Cell Free Methylated Tumor DNA in Bronchial Lavage as an Additional Tool for Diagnosing Lung Cancer—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Quality Assessment
2.4. Data Synthesis
3. Results
3.1. Study Characteristics
3.2. Quality of Included Studies
3.3. Diagnostic Properties of Methylated Circulating Tumor DNA in Bronchial Lavage Fluid
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Koning, H.J.; Van Der Aalst, C.M.; De Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.-W.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Heerink, W.J.; de Bock, G.H.; De Jonge, G.J.; Groen, H.J.; Vliegenthart, R.; Oudkerk, M. Complication rates of CT-guided transthoracic lung biopsy: Meta-analysis. Eur. Radiol. 2017, 27, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Kim, H.J.; Kong, K.A.; Kim, S.J.; Lee, S.H.; Ryu, Y.J.; Lee, J.H.; Kim, Y.; Shim, S.S.; Chang, J.H. Diagnosis of small pulmonary lesions by transbronchial lung biopsy with radial endobronchial ultrasound and virtual bronchoscopic navigation versus CT-guided transthoracic needle biopsy: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0191590. [Google Scholar] [CrossRef] [Green Version]
- Lissavalid, E.; Khalil, A.; Soussi, G.; Debray, M.-P.; Guyard, A.; Bunel, V.; Borie, R.; Mordant, P.; Cazes, A.; Zalcman, G.; et al. Transthoracic lung biopsy for pulmonary nodules ≤20 mm in routine clinical care. ERJ Open Res. 2021, 8, 00562–2021. [Google Scholar] [CrossRef]
- Hasan, N.; Kumar, R.; Kavuru, M.S. Lung Cancer Screening Beyond Low-Dose Computed Tomography: The Role of Novel Biomarkers. Lung 2014, 192, 639–648. [Google Scholar] [CrossRef]
- Oudkerk, M.; Liu, S.; Heuvelmans, M.A.; Walter, J.E.; Field, J.K. Lung cancer LDCT screening and mortality reduction—Evidence, pitfalls and future perspectives. Nat. Rev. Clin. Oncol. 2021, 18, 135–151. [Google Scholar] [CrossRef]
- Schramm, M.; Wrobel, C.; Born, I.; Kazimirek, M.; Pomjanski, N.; William, M.; Kappes, R.; Gerharz, C.D.; Biesterfeld, S.; Böcking, A. Equivocal cytology in lung cancer diagnosis: Improvement of diagnostic accuracy using adjuvant multicolor FISH, DNA-image cytometry, and quantitative promoter hypermethylation analysis. Cancer Cytopathol. 2011, 119, 177–192. [Google Scholar] [CrossRef]
- van der Drift, M.A.; Prinsen, C.F.M.; Knuiman, G.J.; Janssen, J.P.; Dekhuijzen, P.N.R.; Thunnissen, F.B.J.M. Diagnosing peripheral lung cancer: The additional value of the Ras-association domain family 1A gene methylation and Kirsten rat sarcoma 2 viral oncogene homolog mutation analyses in washings in nondiagnostic bronchoscopy. Chest 2012, 141, 169–175. [Google Scholar] [CrossRef]
- de Bruin, E.C.; McGranahan, N.; Mitter, R.; Salm, M.; Wedge, D.C.; Yates, L.; Jamal-Hanjani, M.; Shafi, S.; Murugaesu, N.; Rowan, A.J.; et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 2014, 346, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2010, 31, 27–36. [Google Scholar] [CrossRef]
- Garrigou, S.; Perkins, G.; Garlan, F.; Normand, C.; Didelot, A.; Le Corre, D.; Peyvandi, S.; Mulot, C.; Niarra, R.; Aucouturier, P.; et al. A Study of Hypermethylated Circulating Tumor DNA as a Universal Colorectal Cancer Biomarker. Clin. Chem. 2016, 62, 1129–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fackler, M.J.; Bujanda, Z.L.; Umbricht, C.; Teo, W.W.; Cho, S.; Zhang, Z.; Visvanathan, K.; Jeter, S.; Argani, P.; Wang, C.; et al. Novel Methylated Biomarkers and a Robust Assay to Detect Circulating Tumor DNA in Metastatic Breast Cancer. Cancer Res. 2014, 74, 2160–2170, Erratum in Cancer Res. 2014, 74, 3196. [Google Scholar] [CrossRef] [Green Version]
- Bouras, E.; Karakioulaki, M.; Bougioukas, K.; Aivaliotis, M.; Tzimagiorgis, G.; Chourdakis, M. Gene promoter methylation and cancer: An umbrella review. Gene 2019, 710, 333–340. [Google Scholar] [CrossRef]
