Stereotactic Radiation Therapy versus Brachytherapy: Relative Strengths of Two Highly Efficient Options for the Treatment of Localized Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Radiobiology
2.1. Ultra-Hypofractionated EBRT
2.2. Brachytherapy
3. Ultra-Hypofractionated Radiotherapy versus Brachytherapy in Low-Risk/Favorable Intermediate-Risk Prostate Cancer
3.1. Oncologic Outcomes
3.2. Genitourinary and Gastrointestinal Toxicity
3.3. Erectile Dysfunction
3.4. Current Recommendations for Low Risk/Favorable Intermediate Risk PROSTATE Cancer
- ISUP grade ≤ 2;
- Plus one and only one feature among cT2b-cT2c or ISUP grade 2 or PSA 10–20 ng/mL;
- Plus ≤ 50% random biopsy cores involved with cancer;
- Plus none of the following features: ≥cT3a or PSA > 20 ng/mL.
- cT1b-T2a;
- Plus ISUP grade 1 with <50% of random biopsy cores involved with cancer or ISUP grade 2 with <33% of random biopsy cores involved with cancer;
- Plus PSA < 10 ng/mL.
4. Ultra-Hypofractionated Radiotherapy versus Brachytherapy in Unfavorable Intermediate-Risk/High-Risk Prostate Cancer
4.1. BT Monotherapy
4.2. EBRT Plus BT Boost
4.3. Focus on the Toxicity of the Combination of EBRT Plus BT Boost
4.4. SBRT Monotherapy
4.5. EBRT Plus SBRT Boost
4.6. Current Recommendations for Unfavorable Intermediate Risk/High Risk Prostate Cancer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Garzotto, M.; Fair, W.R. Historical Perspective on Prostate Brachytherapy. J. Endourol. 2000, 14, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Lederman, M. The Early History of Radiotherapy: 1895–1939. Int. J. Radiat. Oncol. Biol. Phys. 1981, 7, 639–648. [Google Scholar] [CrossRef]
- Aronowitz, J.N. Dawn of Prostate Brachytherapy: 1915–1930. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 712–718. [Google Scholar] [CrossRef]
- Holm, H.H. The History of Interstitial Brachytherapy of Prostatic Cancer. Semin. Surg. Oncol. 1997, 13, 431–437. [Google Scholar] [CrossRef]
- Whitmore, W.F.; Hilaris, B.; Grabstald, H. Retropubic Implantation to Iodine 125 in the Treatment of Prostatic Cancer. J. Urol. 1972, 108, 918–920. [Google Scholar] [CrossRef]
- Fornage, B.D.; Touche, D.H.; Deglaire, M.; Faroux, M.J.; Simatos, A. Real-Time Ultrasound-Guided Prostatic Biopsy Using a New Transrectal Linear-Array Probe. Radiology 1983, 146, 547–548. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.; Li, G.; Bai, S. High Dose versus Conventional Dose in External Beam Radiotherapy of Prostate Cancer: A Meta-Analysis of Long-Term Follow-Up. J. Cancer Res. Clin. Oncol. 2015, 141, 1063–1071. [Google Scholar] [CrossRef]
- Kerkmeijer, L.G.W.; Groen, V.H.; Pos, F.J.; Haustermans, K.; Monninkhof, E.M.; Smeenk, R.J.; Kunze-Busch, M.; de Boer, J.C.J.; van der Voort van Zijp, J.; van Vulpen, M.; et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 787–796. [Google Scholar] [CrossRef]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. Conventional versus Hypofractionated High-Dose Intensity-Modulated Radiotherapy for Prostate Cancer: 5-Year Outcomes of the Randomised, Non-Inferiority, Phase 3 CHHiP Trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef] [Green Version]
- Dearnaley, D.; Syndikus, I.; Sumo, G.; Bidmead, M.; Bloomfield, D.; Clark, C.; Gao, A.; Hassan, S.; Horwich, A.; Huddart, R.; et al. Conventional versus Hypofractionated High-Dose Intensity-Modulated Radiotherapy for Prostate Cancer: Preliminary Safety Results from the CHHiP Randomised Controlled Trial. Lancet Oncol. 2012, 13, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Incrocci, L.; Wortel, R.C.; Alemayehu, W.G.; Aluwini, S.; Schimmel, E.; Krol, S.; van der Toorn, P.-P.; de Jager, H.; Heemsbergen, W.; Heijmen, B.; et al. Hypofractionated versus Conventionally Fractionated Radiotherapy for Patients with Localised Prostate Cancer (HYPRO): Final Efficacy Results from a Randomised, Multicentre, Open-Label, Phase 3 Trial. Lancet Oncol. 2016, 17, 1061–1069. [Google Scholar] [CrossRef]
- Aluwini, S.; Pos, F.; Schimmel, E.; Krol, S.; van der Toorn, P.P.; de Jager, H.; Alemayehu, W.G.; Heemsbergen, W.; Heijmen, B.; Incrocci, L. Hypofractionated versus Conventionally Fractionated Radiotherapy for Patients with Prostate Cancer (HYPRO): Late Toxicity Results from a Randomised, Non-Inferiority, Phase 3 Trial. Lancet Oncol. 2016, 17, 464–474. [Google Scholar] [CrossRef]
- Arcangeli, G.; Saracino, B.; Arcangeli, S.; Gomellini, S.; Petrongari, M.G.; Sanguineti, G.; Strigari, L. Moderate Hypofractionation in High-Risk, Organ-Confined Prostate Cancer: Final Results of a Phase III Randomized Trial. J. Clin. Oncol. 2017, 35, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.R.; Dignam, J.J.; Amin, M.B.; Bruner, D.W.; Low, D.; Swanson, G.P.; Shah, A.B.; D’Souza, D.P.; Michalski, J.M.; Dayes, I.S.; et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J. Clin. Oncol. 2016, 34, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Catton, C.N.; Lukka, H.; Gu, C.-S.; Martin, J.M.; Supiot, S.; Chung, P.W.M.; Bauman, G.S.; Bahary, J.-P.; Ahmed, S.; Cheung, P.; et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J. Clin. Oncol. 2017, 35, 1884–1890. [Google Scholar] [CrossRef]
- Mukherjee, K.; Small, W.; Duszak, R. Trends and Variations in Utilization and Costs of Radiotherapy for Prostate Cancer: A SEER Medicare Analysis from 2007 through 2016. Brachytherapy 2021, 21. [Google Scholar] [CrossRef]
- Proust-Lima, C.; Taylor, J.M.G.; Sécher, S.; Sandler, H.; Kestin, L.; Pickles, T.; Bae, K.; Allison, R.; Williams, S. Confirmation of a Low α/β Ratio for Prostate Cancer Treated by External Beam Radiation Therapy Alone Using a Post-Treatment Repeated-Measures Model for PSA Dynamics. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Miralbell, R.; Roberts, S.A.; Zubizarreta, E.; Hendry, J.H. Dose-Fractionation Sensitivity of Prostate Cancer Deduced from Radiotherapy Outcomes of 5969 Patients in Seven International Institutional Datasets: α/β = 1.4 (0.9–2.2) Gy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e17–e24. [Google Scholar] [CrossRef]
- Dasu, A.; Toma-Dasu, I. Prostate Alpha/Beta Revisited -- an Analysis of Clinical Results from 14–168 Patients. Acta Oncol. 2012, 51, 963–974. [Google Scholar] [CrossRef]
- Cosset, J.-M.; Chargari, C.; Créhange, G. Quel rapport alpha/bêta pour le cancer prostatique en 2019? Cancer/Radiothérapie 2019, 23, 342–345. [Google Scholar] [CrossRef]
- Qiu, B.; Aili, A.; Xue, L.; Jiang, P.; Wang, J. Advances in Radiobiology of Stereotactic Ablative Radiotherapy. Front. Oncol. 2020, 10, 1165. [Google Scholar] [CrossRef] [PubMed]
- Song, C.W.; Glatstein, E.; Marks, L.B.; Emami, B.; Grimm, J.; Sperduto, P.W.; Kim, M.-S.; Hui, S.; Dusenbery, K.E.; Cho, L.C. Biological Principles of Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiation Surgery (SRS): Indirect Cell Death. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Withers, H.R. The Four R’s of Radiotherapy. In Advances in Radiation Biology; Lett, J.T., Adler, H., Eds.; Advances in Radiation Biology; Elsevier: Amsterdam, The Netherlands, 1975; Volume 5, pp. 241–271. [Google Scholar]
- Chargari, C.; Van Limbergen, E.; Mahantshetty, U.; Deutsch, É.; Haie-Méder, C. Radiobiology of Brachytherapy: The Historical View Based on Linear Quadratic Model and Perspectives for Optimization. Cancer/Radiothérapie 2018, 22, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Annede, P.; Cosset, J.-M.; Van Limbergen, E.; Deutsch, E.; Haie-Meder, C.; Chargari, C. Radiobiology: Foundation and New Insights in Modeling Brachytherapy Effects. Semin. Radiat. Oncol. 2020, 30, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Chatzikonstantinou, G.; Keller, C.; Scherf, C.; Bathen, B.; Köhn, J.; Tselis, N. Real-World Dosimetric Comparison between CyberKnife SBRT and HDR Brachytherapy for the Treatment of Prostate Cancer. Brachytherapy 2021, 20, 44–49. [Google Scholar] [CrossRef]
- Fuller, D.B.; Naitoh, J.; Mardirossian, G. Virtual HDR CyberKnife SBRT for Localized Prostatic Carcinoma: 5-Year Disease-Free Survival and Toxicity Observations. Front Oncol. 2014, 4, 321. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, P.; Thames, H.D.; Joiner, M.C. A Generalized Formulation of the ‘Incomplete-Repair’ Model for Cell Survival and Tissue Response to Fractionated Low Dose-Rate Irradiation. Int. J. Radiat. Biol. 1990, 57, 127–142. [Google Scholar] [CrossRef]
- Limbergen, E.V.; Joiner, M. Radiobiology of LDR, HDR, PDR and VLDR Brachytherapy. 21. Radiobiology of LDR, HDR, PDR and VLDR Brachytherapy. GEC ESTRO Handbook of Brachytherapy (second edition) PART I: The basics of brachytherapy. Available online: https://cld.bz/bookdata/JkLBfGu/basic-html/page-1.html (accessed on 25 April 2022).
- Ling, C.C. Permanent Implants Using Au-198, Pd-103 and I-125: Radiobiological Considerations Based on the Linear Quadratic Model. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 81–87. [Google Scholar] [CrossRef]
- Ling, C.C.; Li, W.X.; Anderson, L.L. The Relative Biological Effectiveness of I-125 and Pd-103. Int. J. Radiat. Oncol. Biol. Phys. 1995, 32, 373–378. [Google Scholar] [CrossRef]
- Hennequin, C.; Mazeron, J.-J. Radiobiology in brachytherapy. Cancer Radiother. 2013, 17, 81–84. [Google Scholar] [CrossRef]
- Jarosz-Biej, M.; Smolarczyk, R.; Cichoń, T.; Drzyzga, A.; Czapla, J.; Urbaś, Z.; Pilny, E.; Matuszczak, S.; Wojcieszek, P. Brachytherapy in a Single Dose of 10Gy as an “in Situ” Vaccination. Int. J. Mol. Sci. 2020, 21, E4585. [Google Scholar] [CrossRef] [PubMed]
- King, C.R.; Lehmann, J.; Adler, J.R.; Hai, J. CyberKnife Radiotherapy for Localized Prostate Cancer: Rationale and Technical Feasibility. Technol. Cancer Res. Treat. 2003, 2, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EAU EANM ESTRO ESUR ISUP SIOG Guidelines on Prostate Cancer. Available online: https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAU-EANM-ESTRO-ESUR-ISUP_SIOG-Guidelines-on-Prostate-Cancer-2022_2022-04-25-063938_yfos.pdf (accessed on 20 April 2022).
