Clinical Significance of Molecular Alterations and Systemic Therapy for Meningiomas: Where Do We Stand?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Molecular Features and Correlation with Histology and Grading
3. Molecular Features and Correlation with Location
4. Molecular Features and Correlation with Prognosis
5. Driver Signaling Mutations in Meningiomas: Potential New Targets of Therapy
6. Role of Tumor Microenvironment in Meningiomas: Is It Druggable?
7. Systemic Therapy for Progressive/Recurrent Meningiomas: Present and Future
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncology 2021, 23, iii1–iii105. [Google Scholar] [CrossRef] [PubMed]
- Goldbrunner, R.; Stavrinou, P.; Jenkinson, M.D.; Sahm, F.; Mawrin, C.; Weber, D.C.; Preusser, M.; Minniti, G.; Lund-Johansen, M.; Lefranc, F.; et al. EANO guideline on the diagnosis and management of meningiomas. Neuro-Oncology 2021, 23, 1821–1834. [Google Scholar] [CrossRef] [PubMed]
- Nakasu, S.; Fukami, T.; Jito, J.; Matsuda, M. Microscopic anatomy of the brain–meningioma interface. Brain Tumor Pathol. 2005, 22, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Kshettry, V.R.; Ostrom, Q.; Kruchko, C.; Al-Mefty, O.; Barnett, G.H.; Barnholtz-Sloan, J.S. Descriptive epidemiology of World Health Organization grades II and III intracranial meningiomas in the United States. Neuro-Oncology 2015, 17, 1166–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowosielski, M.; Galldiks, N.; Iglseder, S.; Kickingereder, P.; von Deimling, A.; Bendszus, M.; Wick, W.; Sahm, F. Diagnostic challenges in meningioma. Neuro-Oncology 2017, 19, 1588–1598. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.; Barani, I.; Chamberlain, M.; Kaley, T.J.; McDermott, M.; Raizer, J.; Schiff, D.; Weber, D.C.; Wen, P.Y.; Vogelbaum, M.A. Meningiomas: Knowledge base, treatment outcomes, and uncertainties. A RANO review. J. Neurosurg. 2015, 122, 4–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brastianos, P.K.; Horowitz, P.M.; Santagata, S.; Jones, R.T.; McKenna, A.; Getz, G.; Ligon, K.L.; Palescandolo, E.; Van Hummelen, P.; Ducar, M.D.; et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat. Genet. 2013, 45, 285–289. [Google Scholar] [CrossRef]
- Zang, K.D. Meningioma: A cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet. Genome Res. 2001, 93, 207–220. [Google Scholar] [CrossRef]
- Mawrin, C.; Perry, A. Pathological classification and molecular genetics of meningiomas. J. Neuro-Oncol. 2010, 99, 379–391. [Google Scholar] [CrossRef]
- Petrilli, A.M.; Fernández-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2015, 35, 537–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruttledge, M.H.; Sarrazin, J.; Rangaratnam, S.; Phelan, C.M.; Twist, E.; Merel, P.; Delattre, O.; Thomas, G.; Nordenskjöld, M.; Collins, V.P.; et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat. Genet. 1994, 6, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Wellenreuther, R.; Kraus, J.A.; Lenartz, D.; Menon, A.G.; Schramm, J.; Louis, D.N.; Ramesh, V.; Gusella, J.F.; Wiestler, O.D.; Von Deimling, A. Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am. J. Pathol. 1995, 146, 827–832. [Google Scholar] [PubMed]