- Zhao, X.; Han, R.-B.; Zhao, J.; Wang, J.; Yang, F.; Zhong, W.; Zhang, L.; Li, L.-Y.; Wang, M.-Z. Comparison of Epidermal Growth Factor Receptor Mutation Statuses in Tissue and Plasma in Stage I–IV Non-Small Cell Lung Cancer Patients. Respiration 2013, 85, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.-S.; Park, C.H.; Lee, S.; Park, H.S. Clinicopathological parameters for circulating tumor DNA shedding in surgically resected non-small cell lung cancer with EGFR or KRAS mutation. PLoS ONE 2020, 15, e0230622. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhu, T.; Ma, D.; Chen, Y.; Bo, L. Complications and safety analysis of diagnostic bronchoscopy in COPD: A systematic review and meta-analysis. Expert Rev. Respir. Med. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Ergan, B.; Nava, S. The use of bronchoscopy in critically ill patients: Considerations and complications. Expert Rev. Respir. Med. 2018, 12, 651–663. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- McInnes, M.D.F.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; Hooft, L.; et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies. The PRISMA-DTA Statement. JAMA 2018, 319, 388–396, Erratum in JAMA 2019, 322, 2026. [Google Scholar] [CrossRef] [PubMed]
- Kersting, M.; Friedl, C.; Kraus, A.; Behn, M.; Pankow, W.; Schuermann, M. Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J. Clin. Oncol. 2000, 18, 3221–3229. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kwon, Y.M.; Kim, J.S.; Lee, H.; Park, J.-H.; Shim, Y.M.; Han, J.; Park, J.; Kim, D.-H. Tumor-Specific Methylation in Bronchial Lavage for the Early Detection of Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2004, 22, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Topaloglu, O.; Hoque, M.O.; Tokumaru, Y.; Lee, J.; Ratovitski, E.; Sidransky, D.; Moon, C.-S. Detection of Promoter Hypermethylation of Multiple Genes in the Tumor and Bronchoalveolar Lavage of Patients with Lung Cancer. Clin. Cancer Res. 2004, 10, 2284–2288. [Google Scholar] [CrossRef] [Green Version]
- de Fraipont, F.; Moro-Sibilot, D.; Michelland, S.; Brambilla, E.; Favrot, M. Promoter methylation of genes in bronchial lavages: A marker for early diagnosis of primary and relapsing non-small cell lung cancer? Lung Cancer 2005, 50, 199–209. [Google Scholar] [CrossRef]
- Grote, H.J.; Schmiemann, V.; Geddert, H.; Rohr, U.P.; Kappes, R.; Gabbert, H.E.; Böcking, A. Aberrant promoter methylation of p16INK4a, RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. Int. J. Cancer 2005, 116, 720–725. [Google Scholar] [CrossRef]
- Schmiemann, V.; Böcking, A.; Kazimirek, M.; Onofre, A.S.C.; Gabbert, H.E.; Kappes, R.; Gerharz, C.D.; Grote, H.J. Methylation Assay for the Diagnosis of Lung Cancer on Bronchial Aspirates: A Cohort Study. Clin. Cancer Res. 2005, 11, 7728–7734. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, B.; Liebenberg, V.; Dietrich, D.; Schlegel, T.; Kneip, C.; Seegebarth, A.; Flemming, N.; Seemann, S.; Distler, J.; Lewin, J.; et al. SHOX2 DNA Methylation is a Biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer 2010, 10, 600. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, D.; Kneip, C.; Raji, O.; Liloglou, T.; Seegebarth, A.; Schlegel, T.; Flemming, N.; Rausch, S.; Distler, J.; Fleischhacker, M.; et al. Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int. J. Oncol. 2011, 40, 825–832. [Google Scholar] [CrossRef]