- Mottet, N.; Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Expert Patient Advocate; de Santis, M.; Gillessen, S.; Grummet, J.; Henry, A.M.; van der Kwast, T.H.; et al. EAU Guidelines: Prostate Cancer. Available online: https://uroweb.org/guideline/prostate-cancer/#6 (accessed on 6 October 2021).
- Crook, J.M.; Gomez-Iturriaga, A.; Wallace, K.; Ma, C.; Fung, S.; Alibhai, S.; Jewett, M.; Fleshner, N. Comparison of Health-Related Quality of Life 5 Years after SPIRIT: Surgical Prostatectomy Versus Interstitial Radiation Intervention Trial. J. Clin. Oncol. 2011, 29, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, J.L.; Hamdy, F.C.; Lane, J.A.; Mason, M.; Metcalfe, C.; Walsh, E.; Blazeby, J.M.; Peters, T.J.; Holding, P.; Bonnington, S.; et al. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2016, 375, 1425–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giberti, C.; Chiono, L.; Gallo, F.; Schenone, M.; Gastaldi, E. Radical Retropubic Prostatectomy versus Brachytherapy for Low-Risk Prostatic Cancer: A Prospective Study. World J. Urol. 2009, 27, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Lawton, C.A.; Hunt, D.; Lee, W.R.; Gomella, L.; Grignon, D.; Gillin, M.; Morton, G.; Pisansky, T.M.; Sandler, H. Long-Term Results of a Phase II Trial of Ultrasound-Guided Radioactive Implantation of the Prostate for Definitive Management of Localized Adenocarcinoma of the Prostate (RTOG 98-05). Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1–7. [Google Scholar] [CrossRef]
- Ito, K.; Saito, S.; Yorozu, A.; Kojima, S.; Kikuchi, T.; Higashide, S.; Aoki, M.; Koga, H.; Satoh, T.; Ohashi, T.; et al. Nationwide Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation (J-POPS): First Analysis on Survival. Int. J. Clin. Oncol. 2018, 23, 1148–1159. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Kuban, D.A.; Levy, L.B.; Potters, L.; Beyer, D.C.; Blasko, J.C.; Moran, B.J.; Ciezki, J.P.; Zietman, A.L.; Pisansky, T.M.; et al. Multi-Institutional Analysis of Long-Term Outcome for Stages T1-T2 Prostate Cancer Treated with Permanent Seed Implantation. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 327–333. [Google Scholar] [CrossRef]
- Sylvester, J.E.; Grimm, P.D.; Wong, J.; Galbreath, R.W.; Merrick, G.; Blasko, J.C. Fifteen-Year Biochemical Relapse-Free Survival, Cause-Specific Survival, and Overall Survival Following I (125) Prostate Brachytherapy in Clinically Localized Prostate Cancer: Seattle Experience. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 376–381. [Google Scholar] [CrossRef]
- Morris, W.J.; Keyes, M.; Spadinger, I.; Kwan, W.; Liu, M.; McKenzie, M.; Pai, H.; Pickles, T.; Tyldesley, S. Population-Based 10-Year Oncologic Outcomes after Low-Dose-Rate Brachytherapy for Low-Risk and Intermediate-Risk Prostate Cancer. Cancer 2013, 119, 1537–1546. [Google Scholar] [CrossRef] [PubMed]
- Kittel, J.A.; Reddy, C.A.; Smith, K.L.; Stephans, K.L.; Tendulkar, R.D.; Ulchaker, J.; Angermeier, K.; Campbell, S.; Stephenson, A.; Klein, E.A.; et al. Long-Term Efficacy and Toxicity of Low-Dose-Rate 125I Prostate Brachytherapy as Monotherapy in Low-, Intermediate-, and High-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Cosset, J.-M.; Flam, T.; Belin, L.; Thiounn, N.; Pierrat, N.; Pontvert, D.; Wakil, G.; Savignoni, A.; Chauveinc, L. Long-Term Results of Permanent Implant Prostate Cancer Brachytherapy: A Single-Institution Study of 675 Patients Treated between 1999 and 2003. Cancer/Radiothérapie 2016, 20, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Waterhouse, D.; Lane, S.E.; Haworth, A.; Stanley, J.; Shannon, T.; Joseph, D. Ten-Year Outcomes Using Low Dose Rate Brachytherapy for Localised Prostate Cancer: An Update to the First Australian Experience. J. Med. Imaging Radiat. Oncol. 2016, 60, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Langley, S.E.M.; Soares, R.; Uribe, J.; Uribe-Lewis, S.; Money-Kyrle, J.; Perna, C.; Khaksar, S.; Laing, R. Long-Term Oncological Outcomes and Toxicity in 597 Men Aged ≤60 Years at Time of Low-Dose-Rate Brachytherapy for Localised Prostate Cancer. BJU Int. 2018, 121, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Prada, P.J.; Cardenal, J.; García Blanco, A.; Anchuelo, J.; Ferri, M.; Diaz de Cerio, I.; Vázquez, A.; Pacheco, M.; Ruiz Arrebola, S. Long-Term Outcomes in Patients Younger than 60 Years of Age Treated with Brachytherapy for Prostate Cancer. Strahlenther Onkol. 2018, 194, 311–317. [Google Scholar] [CrossRef]
- Jacobsen, M.G.; Thomsen, F.B.; Fode, M.; Bisbjerg, R.; Østergren, P.B. Results of 14 Years of Brachytherapy for Localized Prostate Cancer in Denmark: The Herlev Cohort. Scand. J. Urol. 2018, 52, 164–168. [Google Scholar] [CrossRef]
- Winoker, J.S.; Omidele, O.O.; Stock, R.G.; Stone, N.N. Long-Term Oncological and Functional Outcomes Support Use of Low-Dose-Rate Brachytherapy with or without External Beam Radiation in Young Men (≤60 Years) with Localized Prostate Cancer. Brachytherapy 2019, 18, 192–197. [Google Scholar] [CrossRef]
- Vuolukka, K.; Auvinen, P.; Palmgren, J.-E.; Voutilainen, T.; Aaltomaa, S.; Kataja, V. Long-Term Efficacy and Urological Toxicity of Low-Dose-Rate Brachytherapy (LDR-BT) as Monotherapy in Localized Prostate Cancer. Brachytherapy 2019, 18, 583–588. [Google Scholar] [CrossRef]
- Lazarev, S.; Thompson, M.R.; Stone, N.N.; Stock, R.G. Low-Dose-Rate Brachytherapy for Prostate Cancer: Outcomes at >10 Years of Follow-Up. BJU Int. 2018, 121, 781–790. [Google Scholar] [CrossRef]
- Grimm, P.; Billiet, I.; Bostwick, D.; Dicker, A.P.; Frank, S.; Immerzeel, J.; Keyes, M.; Kupelian, P.; Lee, W.R.; Machtens, S.; et al. Comparative Analysis of Prostate-Specific Antigen Free Survival Outcomes for Patients with Low, Intermediate and High Risk Prostate Cancer Treatment by Radical Therapy. Results from the Prostate Cancer Results Study Group: CANCER CONTROL RATES: COMPARISON OF TREATMENT OPTIONS. BJU Int. 2012, 109, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Merrick, G.S.; Wallner, K.E.; Butler, W.M.; Galbreath, R.W.; Taira, A.V.; Orio, P.; Adamovich, E. 20 Gy versus 44 Gy of Supplemental External Beam Radiotherapy with Palladium-103 for Patients with Greater Risk Disease: Results of a Prospective Randomized Trial. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e449–e455. [Google Scholar] [CrossRef] [PubMed]
- Merrick, G.S.; Wallner, K.E.; Galbreath, R.W.; Butler, W.M.; Adamovich, E. Is Supplemental External Beam Radiation Therapy Essential to Maximize Brachytherapy Outcomes in Patients with Unfavorable Intermediate-Risk Disease? Brachytherapy 2016, 15, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Prestidge, B.R.; Winter, K.; Sanda, M.G.; Amin, M.; Bice, W.S.; Michalski, J.; Ibbott, G.S.; Crook, J.M.; Catton, C.N.; Gay, H.A.; et al. Initial Report of NRG Oncology/RTOG 0232: A Phase 3 Study Comparing Combined External Beam Radiation and Transperineal Interstitial Permanent Brachytherapy With Brachytherapy Alone for Selected Patients With Intermediate-Risk Prostatic Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, S4. [Google Scholar] [CrossRef] [Green Version]
- Hoskin, P.; Rojas, A.; Ostler, P.; Hughes, R.; Alonzi, R.; Lowe, G.; Bryant, L. High-Dose-Rate Brachytherapy with Two or Three Fractions as Monotherapy in the Treatment of Locally Advanced Prostate Cancer. Radiother Oncol. 2014, 112, 63–67. [Google Scholar] [CrossRef]
- Zamboglou, N.; Tselis, N.; Baltas, D.; Buhleier, T.; Martin, T.; Milickovic, N.; Papaioannou, S.; Ackermann, H.; Tunn, U.W. High-Dose-Rate Interstitial Brachytherapy as Monotherapy for Clinically Localized Prostate Cancer: Treatment Evolution and Mature Results. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 672–678. [Google Scholar] [CrossRef]
- Ghadjar, P.; Oesch, S.L.; Rentsch, C.A.; Isaak, B.; Cihoric, N.; Manser, P.; Thalmann, G.N.; Aebersold, D.M. Late Toxicity and Five Year Outcomes after High-Dose-Rate Brachytherapy as a Monotherapy for Localized Prostate Cancer. Radiat. Oncol. 2014, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Zaorsky, N.G.; Shaikh, T.; Murphy, C.T.; Hallman, M.A.; Hayes, S.B.; Sobczak, M.L.; Horwitz, E.M. Comparison of Outcomes and Toxicities among Radiation Therapy Treatment Options for Prostate Cancer. Cancer Treat Rev. 2016, 48, 50–60. [Google Scholar] [CrossRef]
- Barkati, M.; Williams, S.G.; Foroudi, F.; Tai, K.H.; Chander, S.; van Dyk, S.; See, A.; Duchesne, G.M. High-Dose-Rate Brachytherapy as a Monotherapy for Favorable-Risk Prostate Cancer: A Phase II Trial. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1889–1896. [Google Scholar] [CrossRef]
- Demanes, D.J.; Martinez, A.A.; Ghilezan, M.; Hill, D.R.; Schour, L.; Brandt, D.; Gustafson, G. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients with Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1286–1292. [Google Scholar] [CrossRef]
