Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategies
2.2. Inclusion and Exclusion Criteria of Clinical Studies
2.3. Data Extraction and List of Variables Included
- First author of the study
- Study design: prospective or retrospective
- RT treatment data: total dose, number of fractionations
- CT treatment data: drug and concentration prescribed, number of cycles
- Thermometric parameters
- Reported clinical endpoints
- Reported relationship between thermometric parameters and clinical endpoint
2.4. A Summary of HT Techniques
2.5. Definition of Thermometric Parameters
3. Evidence for Predictive Values of Thermometric Parameters in Preclinical Studies
3.1. Heating Temperature
3.2. Heating Duration
3.3. Thermal Dose
3.4. Number of HT Sessions
3.5. Time Interval Parameter between HT and RT and/or CT
3.6. Sequencing of HT in Combination with and RT and/or CT
4. Evidence for the Predictive Values of Thermometric Parameters in Clinical Studies Combining HT with RT
Author(s) | Cancer Site, n | RT Dose (Gy) /Fractions | Temperature Metrics (°C) | HT Session | ttreat (min) | Thermal Dose (min) | tint (min) | Sequence | Clinical Outcome (Comment) |
---|---|---|---|---|---|---|---|---|---|
Chi et al. [96] | Bone metastases, n = 29 | 30.0/10 | Tmax †: 41.9 ± 1.2 | Ntotal: 4 Nweek: 2 | 40 | n.r. | 120 | HT after RT |
|
Valdagni et al. [103] | Head & neck, n = 18 | 64.0–70.0 /32–35 | Tmax †: 43.3 ± 0.2 Tmin †: 40.4 ± 0.2 T50: 41.8 ± 0.2 T90: 39.8 ± 0.02 | Ntotal: 6 Nweek: 2 | n.r. | max CEM42.5°C 5: 83.84 ± 9.4 min CEM42.5°C: 12.8–2.1 | 20–25 | HT after RT |
|
Jones et al. [35] | Superficial cancers, n = 56 | 30.0–66.0 /15–33 when previously unirradiated 60.0–70.0 /30–35 | n.r. | Ntotal: 4–10 Nweek: 2 | 60 min | CEM43°CT90 †: 14.3 (0.57–36.21) | n.r. | n.r. |
|
van der Zee et al. [104] | Locally advanced pelvic tumors, n = 182 | Bladder: 66.0–70.0 /33–35 Cervix: 40.0–50.0 /23–28 with HDR-IRT 23 (192 Ir): 14.0 or LDR-IRT 24 (192 Ir): 20.0–30.0 Rectum: 46.0–50.0 /20–22 | n.r. | Ntotal: 5 Nweek: 1 | 60 | n.r. | 60–240 | HT after RT |
|
Harima et al. [105] | Cervix cancer, n = 20 | 52.2/29 with HDR-IRT (192 Ir): 30.0/4 | Tmax †: 41.8 ± 1.1 Tavg †: 40.6 ± 1.0 Tmin †: 39.6 ± 0.9 | Ntotal: 3 Nweek: 1 | 60 | n.r. | 30 | HT after RT |
|
Mitsumori et al. [92] | Locally advanced non-small cell lung cancers, n = 40 | 66.0–70.0 /33–38 | Tmax †: 41.3 (37.7–44.0) Tmin †: 39.5 (35.5–41.7) Tavg †: 40.3 (37.0–42.7) | Ntotal: 7 Nweek: 1 | 60 | n.r. | n.r. | n.r. |
|
Masunaga et al. [100] | Urinary bladder cancer, n = 28 | 24.0/6 | Tavg †: 41.5 ± 1.1 (39–44) | Ntotal: 4 Nweek: 2 | 15–40 | n.r. | n.r. | HT after RT |
|
Berdov et al. [106] | Advanced rectal cancer, n = 56 | 40.0/10 | n.r. | Ntotal: 4–5 Nweek: n.r. | 60 | n.r. | 10 | HT before RT |
|
Maluta et al. [107] | Locally advanced high risk prostate cancer, n = 144 | 70.0–76.0 /35–38 | Rectum Tmax †: 42.7 T90 †: 40.2 (38.4–42.0) Bladder T90 †: 41.3 (39.5–42.3) | Ntotal: 4 Nweek: 1 | n.r. | CEM40 °CT90 †: 24.4 (14.4–34.4) | 15–30 | HT before RT |
|
Leopold et al. [40] | Superficial cancers, n = 111 | 24.0–70.0 /7–28 | n.r. | Ntotal †:4.5(1–6) for Nweek=1 and 7 (2–13) for Nweek=2 Nweek: 1–2 | 60 | n.r. | 30–90 | HT after RT |
|
Nishimura et al. [97] | Colorectal cancer, n = 33 | 40.0–70.0 /25–35 | Abdominal wall & hip: Tmax †: 44.2 ± 2.1 Tavg †: 42.6 ± 1.3 Tmin †: 40.5 ± 0.7 Perineum: Tmax †: 43.1 ± 1.7 Tavg †: 42.2 ± 1.2 Tmin †: 40.5 ± 1.1 Pelvis: Tmax †: 42.1 ± 1.5 Tavg †: 41.2 ± 1.5 Tmin †: 40.1 ± 1.1 | Ntotal: 2–14 Nweek: 1–2 | 40–60 | n.r. | 10–30 | HT after RT |
|
Anscher et al. [108] | Prostate cancer, n = 21 | 65–70 /32–35 | Intraprostate median T90 †: 39.3 ± 0.9 T50 †: 40.4 ± 0.8 | Ntotal: 5–10 Nweek: 1–2 | 60 | CEM43°CT90 †: 2.34 ± 3.23 | 60–154 | HT after RT |
|
Gabriele et al. [109] | Inoperable or recurrent parotid carcinoma, n = 13 | Inoperable: 70.0/35 Recurrent: 30.0/15 | Tmin †: 40.28 ± 0.83 Tmax †: 42.83 ± 1.32 | Ntotal: 4–10 Nweek: 2 | 30–45 | n.r. | n.r. | n.r. |
|
Maguire et al. [110] | Soft tissue sarcomas, n = 35 | 50.0/25–27 | n.r. | Ntotal: 10 Nweek: 2 | 60 | CEM43°CT90 ‡: 38 (0.1–601) | n.r. | n.r. |
|
Tilly et al. [99] | Recurrent or locally advanced prostate cancer, n = 22 | 68.4/38 | Primary cancer: T90 †: 40.7 ± 0.3 Tmax †: 41.4 ± 0.4 Recurrent cancer: T90 †: 40.6 ± 0.8 Tmax †: 41.0 ± 0.7 | Ntotal: 5–6 Nweek: 1 | 0–30 | n.r. | 30 | HT before RT or HT after RT |
|
Lutgens et al. [111] | Locally advanced cervical cancer, n = 42 | 50.0/25 with HDR-IRT (192 Ir): 21.0/3 weekly or LDR: 32.0/1–2 or MDR: 29.0/1–2 | n.r. | Ntotal: 5 Nweek: 1 | 60 | n.r. | 60–240 | HT after RT |
|
Hurwitz et al. [112] | Locally advanced prostate cancer, n = 37 | 66.60–70.0 /33–37 | Tmin †: 40.1 (37.5–41.8) Tmax †: 42.5 (40.5–45.9) Tavg †: 41.2 (39.2–42.8) | Ntotal: 2 Nweek: 1 | 60 | CEM43°CT90 †: 8.4 | 60 | HT before RT |
|
Vernon et al. [113] | Localized superficial breast cancer, n = 306 | DHG 17 (p): 32.0/16 DHG (r): 40.5–50.0/25 + boost: 10.0–20.0 MRC 18 BrR (p): 28.8/8 MRC BrI(r) + MRC BrR(r): 50.0/25 + boost: 15.0/5 ESHO 19: 32.0/8 PMH 20(p): 32.0/18 PMH(r): 50.0/25 | DHG: T90 †: 39.0 T50 †: 40.7 Tmax †: 43.5 MRC BrR: T90 †: 40.7 T50 †: 42.5 Tmax †: 45.6 MRC BrI: T90 †: 40.4 T50 †: 42.3 Tmax †: 45.1 ESHO: T90 †: 39.5 T50 †: 41.1 Tmax †: 43.3 PMH: T90 †: 40.7 T50 †: 42.2 Tmax †: 44.6 | n.r. | DHG: 60 (55–61) MRC BrR: 60 (30–60) MRC BrI: 60 (17–65) ESHO: 60 (60–60) PMH: 60 | DGH: maximum of CEM42 °C †: 0(0–69.5) CEM43°C †: 3.95 (0–122) MRC: maximum of CEM42 °C †: 9 (0–60) CEM43°C †: 7.5 (0.1–87.7) ESHO: maximum of CEM42 °C †: 5 (0–59) CEM43°C †: 8.4 (0.2–74) PMH: maximum of CEM42 °C †: 0 (0–32.8) CEM43°C †: 1.5 (0–25) data from Sherar et al. [39] | n.r. | n.r. |
|
Datta et al. [114] | Head & neck cancer, n = 33 | 50.0 /25 | n.r. | Ntotal: 8–10 Nweek: 2 | n.r. | n.r. | n.r. | HT before RT |
|
Overgaard et al. [115] | Recurrent or metastatic malignant melanoma, n = 63 | 24.0–27.0 /3 | n.r. | Ntotal: 3 Nweek: 1 | 60 | CEM43°C †: 9 (0–219) data from Overgaard et al. [116] | 30 | HT after RT |
|
Dinges et al. [41] | Uterine cervix carcinomas, n = 18 | 50.4/28 with HDR-IRT (192 Ir): 20.0/4 | T20 †: 41.7 (40.3–43.2) T50 †: 41.1 (39.2–42.5) T90 †: 39.9 (37.7–41.9) | Ntotal: 4 Nweek: 2 | 60 | CEM43°CT20 †: 48.2 (5.9–600.5) CEM43°CT50†: 15.2 (0.6–54.0) CEM43°CT90 †: 6.8 (0.4–23.0) | n.r. | n.r. |
|
Kim et al. [117] | Inoperable hepatoma, n = 30 | 30.6/17 | n.r. | Ntotal: 6 Nweek: 2 | 30–60 | n.r. | 30 | n.r. |
|
Engin et al. [98] | Superficial tumors, n = 50 | 60.0–70.0 /30–35 when previouslyirradiated: 40.0/10 | Group A: Tmin †: 39.6 ± 0.2 Group B: Tmin †: 39.3 ± 0.2 | Group A: Ntotal: 4 Nweek: 1 Group A: Ntotal: 8 Nweek: 2 | 60 | Group A: CEM 43°C †: 12.1 ± 3.9 Group B: CEM43°C †: 15.0 ± 5.1 | 15–30 | HT after RT |
|
Author(s) | Cancer Site, n | RT Dose (Gy) /Fractions | Temperature Metrics (°C) | HT Session | ttreat (min) | Thermal Dose (min) | tint (min) | Sequence | Clinical Outcome (Comment) |
---|---|---|---|---|---|---|---|---|---|
Franckena et al. [36] | Locally advanced cervix cancer, n = 420 | 46.0–50.4 /23–28 with HDR-IRT 11 (192 Ir): 17.0/2 weekly or LDR-IRT 12: 18.0/3 weekly or LDR: 30 Gy in 60 h | n.r. | Ntotal: 5 Nweek: 1 | 60 | CEM43°CT90 †: 5.05 ± 4.18 min | n.r. | n.r. |
|
Kroesen et al. [33] | Locally advanced cervix cancer, n = 400 | 46.0 -50.4 /23–28 with HDR-IRT (192 Ir): 17.0/2 or MRI-IRT 7.0/3–4 | n.r. | Ntotal: 5 Nweek: 1 | 60 | CEM43°CT90 †: 3.40 (1.89–5.83) TRISE †: 3.46 (2.93–3.86) | 30–230 | HT after RT |
|
van Leeuwen et al. [22] | Locally advanced cervix cancer, n = 58 | 46.0–50.4 /23–28 with PDR: 24 | n.r. | Ntotal: 4–5 Nweek: 1 | 60 | n.r. | 33.8–125.2 † | HT after RT |
|
Franckena et al. [120] | Locally advanced cervix cancer, n = 378 | 46.0–50.4 /23–28 with HDR-IRT (192 Ir): 17.0/2 or 18.0–21.0/3 or 20.0–24.0/1 or HDR: 30.0/1 | Tavg †: 40.6 | Ntotal: 5 Nweek: 1 | 60 | n.r. | 30–240 | HT after RT |
|
Oldenborg et al. [121] | Recurrent breast cancer, n = 78 | 32.0/8 | T90 †: 41.1 (37.7–42.4) T50 †: 42.2 (39.0–43.4) T10 †: 43.2 (41.0–44.5) | Ntotal: 4 Nweek: 1 | 60 | CEM43°CT90 †: 22.3 (1.5–107.7) CEM43°CT50 †: 37.3 (3.3–96.0) | 60 | HT after RT |
|
Datta et al. [49] | Muscle invasive bladder cancer, n = 18 | unifocal cancer: 48.0/16 multifocal cancer: 50.0/20 | Tavg †: 40.5 ± 0.5 Tmin †: 36.7 ± 0.3 Tmax †: 42.0 ± 0.6 | Ntotal: 4 Nweek: 1 | 60 | CEM43°C: 59.8 ± 45.6 | 15–20 | HT before RT |
|