- Nikolaidis, G.; Raji, O.Y.; Markopoulou, S.; Gosney, J.R.; Bryan, J.; Warburton, C.; Walshaw, M.; Sheard, J.; Field, J.; Liloglou, T. DNA Methylation Biomarkers Offer Improved Diagnostic Efficiency in Lung Cancer. Cancer Res. 2012, 72, 5692–5701. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Lagares, A.; Mendez-Gonzalez, J.; Hervas, D.; Saigi, M.; Pajares, M.J.; Garcia, D.; Crujerias, A.B.; Pio, R.; Montuenga, L.; Zulueta, J.; et al. A Novel Epigenetic Signature for Early Diagnosis in Lung Cancer. Clin. Cancer Res. 2016, 22, 3361–3371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konečný, M.; Markus, J.; Waczulíková, I.; Dolesova, L.; Kozlova, R.; Repiska, V.; Novosadova, H.; Majer, I. The value of SHOX2 methylation test in peripheral blood samples used for the differential diagnosis of lung cancer and other lung disorders. Neoplasma 2016, 63, 246–253. [Google Scholar] [CrossRef]
- Ren, M.; Wang, C.; Sheng, D.; Shi, Y.; Jin, M.; Xu, S. Methylation analysis of SHOX2 and RASSF1A in bronchoalveolar lavage fluid for early lung cancer diagnosis. Ann. Diagn. Pathol. 2017, 27, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, W.; Wang, L.; Zhao, M.; Guo, Q.; Lv, S.; Hu, X.; Lou, J. DNA Methylation Analysis of the SHOX2 and RASSF1A Panel in Bronchoalveolar Lavage Fluid for Lung Cancer Diagnosis. J. Cancer 2017, 8, 3585–3591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Feng, X.; Xie, X.; Zheng, B.; Peng, C.; Zhou, H. The more potential performance of nidogen 2 methylation by tissue or plasma DNA over brichoalveolar lavage DNA in diagnosis of nonsmall cell lung cancer. J. Cancer Res. Ther. 2018, 14, S341–S346. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.B.; Yoon, Y.S.; Park, S.Y.; Cha, E.J.; Na, M.J.; Kwon, S.J.; Kim, J.H.; Oh, T.J.; An, S.; Park, C.R.; et al. PCDHGA12 methylation biomarker in bronchial washing specimens as an adjunctive diagnostic tool to bronchoscopy in lung cancer. Oncol. Lett. 2018, 16, 1039–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Um, S.-W.; Kim, Y.; Bin Lee, B.; Kim, D.; Lee, K.-J.; Kim, H.K.; Han, J.; Kim, H.; Shim, Y.M.; Kim, D.-H. Genome-wide analysis of DNA methylation in bronchial washings. Clin. Epigenetics 2018, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.-H.; Li, W.; Wang, L.; Hu, J.; Song, Y.; Zhang, B.; Ren, X.; Ji, S.; Li, J.; Xu, P.; et al. Histone-Related Genes Are Hypermethylated in Lung Cancer and Hypermethylated HIST1H4F Could Serve as a Pan-Cancer Biomarker. Cancer Res. 2019, 79, 6101–6112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalba, M.; Exposito, F.; Pajares, M.J.; Sainz, C.; Redrado, M.; Remirez, A.; Wistuba, I.; Behrens, C.; Jantus-Lewintre, E.; Camps, C.; et al. TMPRSS4: A Novel Tumor Prognostic Indicator for the Stratification of Stage IA Tumors and a Liquid Biopsy Biomarker for NSCLC Patients. J. Clin. Med. 2019, 8, 2134. [Google Scholar] [CrossRef] [Green Version]
- Rizk, M.M.M.A.; Helal, S.M.F.; Gad, A.Y.S.; Younan, D.N.A.; Moemen, S.A.E.M.M.R. SHOX2 gene methylation in Egyptians having lung cancer. Egypt. J. Med Hum. Genet. 2020, 21, 27. [Google Scholar] [CrossRef]
- Roncarati, R.; Lupini, L.; Miotto, E.; Saccenti, E.; Mascetti, S.; Morandi, L.; Bassi, C.; Rasio, D.; Callegari, E.; Conti, V.; et al. Molecular testing on bronchial washings for the diagnosis and predictive assessment of lung cancer. Mol. Oncol. 2020, 14, 2163–2175. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, Z.; Yang, S.; Yang, H.; Jin, J.; Zhu, Y.; Tao, J.; Chen, S.; Xu, J.; Liu, Y.; et al. Diagnosis of pulmonary nodules by DNA methylation analysis in bronchoalveolar lavage fluids. Clin. Epigenetics 2021, 13, 185. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.W.C.; Andersen, R.F.; Rasmussen, K.; Thomsen, C.B.; Hansen, T.F.; Nederby, L.; Hager, H.; Jakobsen, A.; Hilberg, O. Validating Methylated HOXA9 in Bronchial Lavage as a Diagnostic Tool in Patients Suspected of Lung Cancer. Cancers 2021, 13, 4223. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Wang, C.; Mu, C.; Su, M.; Mao, J.; Huang, J.; Xu, J.; Shao, L.; Li, B.; Li, H.; et al. Cell-free DNA from bronchoalveolar lavage fluid (BALF): A new liquid biopsy medium for identifying lung cancer. Ann. Transl. Med. 2021, 9, 1080. [Google Scholar] [CrossRef] [PubMed]
