chemotherapy in patients with N2 or N3 locally advanced head and neck cancer. J. Clin. Oncol. 2014, 32, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
- Marur, S.; Li, S.; Cmelak, A.J.; Gillison, M.L.; Zhao, W.J.; Ferris, R.L.; Westra, W.H.; Gilbert, J.; Bauman, J.E.; Wagner, L.I.; et al. Phase II Trial of Induction Chemotherapy Followed by Reduced-Dose Radiation and Weekly Cetuximab in Patients With HPV-Associated Resectable Squamous Cell Carcinoma of the Oropharynx- ECOG-ACRIN Cancer Research Group. J. Clin. Oncol. 2017, 35, 490–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cmelak, A.J.; Li, S.; Goldwasser, M.A.; Murphy, B.; Cannon, M.; Pinto, H.; Rosenthal, D.I.; Gillison, M.; Forastiere, A.A. Phase II trial of chemoradiation for organ preservation in resectable stage III or IV squamous cell carcinomas of the larynx or oropharynx: Results of Eastern Cooperative Oncology Group Study E2399. J. Clin. Oncol. 2007, 25, 3971–3977. [Google Scholar] [CrossRef]
- Fakhry, C.; Westra, W.H.; Li, S.; Cmelak, A.; Ridge, J.A.; Pinto, H.; Forastiere, A.; Gillison, M.L. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J. Natl. Cancer Inst. 2008, 100, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.M.; Felix, C.; Wang, P.C.; Hsu, S.; Basehart, V.; Garst, J.; Beron, P.; Wong, D.; Rosove, M.H.; Rao, S.; et al. Reduced-dose radiotherapy for human papillomavirus-associated squamous-cell carcinoma of the oropharynx: A single-arm, phase 2 study. Lancet Oncol. 2017, 18, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Seiwert, T.Y.; Foster, C.C.; Blair, E.A.; Karrison, T.G.; Agrawal, N.; Melotek, J.M.; Portugal, L.; Brisson, R.J.; Dekker, A.; Kochanny, S.; et al. OPTIMA: A phase II dose and volume de-escalation trial for human papillomavirus-positive oropharyngeal cancer. Ann. Oncol. 2019, 30, 297–302. [Google Scholar] [CrossRef]
- White, R.; Abel, S.; Hasan, S.; Verma, V.; Greenberg, L.; Colonias, A.; Wegner, R.E. Practice patterns and outcomes following radiation dose de-escalation for oropharyngeal cancer. Laryngoscope 2020, 130, E171–E176. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H.; Song, J.H.; Kim, Y.S.; Moon, S.H.; Lee, J.; Oh, Y.T.; Oh, D.; Kim, J.H.; Kim, J.W. Survey of radiation field and dose in human papillomavirus-positive oropharyngeal cancer: Is de-escalation actually applied in clinical practice? Radiat. Oncol. J. 2021, 39, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, S.; Beasley, M.; Hurt, C.; Jones, T.M.; Evans, M. Deintensification of Adjuvant Treatment After Transoral Surgery in Patients with Human Papillomavirus-Positive Oropharyngeal Cancer: The Conception of the PATHOS Study and Its Development. Front. Oncol. 2019, 9, 936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De-intensified Radiation Therapy with Chemotherapy (Cisplatin) or Immunotherapy (Nivolumab) in Treating Patients with Early-Stage, HPV-Positive, Non-Smoking Associated Oropharyngeal Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03952585 (accessed on 12 September 2022).
- Cisplatin + Radiotherapy vs. Durvalumab + Radiotherapy Followed by Durvalumab vs. Durvalumab + Radiotherapy Followed by Tremelimumab + Durvalumab in Intermediate-Risk HPV-Positive Oropharyngeal SCC. Available online: https://clinicaltrials.gov/ct2/show/NCT03410615 (accessed on 12 September 2022).
- Ipilimumab, Nivolumab, and Radiation Therapy in Treating Patients with HPV Positive Advanced Oropharyngeal Squamous Cell Carcinoma. Available online: https://clinicaltrials.gov/ct2/show/NCT03799445 (accessed on 12 September 2022).
- The Sinai Robotic Surgery Trial in HPV-related Oropharyngeal Squamous Cell Carcinoma (SIRS 2.0 Trial). Available online: https://clinicaltrials.gov/ct2/show/NCT05419089 (accessed on 12 September 2022).