Leopold et al. [32] | Soft tissue sarcoma, n = 45 | 50.0–50.4 /25–28 | T90 ‡: 39.5 T50 ‡: 41.6 T10 ‡: 43.0 Tmin ‡: 37.7 Tmax ‡: 44.0 | Group A: Ntotal: 5 Nweek: 1 Group B: Ntotal: 10 Nweek: 2 | 60 | n.r. | 30–60 | HT after RT |
|
Ohguri et al. [94] | Non-small cell lung cancer, n = 35 | 45.0–80.0 /23–30 | Tmax ‡: 43.2 (38.9–48.1) Tavg ‡: 42.6 (38.8–47.0) Tmin ‡: 41.7 (38.6–45.6) | Ntotal ‡: 11 (3–17) Nweek: 1–2 | 40–70 | n.r. | 15 | HT after RT |
|
5. Evidence for Predictive Values of Thermometric Parameters in Clinical Studies Combining HT and CT
Author(s) | Cancer Site, n | CT Drug(s) (mg/m2) × Cycles | Temperature Metrics (°C) | HT Session | ttreat (min) | Thermal Dose | tint (min) | Sequence | Clinical Outcome (Comment) |
---|---|---|---|---|---|---|---|---|---|
Issels et al. [123] | Localised high-risk soft-tissue sarcoma, n = 104 | 125 etoposide twice weekly × 4 1500 ifosfamide four times weekly × 4 50 doxorubicin once weekly × 4 | Tmax ‡: 41.8 (IQR: 41.1–43.2) T20 ‡: 40.8 (IQR: 40.1–42.3) T50 ‡: 40.3 (IQR: 39.5–41.0) T90 ‡: 39.2 (IQR: 38.5–39.8) | Ntotal: 8 Nweek: 2 | 60 | n.r. | n.r. | n.r. |
|
Alvarez Secord et al. [136] | Refractory ovarian cancer, n = 30 | 40 doxil once weekly × 6 | T90 †: 39.78 ± 0.59 T50 †:40.47 ± 0.56 | Ntotal: 6 | 60 | CEM43°CT90 †: 5.84 ± 5.66 CEM43°CT50 †: 13.00 ± 11.25 | 0–60 | HT after CT |
|
Fiegl et al. [134] | Advanced soft tissue sarcoma, n = 20 | 1500 ifosfamide four times weekly × 7 100 carboplatin four times weekly × 7 150 etoposide four times weekly × 7 | Tmax †: 40.6 (39.1–42.2) | Ntotal: 8 Nweek: 2 | 60 | n.r. | n.r. | n.r. |
|
Rietbroek et al. [133] | Irradiated recurrent cervical cancer, n = 23 | 50 cisplatin once weekly × 12 | T20 †: 41.9 ± 0.9 °C T50 †: 41.3 ± 0.8 °C T90 †: 40.5 ± 0.7 °C | Ntotal: 12 Nweek: 1 | 60 | n.r. | 30 | HT after CT |
|
Zagar et al. [127] | Recurrent breast cancer, ntrial 1 = 18 ntrial 2 = 11 | Trial A: 20–60 LTDL 13 every 21–35 days × 6 Trial B: 40–50 LTDL every 21–35 days × 6 | max T90: 42.6 min T90: 36.0 | Ntotal: 6 | 60 min | n.r. | 30–60 | HT after CT |
|
Ishikawa et al. [139] | Locally advanced or metastatic pancreatic cancer, n = 18 | 1000 gemcitabine once weekly × 12 | n.r. | Ntotal: 20 Nweek: 1 | 40 | n.r. | 0–1440 | HT before CT |
|
Vujaskovic et al. [138] | Locally advanced breast cancer, n = 43 | 30–75 LTDL × 4 100–175 paclitaxel × 4 | T90 †: 39.7(37.7–41.8) | Ntotal: 4 Nweek: 2 | 60 | CEM43°CT90 †: 11.5 (1.5–159.3) | 60 | HT after CT |
|
de Wit et al. [135] | Recurrent uterine cervical carcinoma, n = 19 | 60, 70, 80 cisplatin once weekly × 6 | Tmax †: 41.6 ± 0.7 (39.7–43.6) | Ntotal: 6 Nweek: 1 | 60 | n.r. | 0 | HT after CT |
|
Sugimach et al. [124] | Oesophageal >carcinoma, n = 20 | 30 * bleomycin twice weekly × 3 50 * cisplatin once weekly × 3 | n.r. | Ntotal: 6 Nweek: 2 | 30 | n.r. | n.r. | HT after CT |
|
Author(s) | Cancer Site, n | CT Drug(s) (mg/m2) × Cycles | Temperature Metrics (°C) | HT Session | ttreat (min) | Thermal Dose | tint (min) | Sequence | Clinical Outcome (Comment) |
---|---|---|---|---|---|---|---|---|---|
Yang et al. [140] | Advanced non-small cell lung cancer, n = 48 | 1000 gemcitabine twice weekly × 6 75 cisplatin twice weekly × 6 | n.r. | Ntotal: 8 Nweek: 2 | 40–60 | n.r. | n.r. | HT after CT or HT before CT |
|
Tschoep-Lechner et al. [141] | Advanced pancreatic cancer, n = 23 | 1000 gemcitabine once weekly × 8 25 cisplatin twice weekly × 8 | Tmax †: 42.1 (40.9–44.1) | Nweek: 2 Ntotal ‡: 8 | 60 | n.r. | 0 | simultaneously |
|
Stahl et al. [137] | Soft tissue sarcomas, n = 46 | 250 etoposide × 4 6000 ifosfamide × 4 50 adriamycin × 4 | T90 †: 39.90 ± 0.74 (good responders) and T90 †: 39.42 ± 1.78 (bad responders) | Nweek: 2 Ntotal ‡: 8 | 60 | CEM43°CT90†: 17.96 ± 7.16 (good responders) CEM43°CT90†: 11.07 ± 5.58 (good responders) | 0 | simultaneously |
|
6. Evidence for Predictive Values of Thermometric Parameters in Clinical Studies Using RT and CT in Combination with HT
Author(s) | Cancer site, n | CT Drug(s) (mg/m2) × Cycles | RT Dose (Gy) /Fractions | Temperature Metrics (°C) | Session | ttreat (min) | Thermal Dose (min) | tint (min) | Sequence | Clinical Outcome (Comment) |
---|---|---|---|---|---|---|---|---|---|---|
Amichetti et al. [152] | Locally advanced head & neck cancer, n = 18 | 20 cisplatin once weekly × 7 | 70.0/35 | Tmax †: 43.2 (41.5–44.5) Tmin †: 40.1 (37–42) T90 †: 40.4 (38.7–42.2) | Ntotal: 2 Nweek: 2 | 30 | CEM42.5 °C Tmin †: 4.36 (0–27) CEM42.5 °C Tmax †: 88 (31.8–174) | 20 | HT after RT & CT |
|
Maluta et al. [156] | Primary or recurrent locally advanced pancreatic cancer, n = 40 | 1000 gemcitabine × 1–2 30 cisplatin × | 30.0–66.0 /10–33 | T90 †: 40.5 (95% CI: 39.8–41) Tmax †: 41.1 (95% CI: 40.2–42.5) | Ntotal: 3–10 Nweek: 2 | 60 | n.r. | n.r. | CT before HT & RT |
|
Asao et al. [151] | Locally advanced rectal cancer, n = 29 | 250 5-fluorouracil for 5 days × 2 25 for 5 days × 2 | 40.0–50.0 /20–25 | Tmax †: 40.3 ± 0.89 (38.6–41.9) | Ntotal: 3 Nweek: 1 | 60 | n.r. | n.r. | HT after RT during CT |
|
Westermann et al. [150] | Cervix cancer, n = 68 | 40 cisplatin once weekly × 35 | 45.0–50.4 /25–28 with LDR- IRT 7 and HDR-IRT 7 (192 Ir) | T90 †: 39.4 T50 †: 40.7 | Ntotal: 8–10 Nweek: 1 | 60 | n.r. | n.r. | HT & CT after/before RT |
|
Harima et al. [149] | Locally advanced cervical cancer, n = 51 | 30–40 cisplatin once weekly × 3–5 | 30.0–50.0 /15–25 with LDR- IRT7 (192 Ir): 5.0–6.0 /3–5 | Tmax †: 42.2 (40.1–44.6) Tavg†: 41.1 (39.6–42.5) Data from Ohguri et al. [155] T90 ‡: 38.9 (37.7–42.2) T50 ‡: 39.9 (38.4–42.4) | Ntotal: 4–6 Nweek: 1 | 60 | CEM43°CT90 †: 3.8 (0.1–46.6) | 20 | HT after RT&CT |
|
Kouloulias et al. [153] | Recurrent breast cancer, n = 15 | 40–60 liposomal doxorubicin once monthly × 6 | 30.6/17 | Tmax †: 43.2 (41.5–44.5) Tmin †: 45.0 (44.2–45.7) | Ntotal: 6 Nmonthly: 1 | 60 | n.r. | 180–240 | HT after CT&RT |
|
Herman et al. [146] | Locally advanced malignancies, n = 24 | 20–50 cisplatin once weekly × 6 | 60.0–66.0 /30–33 or 24.0- 36.0 /12–18 | Tmax †: 43.7 ± 2.6 Tmin †: 38.2 ± 2.0 Tavg †: 40.8 ± 1.9 | Ntotal: 6 Nweek: 1 | 60 | CEM42 °CT90 †: 11.2 ± 21.3 CEM43°CT90 †: 3.1 ± 5.4 | n.r. | HT before CT&RT |
|
Barsukov et al. [157] | Locally advanced rectal cancer, n = 68 | 650 capecitabine on days 1–22 × 6–8 50 oxaliplatin on days 3, 10 and 17 after × 6–8 10 metronidazole on days 8 and 15 | 40.0/10 | n.r. | Ntotal: 4 Nweek: 2 | 60 | n.r. | 60 | n.r. |
|
Ott et al. [158] | Locally advanced or recurrent rectal cancer, n = 105 | 250 5-fluorouracil on days 1–14 and 22–35 or 1650 capecitabine on days 1–14 and 22–35 50 oxaliplatin × 4 | LARC 50.4/28 LCC 45/25 | n.r. | Ntotal ‡: 10 Nweek: 2 | 60 | LARC 19 CEM43°C †: 6.4 ± 5.2 LCC 20 CEM43°C †: 6.4 ± 4.9 | n.r. | HT before RT |
|
Gani et al. [154] | Locally advanced rectal cancer, n = 78 | 1000 5-fluorouracil × 4 | 50.4/28 | T90 ‡: 39.5 (IQR: 39.1–39.9) | Ntotal: 8 Nweek: 2 | 60 | CEM43°C ‡: 4.5 (IQR: 2.2–8.2) | n.r. | n.r. |
|
Rau et al. [159] | Locally advanced rectal cancer, n = 37 | 300–350 5-fluorouracil 50 * mg leucovorin 5 times weekly × 2 | 45.0–50.0 /25 | Data from Rau et al. [160]: T90 †: 40.2 ± 1.2 Tmax †: 41.4 ± 0.6 | Ntotal ‡: 5 Nweek: 1 | 60 | Data from Rau et al. [160] CEM43°CT90 †: 7.7 ± 5.6 CEM43°CTmax †: 33.1 ± 28.0 | n.r. | RT after concurrent HT&CT |
|
Wittlinger et al. [161] | Bladder cancer, n = 45 | 20 cisplatin 5 times weekly × 2 600 5-fluorouracil 5 times weekly × 2 | 50.4–55.8/ 28–31 | Tavg †: 40.8 (95%CI: 40.5–41.6) | Ntotal: 5–7 Nweek: 1 | 60 | CEM43°C †:57 (95%CI: 40.5–41.6) | 60 | RT after concurrent CT&HT |
|
Milani et al. [162] | Recurrent rectal cancer, n = 24 | 350 5-fluorouracil 5 times weekly × 4 (continuous infusion) | 30.0–45.0/ 16–25 | T90 †: 41.4 T50 †: 42.9 T20 †: 43.5 | Ntotal ‡: 8 Nweek: 2 | 60 | n.r. | 60 | HT after concurrent RT&CT |
|
Author(s) | Cancer Site, n | CT Drug (s)(mg/m2) × Cycles | RT Dose (Gy) /Fractions | Temperature Metrics (°C) | Session | ttreat (min) | Thermal Dose (min) | tint (min) | Sequence | Clinical Outcome (Comment) |
---|---|---|---|---|---|---|---|---|---|---|
Zhu et al. [163] | Locally advanced esophageal cancer, n = 78 | 450 5-fluorouracil five times weekly × 4–6 25 cisplatin five times weekly × 4–6 6 | 60.0–66.0 /30–33 | n.r. | Ntotal: 6–12 Nweek: 2 | 60 | n.r. | 120 | n.r. |
|
Ohguri et al. [148] | Locally advanced pancreatic cancer, n = 20 | Group A: 40–50 gemcitabine twice weekly × 4 Group B: 200–500 gemcitabine once weekly × 3 | 50.4–64.8 /28–36 | n.r. | Ntotal: 6 Nweek: 1 | n.r. | n.r. | Group A:Instant Group B: 60–180 | HT after CT&RT |