- Merker, J.D.; Oxnard, G.R.; Compton, C.; Diehn, M.; Hurley, P.; Lazar, A.; Lindeman, N.; Lockwood, C.; Rai, A.J.; Schilsky, R.L.; et al. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J. Clin. Oncol. 2018, 36, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-García, J.; Osca-Verdegal, R.; Mena-Mollá, S.; García-Giménez, J.L. Epigenetic IVD Tests for Personalized Precision Medicine in Cancer. Front. Genet. 2019, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration, Nucleic Acid Based Tests. Available online: https://www.fda.gov/medical-devices/in-vitro-diagnostics/nucleic-acid-based-tests (accessed on 25 March 2022).
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Nabet, B.Y.; Esfahani, M.S.; Moding, E.J.; Hamilton, E.G.; Chabon, J.J.; Rizvi, H.; Steen, C.B.; Chaudhuri, A.A.; Liu, C.L.; Hui, A.B.; et al. Noninvasive Early Identification of Therapeutic Benefit from Immune Checkpoint Inhibition. Cell 2020, 183, 363–376.e13. [Google Scholar] [CrossRef]
- Fahrmann, J.F.; Marsh, T.; Irajizad, E.; Patel, N.; Murage, E.; Vykoukal, J.; Dennison, J.B.; Do, K.-A.; Ostrin, E.; Spitz, M.R.; et al. Blood-Based Biomarker Panel for Personalized Lung Cancer Risk Assessment. J. Clin. Oncol. 2022, 40, 876–883. [Google Scholar] [CrossRef]
- Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) Consortium for Early Detection of Lung Cancer; Guida, F.; Sun, N.; Bantis, L.E.; Muller, D.C.; Li, P.; Taguchi, A.; Dhillon, D.; Kundnani, D.L.; Patel, N.J.; et al. Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins. JAMA Oncol. 2018, 4, e182078, Erratum in JAMA Oncol. 2018, 4, 1439; Erratum in JAMA Oncol. 2019, 5, 1811. [Google Scholar] [CrossRef]
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; De Vet, H.C.W.; et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, version 6.3 (updated February 2022); Cochrane: London, UK, 2022; Available online: www.training.cochrane.org/handbook (accessed on 25 February 2022).
Study ID | Country | Study Design | Cases, n | Cases, Description | Controls, n | Controls, Description |
---|---|---|---|---|---|---|
Kersting 2000 [22] | Germany | Case-control | 51 | All types, all stages | 25 | Symptomatic smokers >20 pack years, no current lung cancer |
Kim 2004 [23] | Korea | Case-control | 85 | Surgically resected NSCLC | 127 | No current or historic malignancies |
Topaloglu 2004 [24] | USA | Case-control | 31 | NSCLC, all stages | 10 | Age-matched, no current lung cancer |
de Fraipont 2005 [25] | France | Case-control | 34 | Primary and previously operated NSCLC | 43 | No current lung cancer |
Grote 2005 [26] | Germany | Case-control | 75 | All types, all stages | 64 | No current lung cancer |
Schmiemann 2005 [27] | Germany | Case-control | 89 | All types, all stages | 102 | No current lung cancer |
Schmidt 2010 [28] | Germany, England | Case-control | 281 | All types, all stages | 242 | No current lung cancer |
Schramm 2011 [9] | Germany | Case-control | 117 | All types, all stages | 61 | No current or historic lung cancer |
Dietrich 2012 [29] | England | Case-control | 125 | All types, stages unkown | 125 | No current malignancy |
Nikolaidis 2012 [30] | England | Case-control | Test: 194 Validation: 139 | All types, all stages | Test: 213 Validation: 109 | No current lung cancer; 36 patients with other cancers |
van der Drift 2012 [10] | The Netherlands | Case-control | 129 | All types, all stages | 28 | No current lung cancer |