- Ghilezan, M.; Martinez, A.; Gustason, G.; Krauss, D.; Antonucci, J.V.; Chen, P.; Fontanesi, J.; Wallace, M.; Ye, H.; Casey, A.; et al. High-Dose-Rate Brachytherapy as Monotherapy Delivered in Two Fractions within One Day for Favorable/Intermediate-Risk Prostate Cancer: Preliminary Toxicity Data. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Grills, I.S.; Martinez, A.A.; Hollander, M.; Huang, R.; Goldman, K.; Chen, P.Y.; Gustafson, G.S. High Dose Rate Brachytherapy as Prostate Cancer Monotherapy Reduces Toxicity Compared to Low Dose Rate Palladium Seeds. J. Urol. 2004, 171, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.; Olsén, J.S.; Karlsson, L.; Lundin, E.; Lennernäs, B. High-Dose-Rate Brachytherapy as Monotherapy for Low- and Intermediate-Risk Prostate Cancer: Long-Term Experience of Swedish Single-Center. J. Contemp Brachytherapy 2021, 13, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Morton, G.; McGuffin, M.; Chung, H.T.; Tseng, C.-L.; Helou, J.; Ravi, A.; Cheung, P.; Szumacher, E.; Liu, S.; Chu, W.; et al. Prostate High Dose-Rate Brachytherapy as Monotherapy for Low and Intermediate Risk Prostate Cancer: Efficacy Results from a Randomized Phase II Clinical Trial of One Fraction of 19 Gy or Two Fractions of 13.5 Gy. Radiother Oncol. 2020, 146, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Prada, P.J.; Cardenal, J.; Blanco, A.G.; Anchuelo, J.; Ferri, M.; Fernández, G.; Arrojo, E.; Vázquez, A.; Pacheco, M.; Fernández, J. High-Dose-Rate Interstitial Brachytherapy as Monotherapy in One Fraction for the Treatment of Favorable Stage Prostate Cancer: Toxicity and Long-Term Biochemical Results. Radiother Oncol. 2016, 119, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.L.; Alder, S.C.; Rogers, R.L.; Hopkins, S.A.; Platt, M.L.; Childs, L.C.; Crouch, R.H.; Hansen, R.S.; Hayes, J.K. High Dose Brachytherapy as Monotherapy for Intermediate Risk Prostate Cancer. J. Urol. 2012, 187, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Zaorsky, N.G.; Doyle, L.A.; Hurwitz, M.D.; Dicker, A.P.; Den, R.B. Do Theoretical Potential and Advanced Technology Justify the Use of High-Dose Rate Brachytherapy as Monotherapy for Prostate Cancer? Expert Rev. Anticancer Ther. 2014, 14, 39–50. [Google Scholar] [CrossRef]
- Hoskin, P.J.; Colombo, A.; Henry, A.; Niehoff, P.; Paulsen Hellebust, T.; Siebert, F.-A.; Kovacs, G. GEC/ESTRO Recommendations on High Dose Rate Afterloading Brachytherapy for Localised Prostate Cancer: An Update. Radiother Oncol. 2013, 107, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Madsen, B.L.; Hsi, R.A.; Pham, H.T.; Fowler, J.F.; Esagui, L.; Corman, J. Stereotactic Hypofractionated Accurate Radiotherapy of the Prostate (SHARP), 33.5 Gy in Five Fractions for Localized Disease: First Clinical Trial Results. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1099–1105. [Google Scholar] [CrossRef]
- Friedland, J.L.; Freeman, D.E.; Masterson-McGary, M.E.; Spellberg, D.M. Stereotactic Body Radiotherapy: An Emerging Treatment Approach for Localized Prostate Cancer. Technol. Cancer Res. Treat 2009, 8, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.-K.; Cho, C.K.; Choi, C.W.; Yoo, S.; Kim, M.-S.; Yang, K.; Yoo, H.; Kim, J.H.; Seo, Y.S.; Lee, D.H.; et al. Image-Guided Stereotactic Body Radiation Therapy for Localized Prostate Cancer. Tumori 2011, 97, 43–48. [Google Scholar] [CrossRef] [PubMed]
- McBride, S.M.; Wong, D.S.; Dombrowski, J.J.; Harkins, B.; Tapella, P.; Hanscom, H.N.; Collins, S.P.; Kaplan, I.D. Hypofractionated Stereotactic Body Radiotherapy in Low-Risk Prostate Adenocarcinoma: Preliminary Results of a Multi-Institutional Phase 1 Feasibility Trial. Cancer 2012, 118, 3681–3690. [Google Scholar] [CrossRef] [PubMed]
- King, C.R.; Brooks, J.D.; Gill, H.; Presti, J.C. Long-Term Outcomes from a Prospective Trial of Stereotactic Body Radiotherapy for Low-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Aluwini, S.; van Rooij, P.; Hoogeman, M.; Kirkels, W.; Kolkman-Deurloo, I.-K.; Bangma, C. Stereotactic Body Radiotherapy with a Focal Boost to the MRI-Visible Tumor as Monotherapy for Low- and Intermediate-Risk Prostate Cancer: Early Results. Radiat. Oncol. 2013, 8, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.N.; Suy, S.; Uhm, S.; Oermann, E.K.; Ju, A.W.; Chen, V.; Hanscom, H.N.; Laing, S.; Kim, J.S.; Lei, S.; et al. Stereotactic Body Radiation Therapy (SBRT) for Clinically Localized Prostate Cancer: The Georgetown University Experience. Radiat. Oncol. 2013, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolzicco, G.; Favretto, M.S.; Satariano, N.; Scremin, E.; Tambone, C.; Tasca, A. A Single-Center Study of 100 Consecutive Patients with Localized Prostate Cancer Treated with Stereotactic Body Radiotherapy. BMC Urol. 2013, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Loblaw, A.; Cheung, P.; D’Alimonte, L.; Deabreu, A.; Mamedov, A.; Zhang, L.; Tang, C.; Quon, H.; Jain, S.; Pang, G.; et al. Prostate Stereotactic Ablative Body Radiotherapy Using a Standard Linear Accelerator: Toxicity, Biochemical, and Pathological Outcomes. Radiother Oncol. 2013, 107, 153–158. [Google Scholar] [CrossRef]
- Oliai, C.; Lanciano, R.; Sprandio, B.; Yang, J.; Lamond, J.; Arrigo, S.; Good, M.; Mooreville, M.; Garber, B.; Brady, L.W. Stereotactic Body Radiation Therapy for the Primary Treatment of Localized Prostate Cancer. J. Radiat. Oncol. 2013, 2, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-W.; Jang, H.S.; Lee, J.H.; Kim, S.H.; Yoon, S.C. Stereotactic Body Radiation Therapy for Prostate Cancer Patients with Old Age or Medical Comorbidity: A 5-Year Follow-up of an Investigational Study. Medicine 2014, 93, e290. [Google Scholar] [CrossRef]
- Mantz, C. A Phase II Trial of Stereotactic Ablative Body Radiotherapy for Low-Risk Prostate Cancer Using a Non-Robotic Linear Accelerator and Real-Time Target Tracking: Report of Toxicity, Quality of Life, and Disease Control Outcomes with 5-Year Minimum Follow-Up. Front. Oncol. 2014, 4, 279. [Google Scholar] [CrossRef] [Green Version]
- Bernetich, M.; Oliai, C.; Lanciano, R.; Hanlon, A.; Lamond, J.; Arrigo, S.; Yang, J.; Good, M.; Feng, J.; Brown, R.; et al. SBRT for the Primary Treatment of Localized Prostate Cancer: The Effect of Gleason Score, Dose and Heterogeneity of Intermediate Risk on Outcome Utilizing 2.2014 NCCN Risk Stratification Guidelines. Front. Oncol. 2014, 4, 312. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Sharma, S.; Shumway, R.; Perry, D.; Bydder, S.; Simpson, C.K.; D’Ambrosio, D. Stereotactic Body Radiotherapy for Clinically Localized Prostate Cancer: Toxicity and Biochemical Disease-Free Outcomes from a Multi-Institutional Patient Registry. Cureus 2015, 7, e395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, D.; Dickerson, G.; Perman, M. Multi-Institutional Registry for Prostate Cancer Radiosurgery: A Prospective Observational Clinical Trial. Front. Oncol. 2014, 4, 369. [Google Scholar] [CrossRef] [Green Version]
- Rana, Z.; Hong, R.L.; Abugideiri, M.; McRae, D.; Cernica, G.; Mordkin, R.; Joel, A.B.; Bernstein, G.; Nasr, N.M. Sexual, Irritative, and Voiding Outcomes, Following Stereotactic Body Radiation Therapy for Prostate Cancer. Radiat. Oncol. 2015, 10, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannan, R.; Tumati, V.; Xie, X.-J.; Cho, L.C.; Kavanagh, B.D.; Brindle, J.; Raben, D.; Nanda, A.; Cooley, S.; Kim, D.W.N.; et al. Stereotactic Body Radiation Therapy for Low and Intermediate Risk Prostate Cancer-Results from a Multi-Institutional Clinical Trial. Eur. J. Cancer 2016, 59, 142–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Agostino, G.; Franzese, C.; De Rose, F.; Franceschini, D.; Comito, T.; Villa, E.; Alongi, F.; Liardo, R.; Tomatis, S.; Navarria, P.; et al. High-Quality Linac-Based Stereotactic Body Radiation Therapy with Flattening Filter Free Beams and Volumetric Modulated Arc Therapy for Low-Intermediate Risk Prostate Cancer. A Mono-Institutional Experience with 90 Patients. Clin. Oncol. 2016, 28, e173–e178. [Google Scholar] [CrossRef] [PubMed]
- Rucinska, M.; Kieszkowska-Grudny, A.; Nawrocki, S. SHARP Hypofractionated Stereotactic Radiotherapy Is Well Tolerated in Prostate Cancer: Toxicity and Quality of Life Assessment. Strahlenther. Onkol. 2016, 192, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.; Formenti, S.C.; Kang, J. Predicting Biochemical Disease-Free Survival after Prostate Stereotactic Body Radiotherapy: Risk-Stratification and Patterns of Failure. Front Oncol. 2016, 6, 168. [Google Scholar] [CrossRef] [Green Version]
- Dixit, A.; Tang, C.; Bydder, S.; Kedda, M.-A.; Vosikova, E.; Bharat, C.; Gill, S. First Australian Experience of Treating Localised Prostate Cancer Patients with CyberKnife Stereotactic Radiotherapy: Early PSA Response, Acute Toxicity and Quality of Life. J. Med. Radiat. Sci. 2017, 64, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Miszczyk, L.; Namysł Kaletka, A.; Napieralska, A.; Woźniak, G.; Stąpór Fudzińska, M.; Głowacki, G.; Tukiendorf, A. Cyberknife Radioablation of Prostate Cancer–Preliminary Results for 400 Patients. Asian Pac. J. Cancer Prev. 2017, 18, 1007–1013. [Google Scholar] [CrossRef]
- Koskela, K.; Palmgren, J.-E.; Heikkilä, J.; Virsunen, H.; Sailas, L.; Auvinen, P.; Seppälä, J.; Kataja, V. Hypofractionated Stereotactic Body Radiotherapy for Localized Prostate Cancer-First Nordic Clinical Experience. Acta Oncol. 2017, 56, 978–983. [Google Scholar] [CrossRef] [Green Version]