|
Gani et al. [164] | Locally advanced rectal cancer, n = 60 | 1000 5-fluorouracil × 4 | 50.4/28 | T90 ‡: 39.3 (37.1–40.6) | Ntotal ‡: 4 Nweek: 1–2 | 60 | CEM43°C ‡: 1.1 (0.0–9.2) | n.r. | n.r. |
|
Merten et al. [165] | Bladder cancer, n = 79 | 20 cisplatin 5 times weekly × 2 600 5-fluorouracil 5 times weekly × 2 | 50.4–55.8/ 28–31 | n.r. | Ntotal: 5–7 Nweek: 1 | 60 | n.r. | 0–60 | RT after concurrent CT&HT |
|
van Haaren et al. [166] | Esophageal cancer, n = 29 | 50 paclitaxelonce weekly × 5 and carboplatin (AUC=2) once weekly × 5 | 41.4/23 | T90 †: 38.6 ± 0.5 T50 †: 39.2 ± 0.6 T10 †: 40.1 ± 0.8 | Ntotal: 5 Nweek: 1 | 60 | n.r. | 0–60 | HT after CT & RT |
|
7. Future Prospects
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef]
- Van der Zee, J. Heating the patient: A promising approach? Ann. Oncol. 2002, 13, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Horsman, M.R.; Overgaard, J. Hyperthermia: A potent enhancer of radiotherapy. Clin. Oncol. (R Coll. Radiol.) 2007, 19, 418–426. [Google Scholar] [CrossRef]
- Engin, K. Biological rationale and clinical experience with hyperthermia. Control Clin. Trials 1996, 17, 316–342. [Google Scholar] [CrossRef]
- Oei, A.L.; Vriend, L.E.; Crezee, J.; Franken, N.A.; Krawczyk, P.M. Effects of hyperthermia on DNA repair pathways: One treatment to inhibit them all. Radiat. Oncol. 2015, 10, 165. [Google Scholar] [CrossRef] [Green Version]
- Dewey, W.C.; Hopwood, L.E.; Sapareto, S.A.; Gerweck, L.E. Cellular responses to combinations of hyperthermia and radiation. Radiology 1977, 123, 463–474. [Google Scholar] [CrossRef]
- Overgaard, J. Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinoma in vivo. Br. J. Radiol. 1981, 54, 245–249. [Google Scholar] [CrossRef]
- Oei, A.L.; Kok, H.P.; Oei, S.B.; Horsman, M.R.; Stalpers, L.J.A.; Franken, N.A.P.; Crezee, J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv. Drug Deliv. Rev. 2020, 163–164, 84–97. [Google Scholar] [CrossRef]
- Dewhirst, M.W.; Vujaskovic, Z.; Jones, E.; Thrall, D. Re-setting the biologic rationale for thermal therapy. Int. J. Hyperthermia 2005, 21, 779–790. [Google Scholar] [CrossRef]
- Lepock, J.R. Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int. J. Hyperthermia 2004, 20, 115–130. [Google Scholar] [CrossRef]
- Calderwood, S.K.; Theriault, J.R.; Gong, J. How is the immune response affected by hyperthermia and heat shock proteins? Int. J. Hyperthermia 2005, 21, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Repasky, E.A.; Evans, S.S.; Dewhirst, M.W. Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol. Res. 2013, 1, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhaya, A.; Mendecki, J.; Dong, X.; Liu, L.; Kalnicki, S.; Garg, M.; Alfieri, A.; Guha, C. Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity. Cancer Res. 2007, 67, 7798–7806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, B.; Weiss, E.M.; Rubner, Y.; Wunderlich, R.; Ott, O.J.; Sauer, R.; Fietkau, R.; Gaipl, U.S. Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperthermia 2012, 28, 528–542. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, J. Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int. J. Radiat. Oncol. Biol. Phys. 1980, 6, 1507–1517. [Google Scholar] [CrossRef]
- Henle, K.J.; Leeper, D.B. Interaction of hyperthermia and radiation in CHO cells: Recovery kinetics. Radiat. Res. 1976, 66, 505–518. [Google Scholar] [CrossRef]
- Overgaard, J.; Suit, H.D. Time-temperature relationship th hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res. 1979, 39, 3248–3253. [Google Scholar]
- Nielsen, O.S.; Overgaard, J.; Kamura, T. Influence of thermotolerance on the interaction between hyperthermia and radiation in a solid tumour in vivo. Br. J. Radiol. 1983, 56, 267–273. [Google Scholar] [CrossRef]
- Roizin-Towle, L.; Pirro, J.P. The response of human and rodent cells to hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 751–756. [Google Scholar] [CrossRef]
- Dahl, O.; Mella, O. Effect of timing and sequence of hyperthermia and cyclophosphamide on a neurogenic rat tumor (BT4A) in vivo. Cancer 1983, 52, 983–987. [Google Scholar] [CrossRef]
- Sapareto, S.A.; Dewey, W.C. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 787–800. [Google Scholar] [CrossRef]
- Van Leeuwen, C.M.; Oei, A.L.; Chin, K.; Crezee, J.; Bel, A.; Westermann, A.M.; Buist, M.R.; Franken, N.A.P.; Stalpers, L.J.A.; Kok, H.P. A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer. Radiat. Oncol. 2017, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, J. Influence of sequence and interval on the biological response to combined hyperthermia and radiation. Natl. Cancer Inst. Monogr. 1982, 61, 325–332. [Google Scholar] [PubMed]
- Kapp, D.S.; Petersen, I.A.; Cox, R.S.; Hahn, G.M.; Fessenden, P.; Prionas, S.D.; Lee, E.R.; Meyer, J.L.; Samulski, T.V.; Bagshaw, M.A. Two or six hyperthermia treatments as an adjunct to radiation therapy yield similar tumor responses: Results of a randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 1990, 19, 1481–1495. [Google Scholar] [CrossRef]
- Arcangeli, G.; Nervi, C.; Cividalli, A.; Lovisolo, G.A. Problem of sequence and fractionation in the clinical application of combined heat and radiation. Cancer Res. 1984, 44, 4857s–4863s. [Google Scholar]
- Gerweck, L.E.; Gillette, E.L.; Dewey, W.C. Effect of heat and radiation on synchronous Chinese hamster cells: Killing and repair. Radiat. Res. 1975, 64, 611–623. [Google Scholar] [CrossRef]
- Pauwels, B.; Korst, A.E.; Lardon, F.; Vermorken, J.B. Combined modality therapy of gemcitabine and radiation. Oncologist 2005, 10, 34–51. [Google Scholar] [CrossRef]
- Ohtsubo, T.; Saito, H.; Tanaka, N.; Matsumoto, H.; Sugimoto, C.; Saito, T.; Hayashi, S.; Kano, E. Enhancement of cisplatin sensitivity and platinum uptake by 40 degrees C hyperthermia in resistant cells. Cancer Lett. 1997, 119, 47–52. [Google Scholar] [CrossRef]
- Oleson, J.R.; Sim, D.A.; Manning, M.R. Analysis of prognostic variables in hyperthermia treatment of 161 patients. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 2231–2239. [Google Scholar] [CrossRef]
- Cox, R.S.; Kapp, D.S. Correlation of thermal parameters with outcome in combined radiation therapy-hyperthermia trials. Int. J. Hyperthermia 1992, 8, 719–732. [Google Scholar] [CrossRef]
- Dewhirst, M.W.; Sim, D.A. The utility of thermal dose as a predictor of tumor and normal tissue responses to combined radiation and hyperthermia. Cancer Res. 1984, 44, 4772s–4780s. [Google Scholar] [PubMed]
- Leopold, K.A.; Dewhirst, M.; Samulski, T.; Harrelson, J.; Tucker, J.A.; George, S.L.; Dodge, R.K.; Grant, W.; Clegg, S.; Prosnitz, L.R.; et al. Relationships among tumor temperature, treatment time, and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 989–998. [Google Scholar] [CrossRef]
- Kroesen, M.; Mulder, H.T.; van Holthe, J.M.L.; Aangeenbrug, A.A.; Mens, J.W.M.; van Doorn, H.C.; Paulides, M.M.; Oomen-de Hoop, E.; Vernhout, R.M.; Lutgens, L.C.; et al. The Effect of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in 400 Locally Advanced Cervical Carcinoma Patients. Front. Oncol. 2019, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Crezee, J.; Oei, A.L.; Franken, N.A.P.; Stalpers, L.J.A.; Kok, H.P. Response: Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front. Oncol. 2020, 10, 528. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.L.; Oleson, J.R.; Prosnitz, L.R.; Samulski, T.V.; Vujaskovic, Z.; Yu, D.; Sanders, L.L.; Dewhirst, M.W. Randomized trial of hyperthermia and radiation for superficial tumors. J. Clin. Oncol. 2005, 23, 3079–3085. [Google Scholar] [CrossRef] [Green Version]
- Franckena, M.; Fatehi, D.; de Bruijne, M.; Canters, R.A.; van Norden, Y.; Mens, J.W.; van Rhoon, G.C.; van der Zee, J. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur. J. Cancer 2009, 45, 1969–1978. [Google Scholar] [CrossRef]
- Kapp, D.S.; Cox, R.S. Thermal treatment parameters are most predictive of outcome in patients with single tumor nodules per treatment field in recurrent adenocarcinoma of the breast. Int. J. Radiat. Oncol. Biol. Phys. 1995, 33, 887–899. [Google Scholar] [CrossRef]
- Oleson, J.R.; Samulski, T.V.; Leopold, K.A.; Clegg, S.T.; Dewhirst, M.W.; Dodge, R.K.; George, S.L. Sensitivity of hyperthermia trial outcomes to temperature and time: Implications for thermal goals of treatment. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 289–297. [Google Scholar] [CrossRef]