- Reder, H.; Taferner, V.F.; Wittekindt, C.; Bräuninger, A.; Speel, E.M.; Gattenlöhner, S.; Wolf, G.; Klussmann, J.P.; Wuerdemann, N.; Wagner, S. Plasma Cell-Free Human Papillomavirus Oncogene E6 and E7 DNA Predicts Outcome in Oropharyngeal Squamous Cell Carcinoma. J. Mol. Diagn. 2020, 22, 1333–1343. [Google Scholar] [CrossRef]
- Chera, B.S.; Kumar, S.; Shen, C.; Amdur, R.; Dagan, R.; Green, R.; Goldman, E.; Weiss, J.; Grilley-Olson, J.; Patel, S.; et al. Plasma Circulating Tumor HPV DNA for the Surveillance of Cancer Recurrence in HPV-Associated Oropharyngeal Cancer. J. Clin. Oncol. 2020, 38, 1050–1058. [Google Scholar] [CrossRef]
- Chera, B.S.; Kumar, S.; Beaty, B.T.; Marron, D.; Jefferys, S.; Green, R.; Goldman, E.C.; Amdur, R.; Sheets, N.; Dagan, R.; et al. Rapid Clearance Profile of Plasma Circulating Tumor HPV Type 16 DNA during Chemoradiotherapy Correlates with Disease Control in HPV-Associated Oropharyngeal Cancer. Clin. Cancer Res. 2019, 25, 4682–4690. [Google Scholar] [CrossRef]
- Zhang, C.; Mi, J.; Deng, Y.; Deng, Z.; Long, D.; Liu, Z. DNMT1 Enhances the Radiosensitivity of HPV-Positive Head and Neck Squamous Cell Carcinomas via Downregulating SMG1. Onco Targets Ther. 2020, 13, 4201–4211. [Google Scholar] [CrossRef]
- Alsahafi, E.N.; Thavaraj, S.; Sarvestani, N.; Novoplansky, O.; Elkabets, M.; Ayaz, B.; Tavassoli, M.; Legends, M.F. EGFR overexpression increases radiotherapy response in HPV-positive head and neck cancer through inhibition of DNA damage repair and HPV E6 downregulation. Cancer Lett. 2021, 1, 80–97. [Google Scholar] [CrossRef]
- Vitti, E.T.; Kacperek, A.; Parsons, J.L. Targeting DNA Double-Strand Break Repair Enhances Radiosensitivity of HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinoma to Photons and Protons. Cancers 2020, 12, 1490. [Google Scholar] [CrossRef]
- Lerch, S.; Berthold, S.; Ziemann, F.; Dreffke, K.; Subtil, F.S.B.; Senger, Y.; Jensen, A.; Engenhart-Cabillic, R.; Dikomey, E.; Wittig, A.; et al. HPV-positive HNSCC cell lines show strongly enhanced radiosensitivity after photon but not after carbon ion irradiation. Radiother. Oncol. 2020, 151, 134–140. [Google Scholar] [CrossRef]
- Taku, N.; Wang, L.; Garden, A.S.; Rosenthal, D.I.; Gunn, G.B.; Morrison, W.H.; Fuller, C.D.; Phan, J.; Reddy, J.P.; Moreno, A.C.; et al. Proton Therapy for HPV-Associated Oropharyngeal Cancers of the Head and Neck: A De-Intensification Strategy. Curr. Treat. Options Oncol. 2021, 22, 54. [Google Scholar] [CrossRef]
- Slater, J.D.; Yonemoto, L.T.; Mantik, D.W.; Bush, D.A.; Preston, W.; Grove, R.I.; Miller, D.W.; Slater, J.M. Proton radiation for treatment of cancer of the oropharynx: Early experience at Loma Linda University Medical Center using a concomitant boost technique. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.J.; Cox, J.D.; Gillin, M.; Mohan, R.; Garden, A.S.; Rosenthal, D.I.; Gunn, G.B.; Weber, R.S.; Kies, M.S.; Lewin, J.S.; et al. Multifield optimization intensity modulated proton therapy for head and neck tumors: A translation to practice. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 846–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, G.B.; Blanchard, P.; Garden, A.S.; Zhu, X.R.; Fuller, C.D.; Mohamed, A.S.; Morrison, W.H.; Phan, J.; Beadle, B.M.; Skinner, H.D.; et al. Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Bahig, H.; Gunn, G.B.; Garden, A.S.; Rosenthal, D.I.; Hutcheson, K.A.; Phan, J.; Fuller, C.D.; Reddy, J.P.; Rong, Y.; Zaveri, J.; et al. Toxicity and pharyngeal dysphagia outcomes from intensity modulated proton therapy for oropharyngeal squamous cell cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, E410. [Google Scholar] [CrossRef]