- Jackson, W.C.; Dess, R.T.; Litzenberg, D.W.; Li, P.; Schipper, M.; Rosenthal, S.A.; Chang, G.C.; Horwitz, E.M.; Price, R.A.; Michalski, J.M.; et al. A Multi-Institutional Phase 2 Trial of Prostate Stereotactic Body Radiation Therapy (SBRT) Using Continuous Real-Time Evaluation of Prostate Motion with Patient-Reported Quality of Life. Pr. Radiat. Oncol. 2018, 8, 40–47. [Google Scholar] [CrossRef]
- Alayed, Y.; Cheung, P.; Pang, G.; Mamedov, A.; D’Alimonte, L.; Deabreu, A.; Commisso, K.; Commisso, A.; Zhang, L.; Quon, H.C.; et al. Dose Escalation for Prostate Stereotactic Ablative Radiotherapy (SABR): Late Outcomes from Two Prospective Clinical Trials. Radiother. Oncol. 2018, 127, 213–218. [Google Scholar] [CrossRef]
- Meier, R.M.; Bloch, D.A.; Cotrutz, C.; Beckman, A.C.; Henning, G.T.; Woodhouse, S.A.; Williamson, S.K.; Mohideen, N.; Dombrowski, J.J.; Hong, R.L.; et al. Multicenter Trial of Stereotactic Body Radiation Therapy for Low- and Intermediate-Risk Prostate Cancer: Survival and Toxicity Endpoints. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 296–303. [Google Scholar] [CrossRef]
- Magli, A.; Farneti, A.; Faiella, A.; Ferriero, M.; Landoni, V.; Giannarelli, D.; Moretti, E.; de Paula, U.; Gomellini, S.; Sanguineti, G. Toxicity at 1 Year After Stereotactic Body Radiation Therapy in 3 Fractions for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 11, 93–100. [Google Scholar] [CrossRef]
- Greco, C.; Pares, O.; Pimentel, N.; Louro, V.; Santiago, I.; Vieira, S.; Stroom, J.; Mateus, D.; Soares, A.; Marques, J.; et al. Safety and Efficacy of Virtual Prostatectomy With Single-Dose Radiotherapy in Patients With Intermediate-Risk Prostate Cancer: Results From the PROSINT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 700–708. [Google Scholar] [CrossRef]
- Zilli, T.; Franzese, C.; Bottero, M.; Giaj-Levra, N.; Förster, R.; Zwahlen, D.; Koutsouvelis, N.; Bertaut, A.; Blanc, J.; Roberto D’agostino, G.; et al. Single Fraction Urethra-Sparing Prostate Cancer SBRT: Phase I Results of the ONE SHOT Trial. Radiother. Oncol. 2019, 139, 83–86. [Google Scholar] [CrossRef]
- Jackson, W.C.; Silva, J.; Hartman, H.E.; Dess, R.T.; Kishan, A.U.; Beeler, W.H.; Gharzai, L.A.; Jaworski, E.M.; Mehra, R.; Hearn, J.W.D.; et al. Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 778–789. [Google Scholar] [CrossRef] [Green Version]
- Kishan, A.U.; Dang, A.; Katz, A.J.; Mantz, C.A.; Collins, S.P.; Aghdam, N.; Chu, F.-I.; Kaplan, I.D.; Appelbaum, L.; Fuller, D.B.; et al. Long-Term Outcomes of Stereotactic Body Radiotherapy for Low-Risk and Intermediate-Risk Prostate Cancer. JAMA Netw. Open 2019, 2, e188006. [Google Scholar] [CrossRef] [Green Version]
- Royce, T.J.; Mavroidis, P.; Wang, K.; Falchook, A.D.; Sheets, N.C.; Fuller, D.B.; Collins, S.P.; El Naqa, I.; Song, D.Y.; Ding, G.X.; et al. Tumor Control Probability Modeling and Systematic Review of the Literature of Stereotactic Body Radiation Therapy for Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 227–236. [Google Scholar] [CrossRef]
- Levin-Epstein, R.G.; Jiang, N.Y.; Wang, X.; Upadhyaya, S.K.; Collins, S.P.; Suy, S.; Aghdam, N.; Mantz, C.; Katz, A.J.; Miszczyk, L.; et al. Dose-Response with Stereotactic Body Radiotherapy for Prostate Cancer: A Multi-Institutional Analysis of Prostate-Specific Antigen Kinetics and Biochemical Control. Radiother. Oncol. 2021, 154, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Widmark, A.; Gunnlaugsson, A.; Beckman, L.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; Ginman, C.; Johansson, B.; Björnlinger, K.; et al. Ultra-Hypofractionated versus Conventionally Fractionated Radiotherapy for Prostate Cancer: 5-Year Outcomes of the HYPO-RT-PC Randomised, Non-Inferiority, Phase 3 Trial. Lancet 2019, 394, 385–395. [Google Scholar] [CrossRef]
- Gogineni, E.; Rana, Z.; Soberman, D.; Sidiqi, B.; D’Andrea, V.; Lee, L.; Potters, L.; Parashar, B. Biochemical Control and Toxicity Outcomes of Stereotactic Body Radiation Therapy Versus Low-Dose-Rate Brachytherapy in the Treatment of Low- and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.A.; Lee, A.; Patel, S.A.; Chakravorty, A.; Yu, J.B.; Kishan, A.U.; Chang, A.J. Trends in Use and Comparison of Stereotactic Body Radiation Therapy, Brachytherapy, and Dose-Escalated External Beam Radiation Therapy for the Management of Localized, Intermediate-Risk Prostate Cancer. JAMA Netw. Open 2020, 3, e2017144. [Google Scholar] [CrossRef] [PubMed]
- Levin-Epstein, R.; Cook, R.R.; Wong, J.K.; Stock, R.G.; Jeffrey Demanes, D.; Collins, S.P.; Aghdam, N.; Suy, S.; Mantz, C.; Katz, A.J.; et al. Prostate-Specific Antigen Kinetics and Biochemical Control Following Stereotactic Body Radiation Therapy, High Dose Rate Brachytherapy, and Low Dose Rate Brachytherapy: A Multi-Institutional Analysis of 3502 Patients. Radiother. Oncol. 2020, 151, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Loblaw, A.; Pickles, T.; Crook, J.; Martin, A.-G.; Vigneault, E.; Souhami, L.; Cury, F.; Morris, J.; Catton, C.; Lukka, H.; et al. Stereotactic Ablative Radiotherapy Versus Low Dose Rate Brachytherapy or External Beam Radiotherapy: Propensity Score Matched Analyses of Canadian Data. Clin. Oncol. 2017, 29, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Brand, D.H.; Tree, A.C.; Ostler, P.; van der Voet, H.; Loblaw, A.; Chu, W.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; et al. Intensity-Modulated Fractionated Radiotherapy versus Stereotactic Body Radiotherapy for Prostate Cancer (PACE-B): Acute Toxicity Findings from an International, Randomised, Open-Label, Phase 3, Non-Inferiority Trial. Lancet Oncol. 2019, 20, 1531–1543. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Yamada, Y.; Cohen, G.N.; Shippy, A.; Chan, H.; Fridman, D.; Zaider, M. Five-Year Outcome of Intraoperative Conformal Permanent I-125 Interstitial Implantation for Patients with Clinically Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 65–70. [Google Scholar] [CrossRef]
- Martin, A.-G.; Roy, J.; Beaulieu, L.; Pouliot, J.; Harel, F.; Vigneault, E. Permanent Prostate Implant Using High Activity Seeds and Inverse Planning with Fast Simulated Annealing Algorithm: A 12-Year Canadian Experience. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 334–341. [Google Scholar] [CrossRef]
- Keyes, M.; Miller, S.; Moravan, V.; Pickles, T.; McKenzie, M.; Pai, H.; Liu, M.; Kwan, W.; Agranovich, A.; Spadinger, I.; et al. Predictive Factors for Acute and Late Urinary Toxicity after Permanent Prostate Brachytherapy: Long-Term Outcome in 712 Consecutive Patients. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1023–1032. [Google Scholar] [CrossRef]
- Crook, J.; McLean, M.; Catton, C.; Yeung, I.; Tsihlias, J.; Pintilie, M. Factors Influencing Risk of Acute Urinary Retention after TRUS-Guided Permanent Prostate Seed Implantation. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 453–460. [Google Scholar] [CrossRef]
- McElveen, T.L.; Waterman, F.M.; Kim, H.; Dicker, A.P. Factors Predicting for Urinary Incontinence after Prostate Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 1395–1404. [Google Scholar] [CrossRef]
- Gorovets, D.; Hopkins, M.; Goldman, D.A.; Abitbol, R.L.; Zhang, Z.; Kollmeier, M.; McBride, S.; Zelefsky, M.J. Urinary Outcomes for Men With High Baseline International Prostate Symptom Scores Treated With Prostate SBRT. Adv. Radiat. Oncol. 2021, 6, 100582. [Google Scholar] [CrossRef]
- Aghdam, N.; Pepin, A.; Buchberger, D.; Hirshberg, J.; Lei, S.; Ayoob, M.; Danner, M.; Yung, T.; Kumar, D.; Collins, B.T.; et al. Stereotactic Body Radiation Therapy (SBRT) for Prostate Cancer in Men With a High Baseline International Prostate Symptom Score (IPSS ≥ 15). Front. Oncol. 2020, 10, 1060. [Google Scholar] [CrossRef]
- Gnep, K.; Lizée, T.; Campillo-Gimenez, B.; Delpon, G.; Droupy, S.; Perrier, L.; de Crevoisier, R. Toxicity and quality of life comparison of iodine 125 brachytherapy and stereotactic radiotherapy for prostate cancers. Cancer Radiother. 2017, 21, 478–490. [Google Scholar] [CrossRef]
- Shukla, G.; Sarkar, A.; Hanlon, A.; Crockett, E.; Chen, H.C.; Martelli-Raben, J.; Glick, A.; Benge, B.; Lobis, M.; Terranova, S.; et al. Biochemical Control and Toxicity for Favorable- and Intermediate-Risk Patients Using Real-Time Intraoperative Inverse Optimization Prostate Seed Implant: Less Is More! Brachytherapy 2017, 16, 490–496. [Google Scholar] [CrossRef]
- Katayama, N.; Yorozu, A.; Maruo, S.; Kojima, S.; Ohashi, T.; Tanaka, N.; Kikuchi, T.; Higashide, S.; Saito, S.; Dokiya, T.; et al. Predictive Factors of Rectal Toxicity after Permanent Iodine-125 Seed Implantation: Prospective Cohort Study in 2339 Patients. Brachytherapy 2016, 15, 736–745. [Google Scholar] [CrossRef]
- Keyes, M.; Spadinger, I.; Liu, M.; Pickles, T.; Pai, H.; Hayden, A.; Moravan, V.; Halperin, R.; McKenzie, M.; Kwan, W.; et al. Rectal Toxicity and Rectal Dosimetry in Low-Dose-Rate 125I Permanent Prostate Implants: A Long-Term Study in 1006 Patients. Brachytherapy 2012, 11, 199–208. [Google Scholar] [CrossRef]
- Tree, A.C.; Hall, E.; Ostler, P.; van der Voet, H.; Loblaw, A.; Chu, W.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; et al. OC-0289 Comparison of Side Effects at 2 Years in the Randomised PACE-B Trial (SBRT vs Standard Radiotherapy). Radiother. Oncol. 2021, 161, S196–S197. [Google Scholar] [CrossRef]