- Sherar, M.; Liu, F.F.; Pintilie, M.; Levin, W.; Hunt, J.; Hill, R.; Hand, J.; Vernon, C.; van Rhoon, G.; van der Zee, J.; et al. Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: Data from a phase III trial. Int. J. Radiat. Oncol. Biol. Phys. 1997, 39, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Leopold, K.A.; Dewhirst, M.W.; Samulski, T.V.; Dodge, R.K.; George, S.L.; Blivin, J.L.; Prosnitz, L.R.; Oleson, J.R. Cumulative minutes with T90 greater than Tempindex is predictive of response of superficial malignancies to hyperthermia and radiation. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 841–847. [Google Scholar] [CrossRef]
- Dinges, S.; Harder, C.; Wurm, R.; Buchali, A.; Blohmer, J.; Gellermann, J.; Wust, P.; Randow, H.; Budach, V. Combined treatment of inoperable carcinomas of the uterine cervix with radiotherapy and regional hyperthermia. Results of a phase II trial. Strahlenther. Onkol. 1998, 174, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Bakker, A.; van der Zee, J.; van Tienhoven, G.; Kok, H.P.; Rasch, C.R.N.; Crezee, H. Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermal toxicity: A systematic review. Int. J. Hyperthermia 2019, 36, 1024–1039. [Google Scholar] [CrossRef] [Green Version]
- Trefná, H.D.; Crezee, H.; Schmidt, M.; Marder, D.; Lamprecht, U.; Ehmann, M.; Hartmann, J.; Nadobny, J.; Gellermann, J.; van Holthe, N.; et al. Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. Int. J. Hyperthermia 2017, 33, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Paulides, M.M.; Dobsicek Trefna, H.; Curto, S.; Rodrigues, D.B. Recent technological advancements in radiofrequency- and microwave-mediated hyperthermia for enhancing drug delivery. Adv. Drug Deliv. Rev. 2020, 163–164, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Kok, H.P.; Crezee, J. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int. J. Hyperthermia 2017, 33, 378–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruggmoser, G.; Bauchowitz, S.; Canters, R.; Crezee, H.; Ehmann, M.; Gellermann, J.; Lamprecht, U.; Lomax, N.; Messmer, M.B.; Ott, O.; et al. Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia: Quality management in regional deep hyperthermia. Strahlenther. Onkol. 2012, 188 (Suppl. 2), 198–211. [Google Scholar] [CrossRef] [Green Version]
- Dobšíček Trefná, H.; Crezee, J.; Schmidt, M.; Marder, D.; Lamprecht, U.; Ehmann, M.; Nadobny, J.; Hartmann, J.; Lomax, N.; Abdel-Rahman, S.; et al. Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices. Strahlenther. Onkol. 2017, 193, 351–366. [Google Scholar] [CrossRef] [Green Version]
- Kroeze, H.; Kokubo, M.; Kamer, J.B.V.D.; Leeuw, A.A.C.D.; Kikuchi, M.; Hiraoka, M.; Lagendijk, J.J.W. Comparison of a Capacitive and a Cavity Slot Radiative Applicator for Regional Hyperthermia. Therm. Med. (Jpn. J. Hyperthermic Oncol.) 2002, 18, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Datta, N.R.; Marder, D.; Datta, S.; Meister, A.; Puric, E.; Stutz, E.; Rogers, S.; Eberle, B.; Timm, O.; Staruch, M.; et al. Quantification of thermal dose in moderate clinical hyperthermia with radiotherapy: A relook using temperature-time area under the curve (AUC). Int. J. Hyperthermia 2021, 38, 296–307. [Google Scholar] [CrossRef]
- Fatehi, D.; van der Zee, J.; Notenboom, A.; van Rhoon, G.C. Comparison of intratumor and intraluminal temperatures during locoregional deep hyperthermia of pelvic tumors. Strahlenther. Onkol. 2007, 183, 479–486. [Google Scholar] [CrossRef]
- Fatehi, D.; de Bruijne, M.; van der Zee, J.; van Rhoon, G.C. RHyThM, a tool for analysis of PDOS formatted hyperthermia treatment data generated by the BSD2000/3D system. Int. J. Hyperthermia 2006, 22, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, J. Formula to estimate the thermal enhancement ratio of a single simultaneous hyperthermia and radiation treatment. Acta Radiol. Oncol. 1984, 23, 135–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.W.; Park, H.; Griffin, R.J. Improvement of tumor oxygenation by mild hyperthermia. Radiat. Res. 2001, 155, 515–528. [Google Scholar] [CrossRef]
- Overgaard, J.; Radacic, M.M.; Grau, C. Interaction of hyperthermia and cis-diamminedichloroplatinum(II) alone or combined with radiation in a C3H mammary carcinoma in vivo. Cancer Res. 1991, 51, 707–711. [Google Scholar] [PubMed]
- Lindegaard, J.C.; Radacic, M.; Khalil, A.A.; Horsman, M.R.; Overgaard, J. Cisplatin and hyperthermia treatment of a C3H mammary carcinoma in vivo. Importance of sequence, interval, drug dose, and temperature. Acta Oncol. 1992, 31, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Hintzsche, H.; Riese, T.; Stopper, H. Hyperthermia-induced micronucleus formation in a human keratinocyte cell line. Mutat. Res. 2012, 738–739, 71–74. [Google Scholar] [CrossRef]
- Urano, M.; Ling, C.C. Thermal enhancement of melphalan and oxaliplatin cytotoxicity in vitro. Int. J. Hyperthermia 2002, 18, 307–315. [Google Scholar] [CrossRef]
- Kampinga, H.H.; Dynlacht, J.R.; Dikomey, E. Mechanism of radiosensitization by hyperthermia (> or = 43 degrees C) as derived from studies with DNA repair defective mutant cell lines. Int. J. Hyperthermia 2004, 20, 131–139. [Google Scholar] [CrossRef]
- Kampinga, H.H. Cell biological effects of hyperthermia alone or combined with radiation or drugs: A short introduction to newcomers in the field. Int. J. Hyperthermia 2006, 22, 191–196. [Google Scholar] [CrossRef]
- Ohtsubo, T.; Chang, S.W.; Tsuji, K.; Picha, P.; Saito, H.; Kano, E. Effects of cis-diamminedichloroplatinum (CDDP) and cis-diammine (1,1-cyclobutanedicarboxylate) platinum (CBDCA) on thermotolerance development and thermosensitivity of the thermotolerant cells. Int. J. Hyperthermia 1990, 6, 1031–1039. [Google Scholar] [CrossRef]
- Van der Zee, J.; Peer-Valstar, J.N.; Rietveld, P.J.; de Graaf-Strukowska, L.; van Rhoon, G.C. Practical limitations of interstitial thermometry during deep hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 1205–1212. [Google Scholar] [CrossRef]
- Oleson, J.R. Eugene Robertson Special Lecture. Hyperthermia from the clinic to the laboratory: A hypothesis. Int. J. Hyperthermia 1995, 11, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Sapareto, S.A.; Hopwood, L.E.; Dewey, W.C.; Raju, M.R.; Gray, J.W. Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res. 1978, 38, 393–400. [Google Scholar] [PubMed]
- Bing, C.; Patel, P.; Staruch, R.M.; Shaikh, S.; Nofiele, J.; Wodzak Staruch, M.; Szczepanski, D.; Williams, N.S.; Laetsch, T.; Chopra, R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int. J. Hyperthermia 2019, 36, 196–203. [Google Scholar] [CrossRef]
- Bhuyan, B.K.; Day, K.J.; Edgerton, C.E.; Ogunbase, O. Sensitivity of different cell lines and of different phases in the cell cycle to hyperthermia. Cancer Res. 1977, 37, 3780–3784. [Google Scholar] [PubMed]
- Dewey, W.C. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperthermia 2009, 25, 3–20. [Google Scholar] [CrossRef]
- Law, M.P. Induced thermal resistance in the mouse ear: The relationship between heating time and temperature. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1979, 35, 481–485. [Google Scholar] [CrossRef]
- Li, G.C.; Mivechi, N.F.; Weitzel, G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int. J. Hyperthermia 1995, 11, 459–488. [Google Scholar] [CrossRef]
- Field, S.B.; Morris, C.C. The relationship between heating time and temperature: Its relevance to clinical hyperthermia. Radiother. Oncol. 1983, 1, 179–186. [Google Scholar] [CrossRef]
- Dewhirst, M.W.; Viglianti, B.L.; Lora-Michiels, M.; Hanson, M.; Hoopes, P.J. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperthermia 2003, 19, 267–294. [Google Scholar] [CrossRef]
- Nielsen, O.S. Fractionated hyperthermia and thermotolerance. Experimental studies on heat-induced resistance in tumour cells treated with hyperthermia alone or in combination with radiotherapy. Dan. Med. Bull. 1984, 31, 376–390. [Google Scholar] [PubMed]
- Ben-Hur, E.; Elkind, M.M.; Bronk, B.V. Thermally enhanced radioresponse of cultured Chinese hamster cells: Inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat. Res. 1974, 58, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Van Rhoon, G.C.; Samaras, T.; Yarmolenko, P.S.; Dewhirst, M.W.; Neufeld, E.; Kuster, N. CEM43°C thermal dose thresholds: A potential guide for magnetic resonance radiofrequency exposure levels? Eur. Radiol. 2013, 23, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- Yarmolenko, P.S.; Moon, E.J.; Landon, C.; Manzoor, A.; Hochman, D.W.; Viglianti, B.L.; Dewhirst, M.W. Thresholds for thermal damage to normal tissues: An update. Int. J. Hyperthermia 2011, 27, 320–343. [Google Scholar] [CrossRef]