- Hartmann, C.; Sieberns, J.; Gehlhaar, C.; Simon, M.; Paulus, W.; von Deimling, A. NF2 Mutations in Secretory and Other Rare Variants of Meningiomas. Brain Pathol. 2006, 16, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Goutagny, S.; Yang, H.W.; Zucman-Rossi, J.; Chan, J.; Dreyfuss, J.M.; Park, P.J.; Black, P.M.; Giovannini, M.; Carroll, R.S.; Kalamarides, M. Genomic Profiling Reveals Alternative Genetic Pathways of Meningioma Malignant Progression Dependent on the Underlying NF2 Status. Clin. Cancer Res. 2010, 16, 4155–4164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, M.F.; Han, S.; Polizzano, C.; Plotkin, S.R.; Manning, B.D.; Stemmer-Rachamimov, A.O.; Gusella, J.F.; Ramesh, V. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol. Cell. Biol. 2009, 29, 4250–4261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, M.F.; Stivison, E.; Beauchamp, R.; Han, S.; Li, H.; Wallace, M.R.; Gusella, J.F.; Stemmer-Rachamimov, A.O.; Ramesh, V. Regulation of mTOR Complex 2 Signaling in Neurofibromatosis 2–Deficient Target Cell Types. Mol. Cancer Res. 2012, 10, 649–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, V.E.; Erson-Omay, E.Z.; Serin, A.; Yin, J.; Cotney, J.; Ozduman, K.; Avşar, T.; Li, J.; Murray, P.B.; Henegariu, O.; et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339, 1077–1080. [Google Scholar] [CrossRef] [Green Version]
- Abedalthagafi, M.; Bi, W.L.; Aizer, A.A.; Merrill, P.H.; Brewster, R.; Agarwalla, P.K.; Listewnik, M.L.; Dias-Santagata, D.; Thorner, A.R.; Van Hummelen, P.; et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016, 18, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Yesilöz, Ü.; Kirches, E.; Hartmann, C.; Scholz, J.; Kropf, S.; Sahm, F.; Nakamura, M.; Mawrin, C. Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro Oncol. 2017, 19, 1088–1096. [Google Scholar] [CrossRef]
- Reuss, D.E.; Piro, R.M.; Jones, D.T.; Simon, M.; Ketter, R.; Kool, M.; Becker, A.; Sahm, F.; Pusch, S.; Meyer, J.; et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol. 2013, 125, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.M.; Curran, T. The Hedgehog’s tale: Developing strategies for targeting cancer. Nat. Rev. Cancer 2011, 11, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, V.E.; Harmancı, A.S.; Bai, H.; Youngblood, M.W.; Lee, T.I.; Baranoski, J.F.; Ercan-Sencicek, A.G.; Abraham, B.J.; Weintraub, A.S.; Hnisz, D.; et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat. Genet. 2016, 48, 1253–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmancı, A.S.; Youngblood, M.W.; Clark, V.E.; Coskun, S.; Henegariu, O.; Duran, D.; Erson-Omay, E.Z.; Kaulen, L.D.; Lee, T.I.; Abraham, B.J.; et al. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat. Commun. 2017, 8, 14433. [Google Scholar] [CrossRef]
- Sahm, F.; Schrimpf, D.; Olar, A.; Koelsche, C.; Reuss, D.; Bissel, J.; Kratz, A.; Capper, D.; Schefzyk, S.; Hielscher, T.; et al. TERT Promoter Mutations and Risk of Recurrence in Meningioma. J. Natl. Cancer Inst. 2016, 108, djv370. [Google Scholar] [CrossRef]