- Wang, K.; Mavroidis, P.; Royce, T.J.; Falchook, A.D.; Collins, S.P.; Sapareto, S.; Sheets, N.C.; Fuller, D.B.; Naqa, I.E.; Yorke, E.; et al. Prostate Stereotactic Body Radiation Therapy: An Overview of Toxicity and Dose Response. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 237–248. [Google Scholar] [CrossRef]
- Kim, D.W.N.; Cho, L.C.; Straka, C.; Christie, A.; Lotan, Y.; Pistenmaa, D.; Kavanagh, B.D.; Nanda, A.; Kueplian, P.; Brindle, J.; et al. Predictors of Rectal Tolerance Observed in a Dose-Escalated Phase 1-2 Trial of Stereotactic Body Radiation Therapy for Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Keyes, M.; Liu, M.; Moravan, V. Segmental Urethral Dosimetry and Urinary Toxicity in Patients With No Urinary Symptoms Before Permanent Prostate Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Slevin, F.; Sethugavalar, B.; Al-Qaisieh, B.; Bownes, P.; Mason, J.; Smith, J.; Bottomley, D.; Henry, A.M. Ten-Year Longitudinal Health-Related Quality of Life Following Iodine-125 Brachytherapy Monotherapy for Localized Prostate Cancer. J. Contemp Brachytherapy 2020, 12, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Fransson, P.; Nilsson, P.; Gunnlaugsson, A.; Beckman, L.; Tavelin, B.; Norman, D.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; et al. Ultra-Hypofractionated versus Conventionally Fractionated Radiotherapy for Prostate Cancer (HYPO-RT-PC): Patient-Reported Quality-of-Life Outcomes of a Randomised, Controlled, Non-Inferiority, Phase 3 Trial. Lancet Oncol. 2021, 22, 235–245. [Google Scholar] [CrossRef]
- Evans, J.R.; Zhao, S.; Daignault, S.; Sanda, M.G.; Michalski, J.; Sandler, H.M.; Kuban, D.A.; Ciezki, J.; Kaplan, I.D.; Zietman, A.L.; et al. Patient-Reported Quality of Life after Stereotactic Body Radiotherapy (SBRT), Intensity Modulated Radiotherapy (IMRT), and Brachytherapy. Radiother Oncol. 2015, 116, 179–184. [Google Scholar] [CrossRef]
- Paly, J.J.; Egleston, B.L.; Wong, J.K.; Burbure, N.; Sobczak, M.L.; Hayes, S.B.; Chen, D.Y.T.; Horwitz, E.M.; Hallman, M.A. Patient-Reported Quality of Life After SBRT, LDR, and HDR Brachytherapy for Prostate Cancer: A Comparison of Outcomes. Am J. Clin. Oncol. 2021, 44, 131–136. [Google Scholar] [CrossRef]
- Otazo, R.; Lambin, P.; Pignol, J.-P.; Ladd, M.E.; Schlemmer, H.-P.; Baumann, M.; Hricak, H. MRI-Guided Radiation Therapy: An Emerging Paradigm in Adaptive Radiation Oncology. Radiology 2021, 298, 248–260. [Google Scholar] [CrossRef]
- Tetar, S.U.; Bruynzeel, A.M.E.; Oei, S.S.; Senan, S.; Fraikin, T.; Slotman, B.J.; van Moorselaar, R.J.A.; Lagerwaard, F.J. Magnetic Resonance-Guided Stereotactic Radiotherapy for Localized Prostate Cancer: Final Results on Patient-Reported Outcomes of a Prospective Phase 2 Study. Eur. Urol. Oncol. 2021, 4, 628–634. [Google Scholar] [CrossRef]
- Bruynzeel, A.M.E.; Tetar, S.U.; Oei, S.S.; Senan, S.; Haasbeek, C.J.A.; Spoelstra, F.O.B.; Piet, A.H.M.; Meijnen, P.; Bakker van der Jagt, M.A.B.; Fraikin, T.; et al. A Prospective Single-Arm Phase 2 Study of Stereotactic Magnetic Resonance Guided Adaptive Radiation Therapy for Prostate Cancer: Early Toxicity Results. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 1086–1094. [Google Scholar] [CrossRef]
- Sandoval, M.L.; Youssef, I.; Latifi, K.; Grass, G.D.; Torres-Roca, J.; Rosenberg, S.; Yamoah, K.; Johnstone, P.A. Non-Adaptive MR-Guided Radiotherapy for Prostate SBRT: Less Time, Equal Results. J. Clin. Med. 2021, 10, 3396. [Google Scholar] [CrossRef]
- Dess, R.T.; Hartman, H.E.; Aghdam, N.; Jackson, W.C.; Soni, P.D.; Abugharib, A.E.; Suy, S.; Desai, N.B.; Zumsteg, Z.S.; Mehra, R.; et al. Erectile Function after Stereotactic Body Radiotherapy for Localized Prostate Cancer. BJU Int. 2018, 121, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrick, G.S.; Butler, W.M.; Wallner, K.E.; Galbreath, R.W.; Anderson, R.L.; Kurko, B.S.; Lief, J.H.; Allen, Z.A. Erectile Function after Prostate Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Taira, A.V.; Merrick, G.S.; Galbreath, R.W.; Butler, W.M.; Wallner, K.E.; Kurko, B.S.; Anderson, R.; Lief, J.H. Erectile Function Durability Following Permanent Prostate Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Elias, E.; Helou, J.; Zhang, L.; Cheung, P.; Deabreu, A.; D’Alimonte, L.; Sethukavalan, P.; Mamedov, A.; Cardoso, M.; Loblaw, A. Dosimetric and Patient Correlates of Quality of Life after Prostate Stereotactic Ablative Radiotherapy. Radiother. Oncol. 2014, 112, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Wiegner, E.A.; King, C.R. Sexual Function After Stereotactic Body Radiotherapy for Prostate Cancer: Results of a Prospective Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 442–448. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)- Prostate Cancer-Version 3.2022. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1459 (accessed on 25 April 2022).
- King, M.T.; Keyes, M.; Frank, S.J.; Crook, J.M.; Butler, W.M.; Rossi, P.J.; Cox, B.W.; Showalter, T.N.; Mourtada, F.; Potters, L.; et al. Low Dose Rate Brachytherapy for Primary Treatment of Localized Prostate Cancer: A Systemic Review and Executive Summary of an Evidence-Based Consensus Statement. Brachytherapy 2021, 20, 1114–1129. [Google Scholar] [CrossRef]
- Yamada, Y.; Rogers, L.; Demanes, D.J.; Morton, G.; Prestidge, B.R.; Pouliot, J.; Cohen, G.N.; Zaider, M.; Ghilezan, M.; Hsu, I.-C.; et al. American Brachytherapy Society Consensus Guidelines for High-Dose-Rate Prostate Brachytherapy. Brachytherapy 2012, 11, 20–32. [Google Scholar] [CrossRef]
- Berlin, A.; Moraes, F.Y.; Sanmamed, N.; Glicksman, R.; Koven, A.; Espin-Garcia, O.; Leite, E.T.T.; Silva, J.L.F.; Gadia, R.; Nesbitt, M.; et al. International Multicenter Validation of an Intermediate Risk Subclassification of Prostate Cancer Managed with Radical Treatment without Hormone Therapy. J. Urol. 2019, 201, 284–291. [Google Scholar] [CrossRef]
- Tselis, N.; Tunn, U.W.; Chatzikonstantinou, G.; Milickovic, N.; Baltas, D.; Ratka, M.; Zamboglou, N. High Dose Rate Brachytherapy as Monotherapy for Localised Prostate Cancer: A Hypofractionated Two-Implant Approach in 351 Consecutive Patients. Radiat. Oncol. 2013, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, Y.; Suzuki, O.; Isohashi, F.; Seo, Y.; Okubo, H.; Yamaguchi, H.; Oda, M.; Otani, Y.; Sumida, I.; Uemura, M.; et al. High-Dose-Rate Brachytherapy as Monotherapy for Intermediate- and High-Risk Prostate Cancer: Clinical Results for a Median 8-Year Follow-Up. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 675–682. [Google Scholar] [CrossRef]
- Ash, D.; Flynn, A.; Battermann, J.; de Reijke, T.; Lavagnini, P.; Blank, L.; ESTRA/EAU Urological Brachytherapy Group. EORTC Radiotherapy Group ESTRO/EAU/EORTC Recommendations on Permanent Seed Implantation for Localized Prostate Cancer. Radiother Oncol. 2000, 57, 315–321. [Google Scholar] [CrossRef]
- Murthy, V.; Maitre, P.; Kannan, S.; Panigrahi, G.; Krishnatry, R.; Bakshi, G.; Prakash, G.; Pal, M.; Menon, S.; Phurailatpam, R.; et al. Prostate-Only Versus Whole-Pelvic Radiation Therapy in High-Risk and Very High-Risk Prostate Cancer (POP-RT): Outcomes From Phase III Randomized Controlled Trial. J. Clin. Oncol. 2021, 11, JCO2003282. [Google Scholar] [CrossRef] [PubMed]
- Critz, F.A.; Levinson, K. 10-YEAR DISEASE-FREE SURVIVAL RATES AFTER SIMULTANEOUS IRRADIATION FOR PROSTATE CANCER WITH A FOCUS ON CALCULATION METHODOLOGY. J. Urol. 2004, 172, 2232–2238. [Google Scholar] [CrossRef] [PubMed]
- Sathya, J.R.; Davis, I.R.; Julian, J.A.; Guo, Q.; Daya, D.; Dayes, I.S.; Lukka, H.R.; Levine, M. Randomized Trial Comparing Iridium Implant plus External-Beam Radiation Therapy with External-Beam Radiation Therapy Alone in Node-Negative Locally Advanced Cancer of the Prostate. J. Clin. Oncol. 2005, 23, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Dayes, I.S.; Parpia, S.; Gilbert, J.; Julian, J.A.; Davis, I.R.; Levine, M.N.; Sathya, J. Long-Term Results of a Randomized Trial Comparing Iridium Implant Plus External Beam Radiation Therapy With External Beam Radiation Therapy Alone in Node-Negative Locally Advanced Cancer of the Prostate. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.J.; Tyldesley, S.; Rodda, S.; Halperin, R.; Pai, H.; McKenzie, M.; Duncan, G.; Morton, G.; Hamm, J.; Murray, N. Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.J.; Pickles, T.; Keyes, M. Using a Surgical Prostate-Specific Antigen Threshold of >0.2 Ng/ML to Define Biochemical Failure for Intermediate- and High-Risk Prostate Cancer Patients Treated with Definitive Radiation Therapy in the ASCENDE-RT Randomized Control Trial. Brachytherapy 2018, 17, 837–844. [Google Scholar] [CrossRef]
- Oh, J.; Tyldesley, S.; Pai, H.H.; McKenzie, M.R.; Halperin, R.M.; Duncan, G.G.; Morton, G.; Keyes, M.; Hamm, J.; Morris, W.J. An Updated Analysis of Survival Endpoints for ASCENDE-RT, a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, S62. [Google Scholar] [CrossRef]