- Thrall, D.E.; LaRue, S.M.; Yu, D.; Samulski, T.; Sanders, L.; Case, B.; Rosner, G.; Azuma, C.; Poulson, J.; Pruitt, A.F.; et al. Thermal dose is related to duration of local control in canine sarcomas treated with thermoradiotherapy. Clin. Cancer Res. 2005, 11, 5206–5214. [Google Scholar] [CrossRef] [Green Version]
- Kossatz, S.; Ludwig, R.; Dähring, H.; Ettelt, V.; Rimkus, G.; Marciello, M.; Salas, G.; Patel, V.; Teran, F.J.; Hilger, I. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm. Res. 2014, 31, 3274–3288. [Google Scholar] [CrossRef] [Green Version]
- Dewhirst, M.W.; Sim, D.A.; Sapareto, S.; Connor, W.G. Importance of minimum tumor temperature in determining early and long-term responses of spontaneous canine and feline tumors to heat and radiation. Cancer Res. 1984, 44, 43–50. [Google Scholar]
- Van Rhoon, G.C. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring? Int. J. Hyperthermia 2016, 32, 50–62. [Google Scholar] [CrossRef]
- Gerner, E.W.; Boone, R.; Connor, W.G.; Hicks, J.A.; Boone, M.L. A transient thermotolerant survival response produced by single thermal doses in HeLa cells. Cancer Res. 1976, 36, 1035–1040. [Google Scholar]
- Li, Z.; Sun, Q.; Huang, X.; Zhang, J.; Hao, J.; Li, Y.; Zhang, S. The Efficacy of Radiofrequency Hyperthermia Combined with Chemotherapy in the Treatment of Advanced Ovarian Cancer. Open Med. 2018, 13, 83–89. [Google Scholar] [CrossRef]
- Kamura, T.; Nielsen, O.S.; Overgaard, J.; Andersen, A.H. Development of thermotolerance during fractionated hyperthermia in a solid tumor in vivo. Cancer Res. 1982, 42, 1744–1748. [Google Scholar]
- Zywietz, F.; Reeker, W.; Kochs, E. Changes in tumor oxygenation during a combined treatment with fractionated irradiation and hyperthermia: An experimental study. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 155–162. [Google Scholar] [CrossRef]
- Nah, B.S.; Choi, I.B.; Oh, W.Y.; Osborn, J.L.; Song, C.W. Vascular thermal adaptation in tumors and normal tissue in rats. Int. J. Radiat. Oncol. Biol. Phys. 1996, 35, 95–101. [Google Scholar] [CrossRef]
- Overgaard, J.; Nielsen, O.S. The importance of thermotolerance for the clinical treatment with hyperthermia. Radiother. Oncol. 1983, 1, 167–178. [Google Scholar] [CrossRef]
- Mei, X.; Ten Cate, R.; van Leeuwen, C.M.; Rodermond, H.M.; de Leeuw, L.; Dimitrakopoulou, D.; Stalpers, L.J.A.; Crezee, J.; Kok, H.P.; Franken, N.A.P.; et al. Radiosensitization by Hyperthermia: The Effects of Temperature, Sequence, and Time Interval in Cervical Cell Lines. Cancers 2020, 12, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notter, M.; Piazena, H.; Vaupel, P. Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: A retrospective study of 73 patients. Int. J. Hyperthermia 2017, 33, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurwitz, M.; Stauffer, P. Hyperthermia, radiation and chemotherapy: The role of heat in multidisciplinary cancer care. Semin. Oncol. 2014, 41, 714–729. [Google Scholar] [CrossRef] [Green Version]
- Joschko, M.A.; Webster, L.K.; Groves, J.; Yuen, K.; Palatsides, M.; Ball, D.L.; Millward, M.J. Enhancement of radiation-induced regrowth delay by gemcitabine in a human tumor xenograft model. Radiat. Oncol. Investig. 1997, 5, 62–71. [Google Scholar] [CrossRef]
- Van Bree, C.; Beumer, C.; Rodermond, H.M.; Haveman, J.; Bakker, P.J. Effectiveness of 2’,2’difluorodeoxycytidine (Gemcitabine) combined with hyperthermia in rat R-1 rhabdomyosarcoma in vitro and in vivo. Int. J. Hyperthermia 1999, 15, 549–556. [Google Scholar]
- Li, G.C.; Kal, H.B. Effect of hyperthermia on the radiation response of two mammalian cell lines. Eur. J. Cancer 1977, 13, 65–69. [Google Scholar] [CrossRef]
- Chen, H.; Ma, G.; Wang, X.; Zhou, W.; Wang, S. Time interval after heat stress plays an important role in the combination therapy of hyperthermia and cancer chemotherapy agents. Int. J. Hyperthermia 2020, 37, 254–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsumori, M.; Zeng, Z.F.; Oliynychenko, P.; Park, J.H.; Choi, I.B.; Tatsuzaki, H.; Tanaka, Y.; Hiraoka, M. Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: A multi-institutional prospective randomized trial of the International Atomic Energy Agency. Int. J. Clin. Oncol. 2007, 12, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Wust, P.; Gellermann, J.; Harder, C.; Tilly, W.; Rau, B.; Dinges, S.; Schlag, P.; Budach, V.; Felix, R. Rationale for using invasive thermometry for regional hyperthermia of pelvic tumors. Int. J. Radiat. Oncol. Biol. Phys. 1998, 41, 1129–1137. [Google Scholar] [CrossRef]
- Ohguri, T.; Imada, H.; Yahara, K.; Morioka, T.; Nakano, K.; Terashima, H.; Korogi, Y. Radiotherapy with 8-MHz radiofrequency-capacitive regional hyperthermia for stage III non-small-cell lung cancer: The radiofrequency-output power correlates with the intraesophageal temperature and clinical outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Ohguri, T.; Yahara, K.; Moon, S.D.; Yamaguchi, S.; Imada, H.; Terashima, H.; Korogi, Y. Deep regional hyperthermia for the whole thoracic region using 8 MHz radiofrequency-capacitive heating device: Relationship between the radiofrequency-output power and the intra-oesophageal temperature and predictive factors for a good heating in 59 patients. Int. J. Hyperthermia 2011, 27, 20–26. [Google Scholar] [PubMed]
- Chi, M.S.; Yang, K.L.; Chang, Y.C.; Ko, H.L.; Lin, Y.H.; Huang, S.C.; Huang, Y.Y.; Liao, K.W.; Kondo, M.; Chi, K.H. Comparing the Effectiveness of Combined External Beam Radiation and Hyperthermia Versus External Beam Radiation Alone in Treating Patients With Painful Bony Metastases: A Phase 3 Prospective, Randomized, Controlled Trial. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 78–87. [Google Scholar] [CrossRef]
- Nishimura, Y.; Hiraoka, M.; Akuta, K.; Jo, S.; Nagata, Y.; Masunaga, S.; Takahashi, M.; Abe, M. Hyperthermia combined with radiation therapy for primarily unresectable and recurrent colorectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 759–768. [Google Scholar] [CrossRef]
- Engin, K.; Tupchong, L.; Moylan, D.J.; Alexander, G.A.; Waterman, F.M.; Komarnicky, L.; Nerlinger, R.E.; Leeper, D.B. Randomized trial of one versus two adjuvant hyperthermia treatments per week in patients with superficial tumours. Int. J. Hyperthermia 1993, 9, 327–340. [Google Scholar] [CrossRef]
- Tilly, W.; Gellermann, J.; Graf, R.; Hildebrandt, B.; Weissbach, L.; Budach, V.; Felix, R.; Wust, P. Regional hyperthermia in conjunction with definitive radiotherapy against recurrent or locally advanced prostate cancer T3 pN0 M0. Strahlenther. Onkol. 2005, 181, 35–41. [Google Scholar] [CrossRef]
- Masunaga, S.I.; Hiraoka, M.; Akuta, K.; Nishimura, Y.; Nagata, Y.; Jo, S.; Takahashi, M.; Abe, M.; Terachi, T.; Oishi, K.; et al. Phase I/II trial of preoperative thermoradiotherapy in the treatment of urinary bladder cancer. Int. J. Hyperthermia 1994, 10, 31–40. [Google Scholar] [CrossRef]
- Valdagni, R.; Liu, F.F.; Kapp, D.S. Important prognostic factors influencing outcome of combined radiation and hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 1988, 15, 959–972. [Google Scholar] [CrossRef]
- Kroesen, M.; Mulder, H.T.; van Holthe, J.M.L.; Aangeenbrug, A.A.; Mens, J.W.M.; van Doorn, H.C.; Paulides, M.M.; Oomen-de Hoop, E.; Vernhout, R.M.; Lutgens, L.C.; et al. Confirmation of thermal dose as a predictor of local control in cervical carcinoma patients treated with state-of-the-art radiation therapy and hyperthermia. Radiother. Oncol. 2019, 140, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Valdagni, R.; Amichetti, M. Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymph nodes in stage IV head and neck patients. Int. J. Radiat. Oncol. Biol. Phys. 1994, 28, 163–169. [Google Scholar] [CrossRef]
- Van der Zee, J.; González González, D.; van Rhoon, G.C.; van Dijk, J.D.; van Putten, W.L.; Hart, A.A.; Dutch Deep Hyperthermia Group. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial. Lancet 2000, 355, 1119–1125. [Google Scholar] [CrossRef]