- Vaubel, R.A.; Chen, S.G.; Raleigh, D.R.; Link, M.J.; Chicoine, M.R.; Barani, I.; Jenkins, S.M.; Aleff, P.A.; Rodriguez, F.J.; Burger, P.C.; et al. Meningiomas With Rhabdoid Features Lacking Other Histologic Features of Malignancy: A Study of 44 Cases and Review of the Literature. J. Neuropathol. Exp. Neurol. 2016, 75, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Shankar, G.M.; Abedalthagafi, M.; Vaubel, R.A.; Merrill, P.H.; Nayyar, N.; Gill, C.M.; Brewster, R.; Bi, W.L.; Agarwalla, P.K.; Thorner, A.R.; et al. Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro-Oncology 2017, 19, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.A.; Santagata, S.; Wakimoto, H.; Shankar, G.M.; Barker, F.G., II; Sharaf, R.; Reddy, A.; Spear, P.; Alexander, B.M.; Ross, J.S.; et al. Distinct genomic subclasses of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic. Acta Neuropathol. Commun. 2020, 8, 171. [Google Scholar] [CrossRef]
- Sahm, F.; Schrimpf, D.; Stichel, D.; Jones, D.T.W.; Hielscher, T.; Schefzyk, S.; Okonechnikov, K.; Koelsche, C.; Reuss, D.E.; Capper, D.; et al. DNA methylation-based classification and grading system for meningioma: A multicentre, retrospective analysis. Lancet Oncol. 2017, 18, 682–694. [Google Scholar] [CrossRef] [Green Version]
- Olar, A.; Wani, K.M.; Wilson, C.D.; Zadeh, G.; Demonte, F.; Jones, D.T.; Pfister, S.M.; Sulman, E.P.; Aldape, K.D. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol. 2017, 133, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Nassiri, F.; Mamatjan, Y.; Suppiah, S.; Badhiwala, J.H.; Mansouri, S.; Karimi, S.; Saarela, O.; Poisson, L.; Gepfner-Tuma, I.; Schittenhelm, J.; et al. DNA methylation profiling to predict recurrence risk in meningioma: Development and validation of a nomogram to optimize clinical management. Neuro-Oncology 2019, 21, 901–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kros, J.; de Greve, K.; van Tilborg, A.; Hop, W.; Pieterman, H.; Avezaat, C.; Deprez, R.L.D.; Zwarthoff, E. NF2 status of meningiomas is associated with tumour localization and histology. J. Pathol. 2001, 194, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Sade, B.; Choi, E.; Golubic, M.; Prayson, R. Meningothelioma as the predominant histological subtype of midline skull base and spinal meningioma. J. Neurosurg. 2006, 105, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Ketter, R.; Rahnenführer, J.; Henn, W.; Kim, Y.J.; Feiden, W.; Steudel, W.I.; Zang, K.D.; Urbschat, S. Correspondence of tumor localization with tumor recurrence and cytogenetic progression in meningiomas. Neurosurgery 2008, 62, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Strickland, M.R.; Gill, C.M.; Nayyar, N.; D’Andrea, M.R.; Thiede, C.; Juratli, T.A.; Schackert, G.; Borger, D.R.; Santagata, S.; Frosch, M.P.; et al. Targeted sequencing of SMO and AKT1 in anterior skull base meningiomas. J. Neurosurg. 2017, 127, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.R.; Juratli, T.A.; Castro, B.A.; Lazaro, T.T.; Gill, C.M.; Nayyar, N.; Strickland, M.R.; Babinski, M.; Johnstone, S.E.; Frosch, M.P.; et al. Genomic Analysis of Posterior Fossa Meningioma Demonstrates Frequent AKT1 E17K Mutations in Foramen Magnum Meningiomas. J. Neurol. Surg B. Skull Base 2019, 80, 562–567. [Google Scholar] [CrossRef]
- Boetto, J.; Bielle, F.; Sanson, M.; Peyre, M.; Kalamarides, M. SMO mutation status defines a distinct and frequent molecular subgroup in olfactory groove meningiomas. Neuro Oncol. 2017, 19, 345–351. [Google Scholar]
- Smith, M.J.; O’Sullivan, J.; Bhaskar, S.S.; Hadfield, K.D.; Poke, G.; Caird, J.; Sharif, S.; Eccles, D.; FitzPatrick, D.; Rawluk, D.; et al. Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat. Genet. 2013, 45, 295–298. [Google Scholar] [CrossRef]