- Zaorsky, N.G.; Doyle, L.A.; Yamoah, K.; Andrel, J.A.; Trabulsi, E.J.; Hurwitz, M.D.; Dicker, A.P.; Den, R.B. High Dose Rate Brachytherapy Boost for Prostate Cancer: A Systematic Review. Cancer Treat. Rev. 2014, 40, 414–425. [Google Scholar] [CrossRef]
- Morton, G.C. High-Dose-Rate Brachytherapy Boost for Prostate Cancer: Rationale and Technique. J. Contemp. Brachytherapy 2014, 6, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Khor, R.; Duchesne, G.; Tai, K.-H.; Foroudi, F.; Chander, S.; Van Dyk, S.; Garth, M.; Williams, S. Direct 2-Arm Comparison Shows Benefit of High-Dose-Rate Brachytherapy Boost vs External Beam Radiation Therapy Alone for Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Pickles, T.; Crook, J.; Martin, A.-G.; Vigneault, E.; Cury, F.L.; Morris, J.; Catton, C.; Lukka, H.; Warner, A.; et al. Brachytherapy Improves Biochemical Failure-Free Survival in Low- and Intermediate-Risk Prostate Cancer Compared with Conventionally Fractionated External Beam Radiation Therapy: A Propensity Score Matched Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.J.; Rojas, A.M.; Ostler, P.J.; Bryant, L.; Lowe, G.J. Randomised Trial of External-Beam Radiotherapy Alone or with High-Dose-Rate Brachytherapy for Prostate Cancer: Mature 12-Year Results. Radiother. Oncol. 2021, 154, 214–219. [Google Scholar] [CrossRef]
- Tharmalingam, H.; Tsang, Y.; Choudhury, A.; Alonzi, R.; Wylie, J.; Ahmed, I.; Henry, A.; Heath, C.; Hoskin, P.J. External Beam Radiation Therapy (EBRT) and High-Dose-Rate (HDR) Brachytherapy for Intermediate and High-Risk Prostate Cancer: The Impact of EBRT Volume. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Merrick, G.S.; Butler, W.M.; Galbreath, R.W.; Lief, J.; Bittner, N.; Wallner, K.E.; Adamovich, E. Prostate Cancer Death Is Unlikely in High-Risk Patients Following Quality Permanent Interstitial Brachytherapy. BJU Int. 2011, 107, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Taira, A.V.; Merrick, G.S.; Butler, W.M.; Galbreath, R.W.; Lief, J.; Adamovich, E.; Wallner, K.E. Long-Term Outcome for Clinically Localized Prostate Cancer Treated With Permanent Interstitial Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1336–1342. [Google Scholar] [CrossRef]
- Dattoli, M.; Wallner, K.; True, L.; Bostwick, D.; Cash, J.; Sorace, R. Long-Term Outcomes for Patients with Prostate Cancer Having Intermediate and High-Risk Disease, Treated with Combination External Beam Irradiation and Brachytherapy. J. Oncol. 2010, 2010, e471375. [Google Scholar] [CrossRef]
- Bittner, N.; Merrick, G.S.; Butler, W.M.; Galbreath, R.W.; Adamovich, E.; Wallner, K.E. Gleason Score 7 Prostate Cancer Treated with Interstitial Brachytherapy with or without Supplemental External Beam Radiation and Androgen Deprivation Therapy: Is the Primary Pattern on Needle Biopsy Prognostic? Brachytherapy 2013, 12, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Galalae, R.M.; Zakikhany, N.H.; Geiger, F.; Siebert, F.-A.; Bockelmann, G.; Schultze, J.; Kimmig, B. The 15-Year Outcomes of High-Dose-Rate Brachytherapy for Radical Dose Escalation in Patients with Prostate Cancer—A Benchmark for High-Tech External Beam Radiotherapy Alone? Brachytherapy 2014, 13, 117–122. [Google Scholar] [CrossRef]
- Martinez, A.A.; Gonzalez, J.; Ye, H.; Ghilezan, M.; Shetty, S.; Kernen, K.; Gustafson, G.; Krauss, D.; Vicini, F.; Kestin, L. Dose Escalation Improves Cancer-Related Events at 10 Years for Intermediate- and High-Risk Prostate Cancer Patients Treated With Hypofractionated High-Dose-Rate Boost and External Beam Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 363–370. [Google Scholar] [CrossRef]
- Savdie, R.; Symons, J.; Spernat, D.; Yuen, C.; Pe Benito, R.A.; Haynes, A.-M.; Matthews, J.; Rasiah, K.K.; Jagavkar, R.S.; Yu, C.; et al. High-Dose Rate Brachytherapy Compared with Open Radical Prostatectomy for the Treatment of High-Risk Prostate Cancer: 10 Year Biochemical Freedom from Relapse. BJU Int. 2012, 110 (Suppl. 4), 71–76. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.E.; Soni, P.D.; McLaughlin, P.W.; Merrick, G.S.; Stock, R.G.; Blasko, J.C.; Zelefsky, M.J. American Brachytherapy Society Task Group Report: Combination of Brachytherapy and External Beam Radiation for High-Risk Prostate Cancer. Brachytherapy 2017, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Krauss, D.; Kestin, L.; Ye, H.; Brabbins, D.; Ghilezan, M.; Gustafson, G.; Vicini, F.; Martinez, A. Lack of Benefit for the Addition of Androgen Deprivation Therapy to Dose-Escalated Radiotherapy in the Treatment of Intermediate- and High-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.D.; Muralidhar, V.; Mahal, B.A.; Nguyen, P.L.; Devlin, P.M.; King, M.T.; Orio, P.F. Lack of Apparent Survival Benefit With Use of Androgen Deprivation Therapy in Patients With High-Risk Prostate Cancer Receiving Combined External Beam Radiation Therapy and Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 53–58. [Google Scholar] [CrossRef]
- Joseph, D.; Denham, J.W.; Steigler, A.; Lamb, D.S.; Spry, N.A.; Stanley, J.; Shannon, T.; Duchesne, G.; Atkinson, C.; Matthews, J.H.L.; et al. Radiation Dose Escalation or Longer Androgen Suppression to Prevent Distant Progression in Men With Locally Advanced Prostate Cancer: 10-Year Data From the TROG 03.04 RADAR Trial. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Denham, J.W.; Joseph, D.; Lamb, D.S.; Spry, N.A.; Duchesne, G.; Matthews, J.; Atkinson, C.; Tai, K.-H.; Christie, D.; Kenny, L.; et al. Short-Term Androgen Suppression and Radiotherapy versus Intermediate-Term Androgen Suppression and Radiotherapy, with or without Zoledronic Acid, in Men with Locally Advanced Prostate Cancer (TROG 03.04 RADAR): 10-Year Results from a Randomised, Phase 3, Factorial Trial. Lancet Oncol. 2019, 20, 267–281. [Google Scholar] [CrossRef]
- Krauss, D.J.; Karrison, T.G.; Martinez, A.A.; Morton, G.; Yan, D.; Bruner, D.W.; Movsas, B.; Elshaikh, M.A.; Citrin, D.E.; Hershatter, B.; et al. Dose Escalated Radiotherapy Alone or in Combination With Short-Term Androgen Suppression for Intermediate Risk Prostate Cancer: Outcomes From the NRG Oncology/RTOG 0815 Randomized Trial. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, S1. [Google Scholar] [CrossRef]
- Spratt, D.E.; Zumsteg, Z.S.; Ghadjar, P.; Kollmeier, M.A.; Pei, X.; Cohen, G.; Polkinghorn, W.; Yamada, Y.; Zelefsky, M.J. Comparison of High-Dose (86.4 Gy) IMRT vs Combined Brachytherapy plus IMRT for Intermediate-Risk Prostate Cancer. BJU Int. 2014, 114, 360–367. [Google Scholar] [CrossRef]
- Kishan, A.U.; Shaikh, T.; Wang, P.-C.; Reiter, R.E.; Said, J.; Raghavan, G.; Nickols, N.G.; Aronson, W.J.; Sadeghi, A.; Kamrava, M.; et al. Clinical Outcomes for Patients with Gleason Score 9–10 Prostate Adenocarcinoma Treated With Radiotherapy or Radical Prostatectomy: A Multi-Institutional Comparative Analysis. Eur. Urol. 2017, 71, 766–773. [Google Scholar] [CrossRef]
- Kishan, A.U.; Cook, R.R.; Ciezki, J.P.; Ross, A.E.; Pomerantz, M.M.; Nguyen, P.L.; Shaikh, T.; Tran, P.T.; Sandler, K.A.; Stock, R.G.; et al. Radical Prostatectomy, External Beam Radiotherapy, or External Beam Radiotherapy With Brachytherapy Boost and Disease Progression and Mortality in Patients With Gleason Score 9-10 Prostate Cancer. JAMA 2018, 319, 896–905. [Google Scholar] [CrossRef]
- Rodda, S.; Tyldesley, S.; Morris, W.J.; Keyes, M.; Halperin, R.; Pai, H.; McKenzie, M.; Duncan, G.; Morton, G.; Hamm, J.; et al. ASCENDE-RT: An Analysis of Treatment-Related Morbidity for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost with a Dose-Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.K.; Keyes, M.; Pickles, T.; Lapointe, V.; Spadinger, I.; McKenzie, M.; Morris, W.J. Decline in Acute Urinary Toxicity: A Long-Term Study in 2011 Patients with Prostate Brachytherapy within a Provincial Institution. Brachytherapy 2014, 13, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Hindson, B.R.; Millar, J.L.; Matheson, B. Urethral Strictures Following High-Dose-Rate Brachytherapy for Prostate Cancer: Analysis of Risk Factors. Brachytherapy 2013, 12, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strouthos, I.; Karagiannis, E.; Zamboglou, N.; Ferentinos, K. High-Dose-Rate Brachytherapy for Prostate Cancer: Rationale, Current Applications, and Clinical Outcome. Cancer Rep. 2021, 5, e1450. [Google Scholar] [CrossRef]
- Hoskin, P.J.; Rojas, A.M.; Bownes, P.J.; Lowe, G.J.; Ostler, P.J.; Bryant, L. Randomised Trial of External Beam Radiotherapy Alone or Combined with High-Dose-Rate Brachytherapy Boost for Localised Prostate Cancer. Radiother. Oncol. 2012, 103, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Hsu, I.-C.; Bae, K.; Shinohara, K.; Pouliot, J.; Purdy, J.; Ibbott, G.; Speight, J.; Vigneault, E.; Ivker, R.; Sandler, H. Phase II Trial of Combined High-Dose-Rate Brachytherapy and External Beam Radiotherapy for Adenocarcinoma of the Prostate: Preliminary Results of RTOG 0321. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 751–758. [Google Scholar] [CrossRef]
- Shahid, N.; Loblaw, A.; Chung, H.T.; Cheung, P.; Szumacher, E.; Danjoux, C.; Sankreacha, R.; Zhang, L.; Deabreu, A.; Mamedov, A.; et al. Long-Term Toxicity and Health-Related Quality of Life after Single-Fraction High Dose Rate Brachytherapy Boost and Hypofractionated External Beam Radiotherapy for Intermediate-Risk Prostate Cancer. Clin. Oncol. (R Coll Radiol.) 2017, 29, 412–420. [Google Scholar] [CrossRef]