Diaz-Lagares 2016 [31] | Spain | Case-control | 51 aspirates82 BAL | All types, all stages | 29 aspirates29 BAL | No current lung cancer |
Konecny 2016 [32] | Slovakia | Case-control | 37 | All types, all stages | 31 | No current lung cancer |
Ren 2017 [33] | China | Case-control | 123 | All types, all stages | 130 | No current lung cancer; 18 patients with other cancers |
Zhang 2017 [34] | China | Case-control | 284 | All types, all stages | 38 | No current lung cancer; 3 patients with other cancers |
Feng 2018 [35] | China | Case-control | 46 | NSCLC, all stages | 12 | No current lung cancer |
Jeong 2018 [36] | Korea | Case-control | 60 | All types, all stages | 38 | No current lung cancer |
Um 2018 [37] | Korea | Case-control | 70 | NSCLC stage I-IIIa | 53 | No current lung cancer |
Dong 2019 [38] | China | Case-control | Test: 103 Validation: 103 | NSCLC, all stages | Test: 30 Validation: 29 | No current lung cancer |
Villalba 2019 [39] | Spain | Case-control | 79 | NSCLC, all stages | 26 | No current lung cancer |
Rizk 2020 [40] | Egypt | Case-control | 60 | NSCLC, stages unknown | 20 | Sex and age matched with no current lung cancer |
Roncarati 2020 [41] | Italy | Case-control | 91 | All types, all stages | 31 | No current lung cancer |
Li 2021 [42] | China | Case-control | Test: 36 Validation: 52 | NSCLC, all stages | Test: 35 Validation: 59 | No current lung cancer |
Wen 2021 [43] | Denmark | Case-control | Test: 67 Validation: 50 | All types, all stages | Test: 34 Validation: 45 | No current lung cancer |
Zeng 2021 [44] | China | Case-control | 32 | Solid nodule < 2 cm | 21 | No current lung cancer |
Study ID | Sampling Method | Specimen | Method(s) | Cut-Off |
---|---|---|---|---|
Kersting 2000 [22] | BL | Pellet | PCR, non-quantitative | Not quantitative. |
Kim 2004 [23] | BL | Pellet | PCR, non-quantitative | Not quantitative. |
Topaloglu 2004 [24] | BAL | Pellet | QMSP | The highest methylation found in three normal controls was set as the cut-off for the case samples. |
de Fraipont 2005 [25] | BL | Pellet | QMSP | Not reported. |
Grote 2005 [26] | BW and BAL | Not reported | QMSP | A cutoff of >30% methylation for RARB2 was defined in the study. |
Schmiemann 2005 [27] | BW and BAL | Not reported | QMSP | Defined in a previous study. |
Schmidt 2010 [28] | BA | Pellet from the unfixed samples, whole fluid from the Saccomanno fixed samples. | QMSP Chip/microarray | The cutoff that resulted in <5% false positive rate in the benign samples. |
Schramm 2011 [9] | BW | Pellet | QMSP | Defined in a previous study. |
Dietrich 2012 [29] | BL | Pellet | QMSP | Defined in a previous study. |
Nikolaidis 2012 [30] | BL | Pellet | QMSP | Defined by a test cohort using ROC analysis. |
van der Drift 2012 [10] | BW | Pellet | QMSP | Not reported. |
Diaz-Lagares 2016 [31] | BA and BAL | Not reported | Pyrosequencing Chip/microarray | Defined by a test cohort using ROC analysis. |
Konecny 2016 [32] | BL | Pellet | QMSP | Defined in a previous study. |
Ren 2017 [33] | BAL | Pellet | QMSP Sanger sequencing | Not reported. |
Zhang 2017 [34] | BAL | Pellet | QMSPSanger sequencing | Not reported. |
Feng 2018 [35] | BAL | Pellet | QMSP | Not reported. |
Jeong 2018 [36] | BW | 3–5 mL of the fluid, presumably unprocessed. | QMSP | ROC analysis in the present study, no validation. |
Um 2018 [37] | BW | Not reported | Chip/microarray Pyrosequencing | Defined by a test cohort using ROC analysis. |
Dong 2019 [38] | BAL | Not reported | QMSP Pyrosequencing | Defined by a test cohort using ROC analysis. |
Villalba 2019 [39] | BAL | Not reported | ddPCR | ROC analysis in the present study, no validation. |
Rizk 2020 [40] | BAL | Not reported | QMSP | ROC analysis in the present study, no validation. |