- Harima, Y.; Nagata, K.; Harima, K.; Ostapenko, V.V.; Tanaka, Y.; Sawada, S. A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int. J. Hyperthermia 2001, 17, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Berdov, B.A.; Menteshashvili, G.Z. Thermoradiotherapy of patients with locally advanced carcinoma of the rectum. Int. J. Hyperthermia 1990, 6, 881–890. [Google Scholar] [CrossRef]
- Maluta, S.; Dall’Oglio, S.; Romano, M.; Marciai, N.; Pioli, F.; Giri, M.G.; Benecchi, P.L.; Comunale, L.; Porcaro, A.B. Conformal radiotherapy plus local hyperthermia in patients affected by locally advanced high risk prostate cancer: Preliminary results of a prospective phase II study. Int. J. Hyperthermia 2007, 23, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Anscher, M.S.; Samulski, T.V.; Dodge, R.; Prosnitz, L.R.; Dewhirst, M.W. Combined external beam irradiation and external regional hyperthermia for locally advanced adenocarcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 1059–1065. [Google Scholar] [CrossRef]
- Gabriele, P.; Amichetti, M.; Orecchia, R.; Valdagni, R. Hyperthermia and radiation therapy for inoperable or recurrent parotid carcinoma. A phase I/II study. Cancer 1995, 75, 908–913. [Google Scholar] [CrossRef]
- Maguire, P.D.; Samulski, T.V.; Prosnitz, L.R.; Jones, E.L.; Rosner, G.L.; Powers, B.; Layfield, L.W.; Brizel, D.M.; Scully, S.P.; Harrelson, J.M.; et al. A phase II trial testing the thermal dose parameter CEM43 degrees T90 as a predictor of response in soft tissue sarcomas treated with pre-operative thermoradiotherapy. Int. J. Hyperthermia 2001, 17, 283–290. [Google Scholar] [CrossRef]
- Lutgens, L.C.; Koper, P.C.; Jobsen, J.J.; van der Steen-Banasik, E.M.; Creutzberg, C.L.; van den Berg, H.A.; Ottevanger, P.B.; van Rhoon, G.C.; van Doorn, H.C.; Houben, R.; et al. Radiation therapy combined with hyperthermia versus cisplatin for locally advanced cervical cancer: Results of the randomized RADCHOC trial. Radiother. Oncol. 2016, 120, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, M.D.; Hansen, J.L.; Prokopios-Davos, S.; Manola, J.; Wang, Q.; Bornstein, B.A.; Hynynen, K.; Kaplan, I.D. Hyperthermia combined with radiation for the treatment of locally advanced prostate cancer: Long-term results from Dana-Farber Cancer Institute study 94-153. Cancer 2011, 117, 510–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernon, C.C.; Hand, J.W.; Field, S.B.; Machin, D.; Whaley, J.B.; van der Zee, J.; van Putten, W.L.; van Rhoon, G.C.; van Dijk, J.D.; González González, D.; et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int. J. Radiat. Oncol. Biol. Phys. 1996, 35, 731–744. [Google Scholar] [PubMed] [Green Version]
- Datta, N.R.; Bose, A.K.; Kapoor, H.K.; Gupta, S. Head and neck cancers: Results of thermoradiotherapy versus radiotherapy. Int. J. Hyperthermia 1990, 6, 479–486. [Google Scholar] [CrossRef]
- Overgaard, J.; Gonzalez Gonzalez, D.; Hulshof, M.C.; Arcangeli, G.; Dahl, O.; Mella, O.; Bentzen, S.M. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 1995, 345, 540–543. [Google Scholar] [CrossRef]
- Overgaard, J.; Gonzalez Gonzalez, D.; Hulshof, M.C.; Arcangeli, G.; Dahl, O.; Mella, O.; Bentzen, S.M. Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. Int. J. Hyperthermia 1996, 12, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Chung, H.C.; Seong, J.S.; Suh, C.O.; Kim, G.E. Phase II trial for combined external radiotherapy and hyperthermia for unresectable hepatoma. Cancer Chemother. Pharmacol. 1992, 31, S119–S127. [Google Scholar] [CrossRef]
- Overgaard, J.; Overgaard, M.; Hansen, P.V.; von der Maase, H. Some factors of importance in the radiation treatment of malignant melanoma. Radiother. Oncol. 1986, 5, 183–192. [Google Scholar] [CrossRef]
- Emami, B.; Perez, C.A.; Konefal, J.; Pilepich, M.V.; Leybovich, L.; Straube, W.; VonGerichten, D.; Hederman, M.A. Thermoradiotherapy of malignant melanoma. Int. J. Hyperthermia 1988, 4, 373–381. [Google Scholar] [CrossRef]
- Franckena, M.; Lutgens, L.C.; Koper, P.C.; Kleynen, C.E.; van der Steen-Banasik, E.M.; Jobsen, J.J.; Leer, J.W.; Creutzberg, C.L.; Dielwart, M.F.; van Norden, Y.; et al. Radiotherapy and hyperthermia for treatment of primary locally advanced cervix cancer: Results in 378 patients. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 242–250. [Google Scholar] [CrossRef]
- Oldenborg, S.; Van Os, R.M.; Van rij, C.M.; Crezee, J.; Van de Kamer, J.B.; Rutgers, E.J.; Geijsen, E.D.; Zum vörde sive vörding, P.J.; Koning, C.C.; Van tienhoven, G. Elective re-irradiation and hyperthermia following resection of persistent locoregional recurrent breast cancer: A retrospective study. Int. J. Hyperthermia 2010, 26, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Li, X.D.; Wu, C.P.; Yin, Y.M.; Wang, R.S.; Shu, Y.Q. The regimen of gemcitabine and cisplatin combined with radio frequency hyperthermia for advanced non-small cell lung cancer: A phase II study. Int. J. Hyperthermia 2011, 27, 27–32. [Google Scholar] [CrossRef]
- Issels, R.D.; Lindner, L.H.; Verweij, J.; Wust, P.; Reichardt, P.; Schem, B.C.; Abdel-Rahman, S.; Daugaard, S.; Salat, C.; Wendtner, C.M.; et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: A randomised phase 3 multicentre study. Lancet Oncol. 2010, 11, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Sugimachi, K.; Kuwano, H.; Ide, H.; Toge, T.; Saku, M.; Oshiumi, Y. Chemotherapy combined with or without hyperthermia for patients with oesophageal carcinoma: A prospective randomized trial. Int. J. Hyperthermia 1994, 10, 485–493. [Google Scholar] [CrossRef]
- Colombo, R.; Salonia, A.; Leib, Z.; Pavone-Macaluso, M.; Engelstein, D. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int. 2011, 107, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.; Hahn, G.M. Enhanced cell killing by bleomycin and 43 degrees hyperthermia and the inhibition of recovery from potentially lethal damage. Cancer Res. 1975, 35, 2921–2927. [Google Scholar]
- Zagar, T.M.; Vujaskovic, Z.; Formenti, S.; Rugo, H.; Muggia, F.; O’Connor, B.; Myerson, R.; Stauffer, P.; Hsu, I.C.; Diederich, C.; et al. Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int. J. Hyperthermia 2014, 30, 285–294. [Google Scholar] [CrossRef]
- Wallner, K.E.; DeGregorio, M.W.; Li, G.C. Hyperthermic potentiation of cis-diamminedichloroplatinum(II) cytotoxicity in Chinese hamster ovary cells resistant to the drug. Cancer Res. 1986, 46, 6242–6245. [Google Scholar]
- Magin, R.L.; Sikic, B.I.; Cysyk, R.L. Enhancement of bleomycin activity against Lewis lung tumors in mice by local hyperthermia. Cancer Res. 1979, 39, 3792–3795. [Google Scholar]
- Kong, G.; Anyarambhatla, G.; Petros, W.P.; Braun, R.D.; Colvin, O.M.; Needham, D.; Dewhirst, M.W. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: Importance of triggered drug release. Cancer Res. 2000, 60, 6950–6957. [Google Scholar]
- Van der Heijden, A.G.; Jansen, C.F.; Verhaegh, G.; O’Donnell M, A.; Schalken, J.A.; Witjes, J.A. The effect of hyperthermia on mitomycin-C induced cytotoxicity in four human bladder cancer cell lines. Eur. Urol. 2004, 46, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Van Rhoon, G.C.; Franckena, M.; Ten Hagen, T.L.M. A moderate thermal dose is sufficient for effective free and TSL based thermochemotherapy. Adv. Drug Deliv. Rev. 2020, 163–164, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Rietbroek, R.C.; Schilthuis, M.S.; Bakker, P.J.; van Dijk, J.D.; Postma, A.J.; González González, D.; Bakker, A.J.; van der Velden, J.; Helmerhorst, T.J.; Veenhof, C.H. Phase II trial of weekly locoregional hyperthermia and cisplatin in patients with a previously irradiated recurrent carcinoma of the uterine cervix. Cancer 1997, 79, 935–943. [Google Scholar] [CrossRef]
- Fiegl, M.; Schlemmer, M.; Wendtner, C.M.; Abdel-Rahman, S.; Fahn, W.; Issels, R.D. Ifosfamide, carboplatin and etoposide (ICE) as second-line regimen alone and in combination with regional hyperthermia is active in chemo-pre-treated advanced soft tissue sarcoma of adults. Int. J. Hyperthermia 2004, 20, 661–670. [Google Scholar] [CrossRef] [PubMed]
- De Wit, R.; van der Zee, J.; van der Burg, M.E.; Kruit, W.H.; Logmans, A.; van Rhoon, G.C.; Verweij, J. A phase I/II study of combined weekly systemic cisplatin and locoregional hyperthermia in patients with previously irradiated recurrent carcinoma of the uterine cervix. Br. J. Cancer 1999, 80, 1387–1391. [Google Scholar] [CrossRef] [Green Version]