- Marshall, R.A.; Buckstein, M.; Stone, N.N.; Stock, R. Treatment Outcomes and Morbidity Following Definitive Brachytherapy with or without External Beam Radiation for the Treatment of Localized Prostate Cancer: 20-Year Experience at Mount Sinai Medical Center. Urol. Oncol. Semin. Orig. Investig. 2014, 32, e1–e38. [Google Scholar] [CrossRef]
- Kotecha, R.; Yamada, Y.; Pei, X.; Kollmeier, M.A.; Cox, B.; Cohen, G.N.; Zaider, M.; Zelefsky, M.J. Clinical Outcomes of High-Dose-Rate Brachytherapy and External Beam Radiotherapy in the Management of Clinically Localized Prostate Cancer. Brachytherapy 2013, 12, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, L.; Williams, S.G.; Tai, K.H.; Foroudi, F.; Cleeve, L.; Duchesne, G.M. Urethral Stricture Following High Dose Rate Brachytherapy for Prostate Cancer. Radiother. Oncol. 2009, 91, 232–236. [Google Scholar] [CrossRef]
- Zaorsky, N.G.; Shaikh, T.; Ruth, K.; Sharda, P.; Hayes, S.B.; Sobczak, M.L.; Hallman, M.A.; Smaldone, M.C.; Chen, D.Y.T.; Horwitz, E.M. Prostate Cancer Patients With Unmanaged Diabetes or Receiving Insulin Experience Inferior Outcomes and Toxicities After Treatment With Radiation Therapy. Clin. Genitourin Cancer 2017, 15, 326–335.e3. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, P.W.; Narayana, V.; Meirowitz, A.; Troyer, S.; Roberson, P.L.; Gonda, R.; Sandler, H.; Marsh, L.; Lawrence, T.; Kessler, M. Vessel-Sparing Prostate Radiotherapy: Dose Limitation to Critical Erectile Vascular Structures (Internal Pudendal Artery and Corpus Cavernosum) Defined by MRI. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Spratt, D.E.; Liss, A.L.; McLaughlin, P.W. Vessel-Sparing Radiation and Functional Anatomy-Based Preservation for Erectile Function after Prostate Radiotherapy. Lancet Oncol. 2016, 17, e198–e208. [Google Scholar] [CrossRef]
- Bruner, D.W.; Moughan, J.; Prestidge, B.R.; Sanda, M.G.; Bice, W.; Michalski, J.M.; Ibbott, G.S.; Amin, M.; Catton, C.N.; Donavanik, V.; et al. Patient Reported Outcomes of NRG Oncology/RTOG 0232: A Phase III Study Comparing Combined External Beam Radiation and Transperineal Interstitial Permanent Brachytherapy with Brachytherapy Alone in Intermediate Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, S2–S3. [Google Scholar] [CrossRef]
- Lee, D.J.; Barocas, D.A.; Zhao, Z.; Huang, L.-C.; Resnick, M.J.; Koyoma, T.; Conwill, R.; McCollum, D.; Cooperberg, M.R.; Goodman, M.; et al. Comparison of Patient-Reported Outcomes After External Beam Radiation Therapy and Combined External Beam With Low-Dose-Rate Brachytherapy Boost in Men With Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Rodda, S.; Morris, W.J.; Hamm, J.; Duncan, G. ASCENDE-RT: An Analysis of Health-Related Quality of Life for a Randomized Trial Comparing Low-Dose-Rate Brachytherapy Boost With Dose-Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Foerster, R.; Zwahlen, D.R.; Buchali, A.; Tang, H.; Schroeder, C.; Windisch, P.; Vu, E.; Akbaba, S.; Bostel, T.; Sprave, T.; et al. Stereotactic Body Radiotherapy for High-Risk Prostate Cancer: A Systematic Review. Cancers 2021, 13, 759. [Google Scholar] [CrossRef]
- Van Dams, R.; Jiang, N.Y.; Fuller, D.B.; Loblaw, A.; Jiang, T.; Katz, A.J.; Collins, S.P.; Aghdam, N.; Suy, S.; Stephans, K.L.; et al. Stereotactic Body Radiotherapy for High-Risk Localized Carcinoma of the Prostate (SHARP) Consortium: Analysis of 344 Prospectively Treated Patients. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 731–737. [Google Scholar] [CrossRef]
- Patel, S.A.; Switchenko, J.M.; Fischer-Valuck, B.; Zhang, C.; Rose, B.S.; Chen, R.C.; Jani, A.B.; Royce, T.J. Stereotactic Body Radiotherapy versus Conventional/Moderate Fractionated Radiation Therapy with Androgen Deprivation Therapy for Unfavorable Risk Prostate Cancer. Radiat. Oncol. 2020, 15, 217. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Goldman, D.A.; Hopkins, M.; Pinitpatcharalert, A.; McBride, S.; Gorovets, D.; Ehdaie, B.; Fine, S.W.; Reuter, V.E.; Tyagi, N.; et al. Predictors for Post-Treatment Biopsy Outcomes after Prostate Stereotactic Body Radiotherapy. Radiother. Oncol. 2021, 159, 33–38. [Google Scholar] [CrossRef]
- Bauman, G.; Ferguson, M.; Lock, M.; Chen, J.; Ahmad, B.; Venkatesan, V.M.; Sexton, T.; D’Souza, D.; Loblaw, A.; Warner, A.; et al. A Phase 1/2 Trial of Brief Androgen Suppression and Stereotactic Radiation Therapy (FASTR) for High-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Glicksman, R.M.; Liu, S.K.; Cheung, P.; Vesprini, D.; Chu, W.; Chung, H.T.; Morton, G.; Deabreu, A.; Davidson, M.; Ravi, A.; et al. Elective Nodal Ultra Hypofractionated Radiation for Prostate Cancer: Safety and Efficacy from Four Prospective Clinical Trials. Radiother. Oncol. 2021, 163, 159–164. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.V.; Chen, M.-H.; Renshaw, A.A.; Loffredo, M.; Kantoff, P.W. Androgen Suppression and Radiation vs Radiation Alone for Prostate Cancer: A Randomized Trial. JAMA 2008, 299, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.U.; Hunt, D.; McGowan, D.G.; Amin, M.B.; Chetner, M.P.; Bruner, D.W.; Leibenhaut, M.H.; Husain, S.M.; Rotman, M.; Souhami, L.; et al. Radiotherapy and Short-Term Androgen Deprivation for Localized Prostate Cancer. N. Engl. J. Med. 2011, 365, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Denham, J.W.; Steigler, A.; Lamb, D.S.; Joseph, D.; Turner, S.; Matthews, J.; Atkinson, C.; North, J.; Christie, D.; Spry, N.A.; et al. Short-Term Neoadjuvant Androgen Deprivation and Radiotherapy for Locally Advanced Prostate Cancer: 10-Year Data from the TROG 96.01 Randomised Trial. Lancet Oncol. 2011, 12, 451–459. [Google Scholar] [CrossRef]
- Roach, M.; Bae, K.; Speight, J.; Wolkov, H.B.; Rubin, P.; Lee, R.J.; Lawton, C.; Valicenti, R.; Grignon, D.; Pilepich, M.V. Short-Term Neoadjuvant Androgen Deprivation Therapy and External-Beam Radiotherapy for Locally Advanced Prostate Cancer: Long-Term Results of RTOG 8610. J. Clin. Oncol. 2008, 26, 585–591. [Google Scholar] [CrossRef]
- Bolla, M.; Van Tienhoven, G.; Warde, P.; Dubois, J.B.; Mirimanoff, R.-O.; Storme, G.; Bernier, J.; Kuten, A.; Sternberg, C.; Billiet, I.; et al. External Irradiation with or without Long-Term Androgen Suppression for Prostate Cancer with High Metastatic Risk: 10-Year Results of an EORTC Randomised Study. Lancet Oncol. 2010, 11, 1066–1073. [Google Scholar] [CrossRef]
- Zumsteg, Z.S.; Spratt, D.E.; Pei, I.; Zhang, Z.; Yamada, Y.; Kollmeier, M.; Zelefsky, M.J. A New Risk Classification System for Therapeutic Decision Making with Intermediate-Risk Prostate Cancer Patients Undergoing Dose-Escalated External-Beam Radiation Therapy. Eur. Urol. 2013, 64, 895–902. [Google Scholar] [CrossRef]
- Bolla, M.; Maingon, P.; Carrie, C.; Villa, S.; Kitsios, P.; Poortmans, P.M.P.; Sundar, S.; van der Steen-Banasik, E.M.; Armstrong, J.; Bosset, J.-F.; et al. Short Androgen Suppression and Radiation Dose Escalation for Intermediate- and High-Risk Localized Prostate Cancer: Results of EORTC Trial 22991. J. Clin. Oncol. 2016, 34, 1748–1756. [Google Scholar] [CrossRef] [Green Version]
- Bolla, M.; Neven, A.; Maingon, P.; Carrie, C.; Boladeras, A.; Andreopoulos, D.; Engelen, A.; Sundar, S.; van der Steen-Banasik, E.M.; Armstrong, J.; et al. Short Androgen Suppression and Radiation Dose Escalation in Prostate Cancer: 12-Year Results of EORTC Trial 22991 in Patients With Localized Intermediate-Risk Disease. J. Clin. Oncol. 2021, 39, 3022–3033. [Google Scholar] [CrossRef]
- Nabid, A.; Carrier, N.; Vigneault, E.; Van Nguyen, T.; Vavassis, P.; Brassard, M.-A.; Bahoric, B.; Archambault, R.; Vincent, F.; Bettahar, R.; et al. Androgen Deprivation Therapy and Radiotherapy in Intermediate-Risk Prostate Cancer: A Randomised Phase III Trial. Eur. J. Cancer 2021, 143, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.G.; Gillham, C.M.; Dunne, M.T.; Fitzpatrick, D.A.; Finn, M.A.; Cannon, M.E.; Taylor, J.C.; O’Shea, C.M.; Buckney, S.J.; Thirion, P.G. A Randomized Trial (Irish Clinical Oncology Research Group 97-01) Comparing Short versus Protracted Neoadjuvant Hormonal Therapy before Radiotherapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Pisansky, T.M.; Hunt, D.; Gomella, L.G.; Amin, M.B.; Balogh, A.G.; Chinn, D.M.; Seider, M.J.; Duclos, M.; Rosenthal, S.A.; Bauman, G.S.; et al. Duration of Androgen Suppression before Radiotherapy for Localized Prostate Cancer: Radiation Therapy Oncology Group Randomized Clinical Trial 9910. J. Clin. Oncol. 2015, 33, 332–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawton, C.A.F.; Lin, X.; Hanks, G.E.; Lepor, H.; Grignon, D.J.; Brereton, H.D.; Bedi, M.; Rosenthal, S.A.; Zeitzer, K.L.; Venkatesan, V.M.; et al. Duration of Androgen Deprivation in Locally Advanced Prostate Cancer: Long-Term Update of NRG Oncology RTOG 9202. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 296–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolla, M.; de Reijke, T.M.; Van Tienhoven, G.; Van den Bergh, A.C.M.; Oddens, J.; Poortmans, P.M.P.; Gez, E.; Kil, P.; Akdas, A.; Soete, G.; et al. Duration of Androgen Suppression in the Treatment of Prostate Cancer. N. Engl. J. Med. 2009, 360, 2516–2527. [Google Scholar] [CrossRef] [PubMed]