- Smith, M.J.; Wallace, A.J.; Bennett, C.; Hasselblatt, M.; Elert-Dobkowska, E.; Evans, L.T.; Hickey, W.F.; van Hoff, J.; Bauer, D.; Lee, A.; et al. GermlineSMARCE1mutations predispose to both spinal and cranial clear cell meningiomas. J. Pathol. 2014, 234, 436–440. [Google Scholar] [CrossRef]
- Jungwirth, G.; Warta, R.; Beynon, C.; Sahm, F.; Von Deimling, A.; Unterberg, A.; Herold-Mende, C.; Jungk, C. Intraventricular meningiomas frequently harbor NF2 mutations but lack common genetic alterations in TRAF7, AKT1, SMO, KLF4, PIK3CA, and TERT. Acta Neuropathol. Commun. 2019, 7, 140. [Google Scholar] [CrossRef] [Green Version]
- Preusser, M.; Brastianos, P.K.; Mawrin, C. Advances in meningioma genetics: Novel therapeutic opportunities. Nat. Rev. Neurol. 2018, 14, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Tsermoulas, G.; Turel, M.K.; Wilcox, J.T.; Shultz, D.; Farb, R.; Zadeh, G.; Bernstein, M. Management of multiple meningiomas. J. Neurosurg. 2018, 128, 1403–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Nunes, F.; Stemmer-Rachamimov, A.; James, M.; Mohapatra, G.; Plotkin, S.; Betensky, R.A.; Engler, D.A.; Roy, J.; Ramesh, V.; et al. Genomic profiling distinguishes familial multiple and sporadic multiple meningiomas. BMC Med. Genom. 2009, 2, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juratli, T.A.; Prilop, I.; Saalfeld, F.C.; Herold, S.; Meinhardt, M.; Wenzel, C.; Zeugner, S.; Aust, D.E.; Barker, F.G.; Cahill, D.P.; et al. Sporadic multiple meningiomas harbor distinct driver mutations. Acta Neuropathol. Commun. 2021, 9, 8. [Google Scholar] [CrossRef]
- Mirian, C.; Duun-Henriksen, A.K.; Juratli, T.; Sahm, F.; Spiegl-Kreinecker, S.; Peyre, M.; Biczok, A.; Tonn, J.-C.; Goutagny, S.; Bertero, L.; et al. Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: An individual patient data meta-analysis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 378–387. [Google Scholar] [CrossRef]
- Mirian, C.; Grell, K.; Juratli, T.A.; Sahm, F.; Spiegl-Kreinecker, S.; Peyre, M.; Biczok, A.; Tonn, J.C.; Goutagny, S.; Bertero, L.; et al. Implementation of TERT promoter mutations improve prognostication of the WHO classification in meningioma. Neuropathol. Appl. Neurobiol. 2022, 48, e12773. [Google Scholar] [CrossRef]
- Juratli, T.A.; McCabe, D.; Nayyar, N.; Williams, E.A.; Silverman, I.M.; Tummala, S.S.; Fink, A.L.; Baig, A.; Martinez-Lage, M.; Selig, M.K.; et al. DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome. Acta Neuropathol. 2018, 136, 779–792. [Google Scholar] [CrossRef]
- Maas, S.L.N.; Stichel, D.; Hielscher, T.; Sievers, P.; Berghoff, A.S.; Schrimpf, D.; Sill, M.; Euskirchen, P.; Blume, C.; Patel, A.; et al. Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated. J. Clin. Oncol. 2021, 39, 3839–3852. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Hielscher, T.; Ricken, G.; Furtner, J.; Schrimpf, D.; Widhalm, G.; Rajky, U.; Marosi, C.; Hainfellner, J.A.; Deimling, A.; et al. Prognostic impact of genetic alterations and methylation classes in meningioma. Brain Pathol. 2022, 32, e12970. [Google Scholar] [CrossRef]
- Nassiri, F.; Wang, J.Z.; Singh, O.; Karimi, S.; Dalcourt, T.; Ijad, N.; Pirouzmand, N.; Ng, H.K.; Saladino, A.; Pollo, B.; et al. International Consortium on Meningiomas. Loss of H3K27me3 in meningiomas. Neuro Oncol. 2021, 23, 1282–1291. [Google Scholar] [CrossRef]