- Aljabab, S.; Liu, A.; Wong, T.; Liao, J.J.; Laramore, G.E.; Parvathaneni, U. Proton Therapy for Locally Advanced Oropharyngeal Cancer: Initial Clinical Experience at the University of Washington. Int. J. Part Ther. 2020, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, P.; Garden, A.S.; Gunn, G.B.; Rosenthal, D.I.; Morrison, W.H.; Hernandez, M.; Crutison, J.; Lee, J.J.; Ye, R.; Fuller, C.D.; et al. Intensity-modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx cancer—A case matched analysis. Radiother, Oncol. 2016, 120, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zhang, X.; Yang, P.; Blanchard, P.; Garden, A.S.; Gunn, B.; Fuller, C.D.; Chambers, M.; Hutcheson, K.A.; Ye, R.; et al. Intensity-modulated proton therapy and osteoradionecrosis in oropharyngeal cancer. Radiother. Oncol. 2017, 123, 401–405. [Google Scholar] [CrossRef]
- Manzar, G.S.; Lester, S.C.; Routman, D.M.; Harmsen, W.S.; Petersen, M.M.; Sloan, J.A.; Mundy, D.W.; Hunzeker, A.E.; Amundson, A.C.; Anderson, J.L.; et al. Comparative analysis of acute toxicities and patient reported outcomes between intensity-modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) for the treatment of oropharyngeal cancer. Radiother. Oncol. 2020, 147, 64–74. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Jiang, B.; Chen, J.; Wang, X.; Wang, L.; Sahoo, N.; Zhu, X.R.; Ye, R.; Blanchard, P.; et al. Intensity-modulated proton therapy for oropharyngeal cancer reduces rates of late xerostomia. Radiother. Oncol. 2021, 160, 32–39. [Google Scholar] [CrossRef]
- Sio, T.T.; Lin, H.K.; Shi, Q.; Gunn, G.B.; Cleeland, C.S.; Lee, J.J.; Hernandez, M.; Blanchard, P.; Thaker, N.G.; Phan, J.; et al. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tambas, M.; Steenbakkers, R.J.H.M.; van der Laan, H.P.; Wolters, A.M.; Kierkels, R.G.J.; Scandurra, D.; Korevaar, E.W.; Oldehinkel, E.; van Zon-Meijer, T.W.H.; Both, S.; et al. First experience with model-based selection of head and neck cancer patients for proton therapy. Radiother. Oncol. 2020, 151, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Intensity-Modulated Proton Beam Therapy or Intensity-Modulated Photon Therapy in Treating Patients with Stage III-IVB Oropharyngeal Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT01893307 (accessed on 15 September 2022).
- Price, J.; Hall, E.; West, C.; Thomson, D. TORPEdO—A Phase III Trial of Intensity-modulated Proton Beam Therapy versus Intensity-modulated Radiotherapy for Multi-toxicity Reduction in Oropharyngeal Cancer. Clin. Oncol. (R. Coll. Radiol.) 2020, 32, 84–88. [Google Scholar] [CrossRef] [PubMed]
No. of Patients | RT Dose (Gy) | CHT Dose (mg/m2) | p/y | Median FU | Treatment Response (%) | AE | QoL Evaluation | |
---|---|---|---|---|---|---|---|---|
Chera [74] 2018 | 44 | 60 HR 54 IR | cisplatin, 30 | ≤10 | 36 mo | pCR 86 3-y LC 100 3-y RC 100 3-y CSS 100 3-y OS 95 | acute 39 late 0 | EORTC QLQ PRO-CTCAE |
Woody [75] 2016 | 50 | 70–74.7 primary 54 INA | cisplatin, 100 cisplatin + 5-FU cetuximab | 4–90 | 54 mo | 5-y LRC 96 5-y DFS 81 5-y OS 86 | N/A | N/A |
Sher [76] 2021 | 51 | 64 INA 40 ENA | cisplatin, 100 cisplatin, 40 carboplatin + paclitaxel cetuximab | ≤10 >10 | 24.7 mo | 2-y LRR 12 2-y OS 91 2-y PFS 81 | acute 33 late 1.9 | EORTC QLQ MDADI EQ-5D |
Deschuymer [77] 2020 | 82 | 70 HR 40 ENA (arm A) 50 ENA (arm B) | N/A 65% in arm A 71.5% in arm B | N/A | 7.6 y | arm A: 5-y RR 14 5-y LRR 24.7 5-y OS 56.5 arm B: 5-y RR 7.5 5-y LRR 17 5-y OS 49.6 | N/A | N/A |
Tsai [78] 2022 | 276 | 70 HR 50 IR 30 LR | cisplatin, 100 carboplatin + paclitaxel carboplatin + 5-FU cetuximab | ≤10 | 26 mo | 2-y LRC 97 2-y PFS 88 2-y OS 95.1 | acute 6.2 | GTQ EORTC QLQ |