- Zapatero, A.; Guerrero, A.; Maldonado, X.; Alvarez, A.; Gonzalez San Segundo, C.; Cabeza Rodríguez, M.A.; Macias, V.; Pedro Olive, A.; Casas, F.; Boladeras, A.; et al. High-Dose Radiotherapy with Short-Term or Long-Term Androgen Deprivation in Localised Prostate Cancer (DART01/05 GICOR): A Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2015, 16, 320–327. [Google Scholar] [CrossRef]
- Kishan, A.U.; Steigler, A.; Denham, J.W.; Zapatero, A.; Guerrero, A.; Joseph, D.; Maldonado, X.; Wong, J.K.; Stish, B.J.; Dess, R.T.; et al. Interplay Between Duration of Androgen Deprivation Therapy and External Beam Radiotherapy With or Without a Brachytherapy Boost for Optimal Treatment of High-Risk Prostate Cancer: A Patient-Level Data Analysis of 3 Cohorts. JAMA Oncol. 2022, 8, e216871. [Google Scholar] [CrossRef]
- Draulans, C.; van der Heide, U.A.; Haustermans, K.; Pos, F.J.; van der Voort van Zyp, J.; De Boer, H.; Groen, V.H.; Monninkhof, E.M.; Smeenk, R.J.; Kunze-Busch, M.; et al. Primary Endpoint Analysis of the Multicentre Phase II Hypo-FLAME Trial for Intermediate and High Risk Prostate Cancer. Radiother. Oncol. 2020, 147, 92–98. [Google Scholar] [CrossRef]
- Hannan, R.; Salamekh, S.; Desai, N.B.; Garant, A.; Folkert, M.R.; Costa, D.N.; Mannala, S.; Ahn, C.; Mohamad, O.; Laine, A.; et al. SAbR for High-Risk Prostate Cancer-A Prospective Multilevel MRI-Based Dose Escalation Trial. Int. J. Radiat. Oncol. Biol. Phys. 2021, 21. [Google Scholar] [CrossRef]
- Katz, A.; Kang, J. Stereotactic Body Radiotherapy with or without External Beam Radiation as Treatment for Organ Confined High-Risk Prostate Carcinoma: A Six Year Study. Radiat. Oncol. 2014, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Pryor, D.; Sidhom, M.; Arumugam, S.; Bucci, J.; Gallagher, S.; Smart, J.; Grand, M.; Greer, P.; Keats, S.; Wilton, L.; et al. Phase 2 Multicenter Study of Gantry-Based Stereotactic Radiotherapy Boost for Intermediate and High Risk Prostate Cancer (PROMETHEUS). Front. Oncol. 2019, 9, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eade, T.; Hruby, G.; Booth, J.; Bromley, R.; Guo, L.; O’Toole, A.; Le, A.; Wu, K.; Whitaker, M.; Rasiah, K.; et al. Results of a Prospective Dose Escalation Study of Linear Accelerator–Based Virtual Brachytherapy (BOOSTER) for Prostate Cancer; Virtual HDR Brachytherapy for Prostate Cancer. Adv. Radiat. Oncol. 2019, 4, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquier, D.; Peiffert, D.; Nickers, P.; Maingon, P.; Pommier, P.; Lacornerie, T.; Martinage, G.; Tresch, E.; Lartigau, E. A Multicenter Phase 2 Study of Hypofractionated Stereostatic Boost in Intermediate Risk Prostate Carcinoma: A 5-Year Analysis of the CKNO-PRO Trial. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.C.; Li, Y.; Lazar, A.; Altun, A.; Descovich, M.; Nano, T.; Ziemer, B.; Sudhyadhom, A.; Cunha, A.; Thomas, H.; et al. Stereotactic Body Radiation Therapy and High-Dose-Rate Brachytherapy Boost in Combination With Intensity Modulated Radiation Therapy for Localized Prostate Cancer: A Single-Institution Propensity Score Matched Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 429–437. [Google Scholar] [CrossRef] [PubMed]
NCCN Risk Groups (n) | bRFS (%) [Time Point] | ||||
---|---|---|---|---|---|
Authors | LR | FIR | FU (y) | LR | FIR |
Sylvester 2011 [44] | 128 | 36 | 11.7 | 86 [15y] | 80 [15y] |
Morris 2013 [45] | 586 | 419 | 7.5 | 94 [10y] | |
Kittel 2015 [46] | 1219 | 592 | 6.8 | 87 [10y] | 79 [10y] |
Cosset 2016 [47] | 452 | 223 | 11.0 | 87 [10y] | 71 [10y] |
Wilson 2016 [48] | 90 | 84 | 7.8 | 96 [10y] | 91 [10y] |
Langley 2017 [49] | 316 | 220 | 8.9 | 95 [10y] | 90 [10y] |
Prada 2018 [50] | 229 | 41 | 9.2 | 94 [15y] | 76 [15y] |
Jacobsen 2018 [51] | 206 | 265 | 6.6 | 90 [10y] | 75 [10y] |
Winoker 2019 [52] | 241 | 89 | 9.9 | 93 [15y] | 83 [15y] |
Vuolukka 2019 [53] | 142 | 85 | 11.4 | 85 [10y] | 72 [10y] |
Lazarev 2019 [54] | 370 | 170 | 12.5 | 86 [17y] | 80 [17y] |
NCCN Risk Groups (%) | bRFS (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Authors | n | LR | IR | HR | Gy/fx | ADT (%) | FU (y) | 2–3y | 5y |
Madsen 2007 [73] | 40 | 100 | 0 | 0 | 33.5/5 | NR | 3.4 | 90.0 | |
Friedland 2009 [74] | 112 | NR | NR | NR | 35–36/5 | 19 | 2.0 | 97.4 | |
Kang 2011 [75] | 44 | 11 | 23 | 66 | 32–36/4 | 89 | 3.3 | 100 a 96.0 b | 100 a 90.9 b |
Mc Bride 2012 [76] | 45 | 100 | 0 | 0 | 36.25–37.5/5 | 0 | 3.7 | 97.7 | |
King 2012 [77] | 67 | 100 | 0 | 0 | 36.25/5 | 0 | 2.7 | 100 | 94.0 |
Aluwini 2013 [78] | 50 | 60 | 40 | 0 | 38/4 | 0 | 1.9 | 100 | |
Chen 2013 [79] | 100 | 37 | 55 | 8 | 35–36.25/5 | 11 | 2.3 | 99.0 | |
Bolzicco 2013 [80] | 100 | 41 | 42 | 17 | 35/5 | 29 | 3.0 | 96.0 | 94.4 |
Loblaw 2013 [81] | 84 | 100 | 0 | 0 | 35/5 | 0 | 4.6 | 100 | 98.0 |
Oliai 2013 [82] | 70 | 51 | 31 | 17 | 35–37.5/5 | 33 | 2.6 | 94.5 | |
Lee 2014 [83] | 45 | 13 | 58 | 29 | 36/5 | 38 | 5.2 | ~95.0 | 89.7 |
Mantz 2014 [84] | 102 | 100 | 0 | 0 | 40/5 | NR | 5.0 | 100 | 100 |
Fuller 2014 [27] | 79 | 51 | 49 | 0 | 38/4 | NR | 5.0 | 100 | 95 |
Bernetich 2014 [85] | 142 | 43 | 44 | 13 | 35–37.5/5 | 28 | 3.3 | 95.5 | 92.7 |
Davis 2015 [86] | 437 | 43 | 49 | 8 | 35–38/4–5 | 11 | 1.7 | 96.1 | |
Freeman 2015 [87] | 1743 | 41 | 42 | 10 | 35–40/4–5 | NR | 2.0 | 92.0 | |
Rana 2015 [88] | 102 | 36 | 55 | 8 | 36.25/5 | 9 | 4.3 | 100 | |
Hannan 2016 [89] | 91 | 36 | 64 | 0 | 45–50/5 | 17 | 4.5 | 100 | 98.6 |
D’Agostino 2016 [90] | 90 | 59 | 41 | 0 | 35/5 | 13 | 2.3 | 97.8 | |
Rucinska 2016 [91] | 68 | 10 | 90 | 0 | 33.5/5 | 77 | 2.0 | 100 | |
Katz 2016 [92] | 515 | 63 | 30 | 7 | 35–36.25/5 | 14 | 7.0 | 98.0 a 72.0 b | 94.7 a 68.6 b |
Dixit 2017 [93] | 45 | 24 | 62 | 13 | 36.25/5 | 16 | 1.5 | 100 | |
Miszczyk 2017 [94] | 400 | 53 | 47 | 0 | 36.25/5 | 58 | 1.3 | 99.5 | |
Koskela 2017 [95] | 218 | 22 | 27 | 51 | 35–36/5 | 65 | 1.9 | ~97.0 a 92.8 b | |
Jackson 2018 [96] | 66 | 49 | 51 | 0 | 37/5 | 0 | 3.0 | 100 | |
Alayed 2018 [97] | 84 30 | 100 60 | 0 40 | 0 0 | 35/5 40/5 | 1 0 | 9.6 6.9 | 100 100 | 97.5 96.7 |
Meier 2018 [98] | 309 | 172 | 137 | 0 | 40/5 | 0 | 5.1 | 97.1 |
Trial Identifier | Coutnry | Risk Groups | Arms (Standard/Experimental) | Primary Outcome | Measure |
---|---|---|---|---|---|
NCT03830788 TEMPOS | France | LR and IR | LDR-BT SBRT | Medico-economic | Cost-utility analysis |
NCT02895854 BRAVEROBO | Finland | LR and IR | LDR-BT SBRT | Toxicity | CTCAE |
NCT04870567 | Russia | LR and IR | HDR-BT SBRT | Toxicity and erectile dysfunction | CTCAE and PROs |
NCT03525262 POTEN-C | USA | LR and IR | SBRT SBRT (neurovascular sparing) | Sexual toxicity | PROs (Sexual function) |
NCT05019846 SPA | Italy | IR and HR | SBRT SBRT + 6m ADT | Efficacy | bRFS |
NCT03056638 | USA | IR | SBRT SBRT + 6m ADT: | Efficacy | 2y biopsies |
NCT03253978 SPORT | UK | HR | SBRT + ADT SBRT with pelvis (SIB) + ADT | Toxicity | CTCAE and PROs |
ISRCTN45905321 HYPO-RT-PC | Sweden | IR and HR | EBRT SBRT | Efficacy | bRFS |
NCT01584258 PACE A B C | UK | LR and IR LR and IR IR and HR | PACE-A Prostatectomy SBRT PACE-B EBRT SBRT PACE-C EBRT + ADT SBRT + ADT | Efficacy Efficacy Efficacy | bRFS bRFS bRFS |
NCT01794403 HEAT | USA | LR and IR | EBRT SBRT | Efficacy | bRFS and 2y biopsies |
NCT03367702 NRG-GU005 | USA | IR | EBRT SBRT | Toxicity | PROs |
NCT02361515 RPAH2 | France | LR and IR | EBRT SBRT (rectal spacer) | Toxicity | CTCAE |
NCT02594072 ASSERT | Canada | IR and HR | EBRT + ADT SBRT + ADT | Toxicity | CTCAE |
NCT03380806 PBS | Canada | HR | EBRT + ADT EBRT + SBRT boost + ADT | Toxicity | PROs |
NCT01839994 | Poland | IR and HR | EBRT + ADT EBRT + HDR-BT boost + ADT or EBRT + SBRT boost + ADT | Efficacy | bRFS |
NCT02300389 HYPOPROST | Poland | HR | EBRT + ADT EBRT + SBRT boost + ADT | Efficacy | bRFS |
NCT04100174 | Canada | IR and HR | EBRT + HDR-BT boost SBRT + focal HDR-BT boost | Urinary toxicity | PROs (Urinary function) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kissel, M.; Créhange, G.; Graff, P. Stereotactic Radiation Therapy versus Brachytherapy: Relative Strengths of Two Highly Efficient Options for the Treatment of Localized Prostate Cancer. Cancers 2022, 14, 2226. https://doi.org/10.3390/cancers14092226
Kissel M, Créhange G, Graff P. Stereotactic Radiation Therapy versus Brachytherapy: Relative Strengths of Two Highly Efficient Options for the Treatment of Localized Prostate Cancer. Cancers. 2022; 14(9):2226. https://doi.org/10.3390/cancers14092226
Chicago/Turabian StyleKissel, Manon, Gilles Créhange, and Pierre Graff. 2022. "Stereotactic Radiation Therapy versus Brachytherapy: Relative Strengths of Two Highly Efficient Options for the Treatment of Localized Prostate Cancer" Cancers 14, no. 9: 2226. https://doi.org/10.3390/cancers14092226
APA StyleKissel, M., Créhange, G., & Graff, P. (2022). Stereotactic Radiation Therapy versus Brachytherapy: Relative Strengths of Two Highly Efficient Options for the Treatment of Localized Prostate Cancer. Cancers, 14(9), 2226. https://doi.org/10.3390/cancers14092226