- Kang, H.-C.; Kim, I.H.; Park, C.I.; Park, S.-H. Immunohistochemical analysis of cyclooxygenase-2 and brain fatty acid binding protein expression in grades I-II meningiomas: Correlation with tumor grade and clinical outcome after radiotherapy. Neuropathology 2014, 34, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; Horiba, M.; Winnier, A.R.; Arteaga, C.L. The epidermal growth factor receptor is associated with phospholipase C-gamma 1 in meningiomas. Hum. Pathol. 1994, 25, 146–153. [Google Scholar] [CrossRef]
- Johnson, M.D.; Shaw, A.K.; O’Connell, M.J.; Sim, F.J.; Moses, H.L. Analysis of transforming growth factor β receptor expression and signaling in higher grade meningiomas. J. Neuro-Oncol. 2010, 103, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; O’Connell, M.J.; Vito, F.; Pilcher, W. Bone Morphogenetic Protein 4 and Its Receptors Are Expressed in the Leptomeninges and Meningiomas and Signal via the Smad Pathway. J. Neuropathol. Exp. Neurol. 2009, 68, 1177–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Abedalthagafi, M.; Aizer, A.A.; McHenry, A.R.; Sun, H.H.; Bray, M.-A.; Viramontes, O.; Machaidze, R.; Brastianos, P.K.; Reardon, D.A.; et al. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget 2014, 6, 4704–4716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, S.; Mansouri, S.; Mamatjan, Y.; Liu, J.; Nassiri, F.; Suppiah, S.; Singh, O.; Aldape, K.; Zadeh, G. Programmed death ligand-1 (PD-L1) expression in meningioma; prognostic significance and its association with hypoxia and NFKB2 expression. Sci. Rep. 2020, 10, 14115. [Google Scholar] [CrossRef]
- Rapp, C.; Dettling, S.; Liu, F.; Ull, A.T.; Warta, R.; Jungk, C.; Roesch, S.; Mock, A.; Sahm, F.; Schmidt, M.; et al. Cytotoxic T Cells and their Activation Status are Independent Prognostic Markers in Meningiomas. Clin. Cancer Res. 2019, 25, 5260–5270. [Google Scholar] [CrossRef]
- Hao, S.; Huang, G.; Feng, J.; Li, D.; Wang, K.; Wang, L.; Wu, Z.; Wan, H.; Zhang, L.; Zhang, J. Non-NF2 mutations have a key effect on inhibitory immune checkpoints and tumor pathogenesis in skull base meningiomas. J. Neuro-Oncol. 2019, 144, 11–20. [Google Scholar] [CrossRef]
- Proctor, D.T.; Patel, Z.; Lama, S.; Resch, L.; van Marle, G.; Sutherland, G.R. Identification of PD-L2, B7-H3 and CTLA-4 immune checkpoint proteins in genetic subtypes of meningioma. OncoImmunology 2018, 8, e1512943. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liechty, B.; Patel, S.; Weber, J.S.; Hollmann, T.J.; Snuderl, M.; Karajannis, M.A. Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J. Neuro-Oncol. 2018, 138, 183–190. [Google Scholar] [CrossRef]
- Karimi, S.; Mansouri, S.; Nassiri, F.; Bunda, S.; Singh, O.; Brastianos, P.K.; Dunn, I.F.; Zadeh, G. Clinical significance of checkpoint regulator “Programmed death ligand-1 (PD-L1)” expression in meningioma: Review of the current status. J. Neuro-Oncol. 2021, 151, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.; Yaghoobi, V.; Miyagishima, D.; Vesely, M.D.; Zhang, T.; Badri, T.; Nassar, A.; Han, X.; Sanmamed, M.F.; Youngblood, M.; et al. Targeting the CSF1/CSF1R axis is a potential treatment strategy for malignant meningiomas. Neuro-Oncology 2021, 23, 1922–1935. [Google Scholar] [CrossRef] [PubMed]