Yom [79] 2021 | 158 (arm A) 150 (arm B) | 60 HR 54 IR 48 LR | cisplatin, 40 (arm A) no CHT (arm B) | ≤10 | 2.6 y | arm A: 2-y PFS 90.5 2-y OS 96.7 arm B: 2-y PFS 87.6 2-y OS 97.3 | arm A: acute 79.6 late 21.3 arm B: acute 52.4 late 18.1 | MDADI |
Chera [80] 2019 | 114 | 60 HR 54 IR | cisplatin, 30 cetuximab, 250 carboplatin AUC 1.5 + paclitaxel 45 | ≤10 | 31.8 mo | CR 93 primary 80 nodal 2-y LRC 95 2-y PFS 86 2-y OS 95 | acute 34 late 0 | EORTC QLQ PRO-CTCAE |
No. of Patients | RT Dose (GyE) | Applied CHT (%) | Median FU | Treatment Response (%) | Severe (≥Grade 3) Adverse Events (%) | |
---|---|---|---|---|---|---|
Slater [109] 2005 | 29 | 75.9/45 fr | N/A | 28 mo | 2-y LRC 93 2-y DFS 81 5-y LRC 84 5-y DFS 65 | late 11 2-y late 16 |
Frank [110] 2014 | 15 | 66–70/33 fr | 80 | 28 mo | CR 93.9 | acute 40 late 7 |
Gunn [111] 2016 | 50 | 60–70 | 64 | 29 mo | 2-y PFS 88.6 2-y OS 94.5 | acute 58 late 12 |
Bahig [112] 2019 | 103 | N/A | 70 | 3.3 y | 3-y LRC 93 3-y OS 96 5-y LRC 90 5-y OS 80 | acute 46 |
Aljabab [113] 2020 | 46 | 60–74.4 | 64 | 19.2 mo | CR 100 primary CR 92 nodal 1-y LRC 100 1-y OS 95.7 | acute 76 late 0 |
Blanchard [114] 2016 | 50 | 66–70 | 33 | 29 mo | 3-y LRC 91 3-y PFS 86.4 3-y OS 94.3 | acute 40.8 late 42 |
Zhang [115] 2017 | 50 | 70/33 fr | 64 | 34.6 mo | N/A | N/A |
Manzar [116] 2020 | 46 | 60–70 | 78.3 | 12 mo | N/A | acute 23.3 |
Cao [117] 2021 | 103 | 66–70 | N/A | 36.2 mo | N/A | 2-y late 6 3-y late 6 |
Sio [118] 2016 | 35 | 67–70 | N/A | 7.7 mo | N/A | N/A |
Trial Registration Number | Brief Description | Estimated No. of Patients | Primary End-Point | Secondary End-Points |
---|---|---|---|---|
NCT03952585 [97] | randomized II/III de-intensified RT with CHT (cisplatin) or immunotherapy (nivolumab) | 711 | PFS QoL | LRF DF OS incidence of AE |
NCT03410615 [98] | randomized II cisplatin + RT vs. durvalumab + RT followed by durvalumab vs. durvalumab + RT followed by tremelimumab + durvalumab | 180 | 3-y EFS | FACT-HN score LRF DMFS OS |
NCT03799445 [99] | non-randomized II ipilimumab, nivolumab and RT | 180 | DLT CRR PFS | incidence of acute and chronic AEs |
NCT05419089 [100] | non-randomized non-inferiority The Sinai Robotic Surgery Trial (SIRS 2.0 Trial) | 199 | LRR | PFS DFS OS MDADI score |
NCT01893307 [120] | randomized II/III Intensity-Modulated Proton Beam Therapy or Intensity-Modulated Photon Therapy | 442 | incidence of acute and chronic AEs OS PFS | QoL |
CRUK/18/010 [121] | randomized III Intensity-Modulated Proton Beam Therapy or Intensity-Modulated Photon Therapy (TORPEdO trial) | 180 | UWPTCS feeding tube dependence | NTCP modelling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svajdova, M.; Dubinsky, P.; Kazda, T.; Jeremic, B. Human Papillomavirus-Related Non-Metastatic Oropharyngeal Carcinoma: Current Local Treatment Options and Future Perspectives. Cancers 2022, 14, 5385. https://doi.org/10.3390/cancers14215385
Svajdova M, Dubinsky P, Kazda T, Jeremic B. Human Papillomavirus-Related Non-Metastatic Oropharyngeal Carcinoma: Current Local Treatment Options and Future Perspectives. Cancers. 2022; 14(21):5385. https://doi.org/10.3390/cancers14215385
Chicago/Turabian StyleSvajdova, Michaela, Pavol Dubinsky, Tomas Kazda, and Branislav Jeremic. 2022. "Human Papillomavirus-Related Non-Metastatic Oropharyngeal Carcinoma: Current Local Treatment Options and Future Perspectives" Cancers 14, no. 21: 5385. https://doi.org/10.3390/cancers14215385
APA StyleSvajdova, M., Dubinsky, P., Kazda, T., & Jeremic, B. (2022). Human Papillomavirus-Related Non-Metastatic Oropharyngeal Carcinoma: Current Local Treatment Options and Future Perspectives. Cancers, 14(21), 5385. https://doi.org/10.3390/cancers14215385