Roncarati 2020 [41] | BW | Pellet | ddPCR | Poisson distribution to quantify absolute number of droplets. Sample considered positive when both duplicate experiments were positive. |
Li 2021 [42] | BAL | Pellet | QMSP | Defined by a test cohort using ROC analysis. |
Wen 2021 [43] | BL | Supernatant | ddPCR | Defined by a test cohort using ROC analysis. |
Zeng 2021 [44] | BAL | Not reported | NGS | From analyzing tissues. |
Study ID | Risk of Bias | Applicability Concerns | |||||
---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | |
Kersting 2000 [22] | Low risk | Unclear | Low risk | Low risk | Low risk | Low risk | Low risk |
Kim 2004 [23] | Low risk | Unclear | Low risk | Low risk | Low risk | Low risk | Low risk |
Topaloglu 2004 [24] | Unclear | High risk | Low risk | Low risk | Low risk | Low risk | Low risk |
de Fraipont 2005 [25] | Unclear | Unclear | Unclear | Low risk | Low risk | Low risk | Low risk |
Grote 2005 [26] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Schmiemann 2005 [27] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Schmidt 2010 [28] | Unclear | Unclear | Low risk | Low risk | Low risk | Low risk | Low risk |
Schramm 2011 [9] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Dietrich 2012 [29] | High risk | High risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Nikolaidis 2012 [30] | High risk | Unclear | Low risk | Low risk | Low risk | Low risk | Low risk |
van der Drift 2012 [10] | Unclear | Unclear | Unclear | Low risk | Low risk | Low risk | Low risk |
Diaz-Lagares 2016 [31] | High risk | Unclear | Low risk | Low risk | Low risk | Low risk | Low risk |
Konecny 2016 [32] | Unclear | Unclear | Unclear | Low risk | Low risk | Low risk | Low risk |
Ren 2017 [33] | Unclear | Unclear | Low risk | Low risk | Low risk | Low risk | Low risk |
Zhang 2017 [34] | High risk | High risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Feng 2018 [35] | Unclear | Unclear | Unclear | Low risk | Low risk | Low risk | Low risk |
Jeong 2018 [36] | Low risk | Unclear | Unclear | Low risk | Low risk | Low risk | Low risk |
Um 2018 [37] | High risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Dong 2019 [38] | Unclear | Unclear | Unclear | Unclear | Low risk | Low risk | Low risk |
Villalba 2019 [39] | Unclear | High risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Rizk 2020 [40] | Unclear | Unclear | Unclear | Low risk | Low risk | Low risk | Low risk |
Roncarati 2020 [41] | Low risk | Unclear | Low risk | Low risk | Low risk | Low risk | Low risk |
Li 2021 [42] | Unclear | Unclear | Low risk | Low risk | Low risk | Low risk | Low risk |
Wen 2021 [43] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Zeng 2021 [44] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, S.W.C.; Wen, J.; Hansen, T.F.; Jakobsen, A.; Hilberg, O. Cell Free Methylated Tumor DNA in Bronchial Lavage as an Additional Tool for Diagnosing Lung Cancer—A Systematic Review. Cancers 2022, 14, 2254. https://doi.org/10.3390/cancers14092254
Wen SWC, Wen J, Hansen TF, Jakobsen A, Hilberg O. Cell Free Methylated Tumor DNA in Bronchial Lavage as an Additional Tool for Diagnosing Lung Cancer—A Systematic Review. Cancers. 2022; 14(9):2254. https://doi.org/10.3390/cancers14092254
Chicago/Turabian StyleWen, Sara Witting Christensen, Jan Wen, Torben Frøstrup Hansen, Anders Jakobsen, and Ole Hilberg. 2022. "Cell Free Methylated Tumor DNA in Bronchial Lavage as an Additional Tool for Diagnosing Lung Cancer—A Systematic Review" Cancers 14, no. 9: 2254. https://doi.org/10.3390/cancers14092254
APA StyleWen, S. W. C., Wen, J., Hansen, T. F., Jakobsen, A., & Hilberg, O. (2022). Cell Free Methylated Tumor DNA in Bronchial Lavage as an Additional Tool for Diagnosing Lung Cancer—A Systematic Review. Cancers, 14(9), 2254. https://doi.org/10.3390/cancers14092254