- Alvarez Secord, A.; Jones, E.L.; Hahn, C.A.; Petros, W.P.; Yu, D.; Havrilesky, L.J.; Soper, J.T.; Berchuck, A.; Spasojevic, I.; Clarke-Pearson, D.L.; et al. Phase I/II trial of intravenous Doxil and whole abdomen hyperthermia in patients with refractory ovarian cancer. Int. J. Hyperthermia 2005, 21, 333–347. [Google Scholar] [CrossRef]
- Stahl, R.; Wang, T.; Lindner, L.H.; Abdel-Rahman, S.; Santl, M.; Reiser, M.F.; Issels, R.D. Comparison of radiological and pathohistological response to neoadjuvant chemotherapy combined with regional hyperthermia (RHT) and study of response dependence on the applied thermal parameters in patients with soft tissue sarcomas (STS). Int. J. Hyperthermia 2009, 25, 289–298. [Google Scholar] [CrossRef]
- Vujaskovic, Z.; Kim, D.W.; Jones, E.; Lan, L.; McCall, L.; Dewhirst, M.W.; Craciunescu, O.; Stauffer, P.; Liotcheva, V.; Betof, A.; et al. A phase I/II study of neoadjuvant liposomal doxorubicin, paclitaxel, and hyperthermia in locally advanced breast cancer. Int. J. Hyperthermia 2010, 26, 514–521. [Google Scholar] [CrossRef]
- Ishikawa, T.; Kokura, S.; Sakamoto, N.; Ando, T.; Imamoto, E.; Hattori, T.; Oyamada, H.; Yoshinami, N.; Sakamoto, M.; Kitagawa, K.; et al. Phase II trial of combined regional hyperthermia and gemcitabine for locally advanced or metastatic pancreatic cancer. Int. J. Hyperthermia 2012, 28, 597–604. [Google Scholar] [CrossRef]
- Yang, W.H.; Xie, J.; Lai, Z.Y.; Yang, M.D.; Zhang, G.H.; Li, Y.; Mu, J.B.; Xu, J. Radiofrequency deep hyperthermia combined with chemotherapy in the treatment of advanced non-small cell lung cancer. Chin. Med. J. 2019, 132, 922–927. [Google Scholar] [CrossRef]
- Tschoep-Lechner, K.E.; Milani, V.; Berger, F.; Dieterle, N.; Abdel-Rahman, S.; Salat, C.; Issels, R.D. Gemcitabine and cisplatin combined with regional hyperthermia as second-line treatment in patients with gemcitabine-refractory advanced pancreatic cancer. Int. J. Hyperthermia 2013, 29, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Monge, O.R.; Rofstad, E.K.; Kaalhus, O. Thermochemotherapy in vivo of a C3H mouse mammary carcinoma: Single fraction heat and drug treatment. Eur. J. Cancer Clin. Oncol. 1988, 24, 1661–1669. [Google Scholar] [CrossRef]
- Adachi, S.; Kokura, S.; Okayama, T.; Ishikawa, T.; Takagi, T.; Handa, O.; Naito, Y.; Yoshikawa, T. Effect of hyperthermia combined with gemcitabine on apoptotic cell death in cultured human pancreatic cancer cell lines. Int. J. Hyperthermia 2009, 25, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Albregts, M.; Hulshof, M.C.; Zum Vörde Sive Vörding, P.J.; van Lanschot, J.J.; Richel, D.J.; Crezee, H.; Fockens, P.; van Dijk, J.D.; González González, D. A feasibility study in oesophageal carcinoma using deep loco-regional hyperthermia combined with concurrent chemotherapy followed by surgery. Int. J. Hyperthermia 2004, 20, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Herman, T.S.; Teicher, B.A.; Jochelson, M.; Clark, J.; Svensson, G.; Coleman, C.N. Rationale for use of local hyperthermia with radiation therapy and selected anticancer drugs in locally advanced human malignancies. Int. J. Hyperthermia 1988, 4, 143–158. [Google Scholar] [CrossRef]
- Herman, T.S.; Jochelson, M.S.; Teicher, B.A.; Scott, P.J.; Hansen, J.; Clark, J.R.; Pfeffer, M.R.; Gelwan, L.E.; Molnar-Griffin, B.J.; Fraser, S.M.; et al. A phase I-II trial of cisplatin, hyperthermia and radiation in patients with locally advanced malignancies. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 1273–1279. [Google Scholar] [CrossRef]
- Herman, T.S.; Teicher, B.A. Sequencing of trimodality therapy[cis-diamminedichloroplatinum(II)/hyperthermia/radiation] as determined by tumor growth delay and tumor cell survival in the FSaIIC fibrosarcoma. Cancer Res. 1988, 48, 2693–2697. [Google Scholar]
- Ohguri, T.; Imada, H.; Yahara, K.; Narisada, H.; Morioka, T.; Nakano, K.; Korogi, Y. Concurrent chemoradiotherapy with gemcitabine plus regional hyperthermia for locally advanced pancreatic carcinoma: Initial experience. Radiat. Med. 2008, 26, 587–596. [Google Scholar] [CrossRef]
- Harima, Y.; Ohguri, T.; Imada, H.; Sakurai, H.; Ohno, T.; Hiraki, Y.; Tuji, K.; Tanaka, M.; Terashima, H. A multicentre randomised clinical trial of chemoradiotherapy plus hyperthermia versus chemoradiotherapy alone in patients with locally advanced cervical cancer. Int. J. Hyperthermia 2016, 32, 801–808. [Google Scholar] [CrossRef]
- Westermann, A.M.; Jones, E.L.; Schem, B.C.; van der Steen-Banasik, E.M.; Koper, P.; Mella, O.; Uitterhoeve, A.L.; de Wit, R.; van der Velden, J.; Burger, C.; et al. First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with stage IIB, III, and IVA cervical carcinoma. Cancer 2005, 104, 763–770. [Google Scholar] [CrossRef]
- Asao, T.; Sakurai, H.; Harashima, K.; Yamaguchi, S.; Tsutsumi, S.; Nonaka, T.; Shioya, M.; Nakano, T.; Kuwano, H. The synchronization of chemotherapy to circadian rhythms and irradiation in pre-operative chemoradiation therapy with hyperthermia for local advanced rectal cancer. Int. J. Hyperthermia 2006, 22, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Amichetti, M.; Graiff, C.; Fellin, G.; Pani, G.; Bolner, A.; Maluta, S.; Valdagni, R. Cisplatin, hyperthermia, and radiation (trimodal therapy) in patients with locally advanced head and neck tumors: A phase I-II study. Int. J. Radiat. Oncol. Biol. Phys. 1993, 26, 801–807. [Google Scholar] [CrossRef]
- Kouloulias, V.E.; Dardoufas, C.E.; Kouvaris, J.R.; Gennatas, C.S.; Polyzos, A.K.; Gogas, H.J.; Sandilos, P.H.; Uzunoglu, N.K.; Malas, E.G.; Vlahos, L.J. Liposomal doxorubicin in conjunction with reirradiation and local hyperthermia treatment in recurrent breast cancer: A phase I/II trial. Clin. Cancer Res. 2002, 8, 374–382. [Google Scholar]
- Gani, C.; Lamprecht, U.; Ziegler, A.; Moll, M.; Gellermann, J.; Heinrich, V.; Wenz, S.; Fend, F.; Königsrainer, A.; Bitzer, M.; et al. Deep regional hyperthermia with preoperative radiochemotherapy in locally advanced rectal cancer, a prospective phase II trial. Radiother. Oncol. 2021, 159, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Ohguri, T.; Harima, Y.; Imada, H.; Sakurai, H.; Ohno, T.; Hiraki, Y.; Tuji, K.; Tanaka, M.; Terashima, H. Relationships between thermal dose parameters and the efficacy of definitive chemoradiotherapy plus regional hyperthermia in the treatment of locally advanced cervical cancer: Data from a multicentre randomised clinical trial. Int. J. Hyperthermia 2018, 34, 461–468. [Google Scholar] [CrossRef]
- Maluta, S.; Schaffer, M.; Pioli, F.; Dall’oglio, S.; Pasetto, S.; Schaffer, P.M.; Weber, B.; Giri, M.G. Regional hyperthermia combined with chemoradiotherapy in primary or recurrent locally advanced pancreatic cancer: An open-label comparative cohort trial. Strahlenther. Onkol. 2011, 187, 619–625. [Google Scholar] [CrossRef]
- Barsukov, Y.A.; Gordeyev, S.S.; Tkachev, S.I.; Fedyanin, M.Y.; Perevoshikov, A.G. Phase II study of concomitant chemoradiotherapy with local hyperthermia and metronidazole for locally advanced fixed rectal cancer. Colorectal Dis. 2013, 15, 1107–1114. [Google Scholar] [CrossRef]
- Ott, O.J.; Gani, C.; Lindner, L.H.; Schmidt, M.; Lamprecht, U.; Abdel-Rahman, S.; Hinke, A.; Weissmann, T.; Hartmann, A.; Issels, R.D.; et al. Neoadjuvant Chemoradiation Combined with Regional Hyperthermia in Locally Advanced or Recurrent Rectal Cancer. Cancers 2021, 13, 1279. [Google Scholar] [CrossRef]
- Rau, B.; Wust, P.; Hohenberger, P.; Löffel, J.; Hünerbein, M.; Below, C.; Gellermann, J.; Speidel, A.; Vogl, T.; Riess, H.; et al. Preoperative hyperthermia combined with radiochemotherapy in locally advanced rectal cancer: A phase II clinical trial. Ann. Surg. 1998, 227, 380–389. [Google Scholar] [CrossRef]
- Rau, B.; Wust, P.; Tilly, W.; Gellermann, J.; Harder, C.; Riess, H.; Budach, V.; Felix, R.; Schlag, P.M. Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: Regional radiofrequency hyperthermia correlates with clinical parameters. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 381–391. [Google Scholar] [CrossRef]
- Wittlinger, M.; Rödel, C.M.; Weiss, C.; Krause, S.F.; Kühn, R.; Fietkau, R.; Sauer, R.; Ott, O.J. Quadrimodal treatment of high-risk T1 and T2 bladder cancer: Transurethral tumor resection followed by concurrent radiochemotherapy and regional deep hyperthermia. Radiother. Oncol. 2009, 93, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Milani, V.; Pazos, M.; Issels, R.D.; Buecklein, V.; Rahman, S.; Tschoep, K.; Schaffer, P.; Wilkowski, R.; Duehmke, E.; Schaffer, M. Radiochemotherapy in combination with regional hyperthermia in preirradiated patients with recurrent rectal cancer. Strahlenther. Onkol. 2008, 184, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Huo, X.; Chen, L.; Wang, H.; Yu, H. Clinical experience with radio-, chemo- and hyperthermotherapy combined trimodality on locally advanced esophageal cancer. Mol. Clin. Oncol. 2013, 1, 1009–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gani, C.; Schroeder, C.; Heinrich, V.; Spillner, P.; Lamprecht, U.; Berger, B.; Zips, D. Long-term local control and survival after preoperative radiochemotherapy in combination with deep regional hyperthermia in locally advanced rectal cancer. Int. J. Hyperthermia 2016, 32, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merten, R.; Ott, O.; Haderlein, M.; Bertz, S.; Hartmann, A.; Wullich, B.; Keck, B.; Kühn, R.; Rödel, C.M.; Weiss, C.; et al. Long-Term Experience of Chemoradiotherapy Combined with Deep Regional Hyperthermia for Organ Preservation in High-Risk Bladder Cancer (Ta, Tis, T1, T2). Oncologist 2019, 24, e1341–e1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Haaren, P.M.; Hulshof, M.C.; Kok, H.P.; Oldenborg, S.; Geijsen, E.D.; Van Lanschot, J.J.; Crezee, J. Relation between body size and temperatures during locoregional hyperthermia of oesophageal cancer patients. Int. J. Hyperthermia 2008, 24, 663–674. [Google Scholar] [CrossRef]
- Curto, S.; Aklan, B.; Mulder, T.; Mils, O.; Schmidt, M.; Lamprecht, U.; Peller, M.; Wessalowski, R.; Lindner, L.H.; Fietkau, R.; et al. Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom. Cancers 2019, 11, 1709. [Google Scholar] [CrossRef] [Green Version]
- Winter, L.; Oberacker, E.; Paul, K.; Ji, Y.; Oezerdem, C.; Ghadjar, P.; Thieme, A.; Budach, V.; Wust, P.; Niendorf, T. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int. J. Hyperthermia 2016, 32, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Adibzadeh, F.; Sumser, K.; Curto, S.; Yeo, D.T.B.; Shishegar, A.A.; Paulides, M.M. Systematic review of pre-clinical and clinical devices for magnetic resonance-guided radiofrequency hyperthermia. Int. J. Hyperthermia 2020, 37, 15–27. [Google Scholar] [CrossRef]
- Gellermann, J.; Faehling, H.; Mielec, M.; Cho, C.H.; Budach, V.; Wust, P. Image artifacts during MRT hybrid hyperthermia-causes and elimination. Int. J. Hyperthermia 2008, 24, 327–335. [Google Scholar] [CrossRef]
- Ishihara, Y.; Calderon, A.; Watanabe, H.; Okamoto, K.; Suzuki, Y.; Kuroda, K.; Suzuki, Y. A precise and fast temperature mapping using water proton chemical shift. Magn. Reson. Med. 1995, 34, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, D.; Delannoy, J.; Levin, R.L. Temperature mapping with MR imaging of molecular diffusion: Application to hyperthermia. Radiology 1989, 171, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Gellermann, J.; Wlodarczyk, W.; Feussner, A.; Fähling, H.; Nadobny, J.; Hildebrandt, B.; Felix, R.; Wust, P. Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int. J. Hyperthermia 2005, 21, 497–513. [Google Scholar] [CrossRef] [PubMed]
- Lüdemann, L.; Wlodarczyk, W.; Nadobny, J.; Weihrauch, M.; Gellermann, J.; Wust, P. Non-invasive magnetic resonance thermography during regional hyperthermia. Int. J. Hyperthermia 2010, 26, 273–282. [Google Scholar] [CrossRef]
- Gellermann, J.; Wlodarczyk, W.; Ganter, H.; Nadobny, J.; Fähling, H.; Seebass, M.; Felix, R.; Wust, P. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: Validation in a heterogeneous phantom. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 267–277. [Google Scholar] [CrossRef]
- Gellermann, J.; Hildebrandt, B.; Issels, R.; Ganter, H.; Wlodarczyk, W.; Budach, V.; Felix, R.; Tunn, P.U.; Reichardt, P.; Wust, P. Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: Correlation with response and direct thermometry. Cancer 2006, 107, 1373–1382. [Google Scholar] [CrossRef]
- Gellermann, J.; Wlodarczyk, W.; Hildebrandt, B.; Ganter, H.; Nicolau, A.; Rau, B.; Tilly, W.; Fähling, H.; Nadobny, J.; Felix, R.; et al. Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res. 2005, 65, 5872–5880. [Google Scholar] [CrossRef] [Green Version]
- Poni, R.; Neufeld, E.; Capstick, M.; Bodis, S.; Samaras, T.; Kuster, N. Feasibility of Temperature Control by Electrical Impedance Tomography in Hyperthermia. Cancers 2021, 13, 3297. [Google Scholar] [CrossRef]
- Esrick, M.A.; McRae, D.A. The effect of hyperthermia-induced tissue conductivity changes on electrical impedance temperature mapping. Phys. Med. Biol. 1994, 39, 133–144. [Google Scholar] [CrossRef]
- Paulsen, K.D.; Moskowitz, M.J.; Ryan, T.P.; Mitchell, S.E.; Hoopes, P.J. Initial in vivo experience with EIT as a thermal estimator during hyperthermia. Int. J. Hyperthermia 1996, 12, 573–591. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Andersen, T.; Qian, P.; Barry, T.; McEwan, A. Electrical Impedance Tomography for monitoring cardiac radiofrequency ablation: A scoping review of an emerging technology. Med. Eng. Phys. 2020, 84, 36–50. [Google Scholar] [CrossRef] [PubMed]
Thermometric Parameters | Definitions |
---|---|
Heating Temperature | |
Tmin | Minimum temperature achieved in target volume (°C). |
Tmax | Maximum temperature achieved in target volume (°C). |
Tavg | Average temperature achieved in target volume (°C). |
T10 | Temperature achieved in 10% of the target volume (°C). |
T20 | Temperature achieved in 20% of the target volume (°C). |
T50 | Temperature achieved in 50% of the target volume (°C). |
T80 | Temperature achieved in 80% of the target volume (°C). |
T90 | Temperature achieved in 90% of the target volume (°C). |
Heating duration | |
tpre | Warm-up period is the time required to achieve the desired treatment temperature and therapeutic time (min). |
ttreat | Treatment period is the time during which a constant temperature in the tumor (≥41 °C) is maintained (min). |
Thermal Dose | |
CEM43°CT90 | Cumulative equivalent minutes at 43 °C when the measured temperature is T90 (min). |
CEM43°CT50 | Cumulative equivalent minutes at 43 °C when the measured temperature is T50 (min). |
CEM43°CT10 | Cumulative equivalent minutes at 43 °C when the measured temperature is T10 (min). |
TRISE | T50 values above 37 °C multiplied by the duration of all heating sessions normalized to a duration of 450 min (°C) [36]. |
AUC | Actual time-temperature plots by computing the area under the curve (AUC) for T > 37 °C and T ≥ 39 °C (°C-min) [49]. |
HT sessions | |
Nweek | Number of HT sessions per week. |
Ntotal | Total number of HT sessions during the treatment course. |
Time interval | |
tint | The time interval between HT and RT and/or CT. |
Sequencing | The scheduling order of HT with RT and/or CT. |
Temperature Metrics | Reference Value (°C) |
---|---|
Tmin | 39 |
Tmax | 44 |
Tavg | Undefined |
T10 | Undefined |
T20 | Undefined |
T50 | ≥41 * |
T80 | Undefined |
T90 | ≥40 * |
Heating Duration Parameters | Reference Value (min) |
tpre | undefined |
ttreat | 60 1 |
Thermal Dose Parameters | Reference Value |
---|---|
CEM43°CT10 | Undefined (min) |
CEM43°CT50 | Undefined (min) |
CEM43°CT90 | Undefined (min) |
TRISE | Undefined (°C) |
AUC | Undefined (°C-min) |
Heating Session Parameter | Reference Value (N) |
---|---|
Ntotal | Defined 1 |
Nweek | 1–2 2 |
Time Interval Parameter | Reference Value (min) |
---|---|
tint | 0–240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ademaj, A.; Veltsista, D.P.; Ghadjar, P.; Marder, D.; Oberacker, E.; Ott, O.J.; Wust, P.; Puric, E.; Hälg, R.A.; Rogers, S.; et al. Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment. Cancers 2022, 14, 625. https://doi.org/10.3390/cancers14030625
Ademaj A, Veltsista DP, Ghadjar P, Marder D, Oberacker E, Ott OJ, Wust P, Puric E, Hälg RA, Rogers S, et al. Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment. Cancers. 2022; 14(3):625. https://doi.org/10.3390/cancers14030625
Chicago/Turabian StyleAdemaj, Adela, Danai P. Veltsista, Pirus Ghadjar, Dietmar Marder, Eva Oberacker, Oliver J. Ott, Peter Wust, Emsad Puric, Roger A. Hälg, Susanne Rogers, and et al. 2022. "Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment" Cancers 14, no. 3: 625. https://doi.org/10.3390/cancers14030625
APA StyleAdemaj, A., Veltsista, D. P., Ghadjar, P., Marder, D., Oberacker, E., Ott, O. J., Wust, P., Puric, E., Hälg, R. A., Rogers, S., Bodis, S., Fietkau, R., Crezee, H., & Riesterer, O. (2022). Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment. Cancers, 14(3), 625. https://doi.org/10.3390/cancers14030625