- Kaley, T.; Barani, I.; Chamberlain, M.; McDermott, M.; Panageas, K.; Raizer, J.; Rogers, L.; Schiff, D.; Vogelbaum, M.; Weber, D.; et al. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: A RANO review. Neuro-Oncology 2014, 16, 829–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.Y.; Bi, W.L.; Weller, M.; Kaley, T.; Blakeley, J.; Dunn, I.; Galanis, E.; Preusser, M.; McDermott, M.; Rogers, L.; et al. Proposed response assessment and endpoints for meningioma clinical trials: Report from the Response Assessment in Neuro-Oncology Working Group. Neuro-Oncology 2019, 21, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamberlain, M.C.; Johnston, S.K. Hydroxyurea for recurrent surgery and radiation refractory meningioma: A retrospective case series. J. Neuro-Oncol. 2011, 104, 765–771. [Google Scholar] [CrossRef]
- Chamberlain, M.C. Hydroxyurea for recurrent surgery and radiation refractory high-grade meningioma. J. Neuro-Oncol. 2012, 107, 315–321. [Google Scholar] [CrossRef]
- Mazza, E.; Brandes, A.; Zanon, S.; Eoli, M.; Lombardi, G.; Faedi, M.; Franceschi, E.; Reni, M. Hydroxyurea with or without imatinib in the treatment of recurrent or progressive meningiomas: A randomized phase II trial by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Cancer Chemother. Pharmacol. 2016, 77, 115–120. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Tsao-Wei, D.D.; Groshen, S. Temozolomide for treatment-resistant recurrent meningioma. Neurology 2004, 62, 1210–1212. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Tsao-Wei, D.D.; Groshen, S. Salvage chemotherapy With CPT-11 for recurrent meningioma. J. Neuro-Oncol. 2006, 78, 271–276. [Google Scholar] [CrossRef]
- Preusser, M.; Spiegl-Kreinecker, S.; Lötsch, D.; Wöhrer, A.; Schmook, M.; Dieckmann, K.; Saringer, W.; Marosi, C.; Berger, W. Trabectedin has promising antineoplastic activity in high-grade meningioma. Cancer 2012, 118, 5038–5049. [Google Scholar] [CrossRef] [Green Version]
- Preusser, M.; Silvani, A.; Le Rhun, E.; Soffietti, R.; Lombardi, G.; Sepulveda, J.M.; Brandal, P.; Brazil, L.; Bonneville-Levard, A.; Lorgis, V.; et al. Trabectedin for recurrent WHO grade 2 or 3 meningioma: A randomized phase II study of the EORTC Brain Tumor Group (EORTC-1320-BTG). Neuro-Oncology 2021, noab243. [Google Scholar] [CrossRef] [PubMed]
- Koper, J.W.; Zwarthoff, E.C.; Hagemeijer, A.; Braakman, R.; Avezaat, C.J.; Bergström, M.; Lamberts, S.W. Inhibition of the growth of cultured human meningioma cells by recombinant interferon-α. Eur. J. Cancer Clin. Oncol. 1991, 27, 416–419. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, M.C.; Glantz, M.J. Interferon-α for recurrent World Health Organization grade 1 intracranial meningiomas. Cancer 2008, 113, 2146–2151. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C. IFN-α for recurrent surgery- and radiation-refractory high-grade meningioma: A retrospective case series. CNS Oncol. 2013, 2, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Norden, A.D.; Ligon, K.L.; Hammond, S.N.; Muzikansky, A.; Reardon, D.A.; Kaley, T.J.; Batchelor, T.T.; Plotkin, S.R.; Raizer, J.J.; Wong, E.T.; et al. Phase II study of monthly pasireotide LAR (SOM230C) for recurrent or progressive meningioma. Neurology 2015, 84, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, M.C.; Glantz, M.J.; Fadul, C.E. Recurrent meningioma: Salvage therapy with long-acting somatostatin analogue. Neurology 2007, 69, 969–973. [Google Scholar] [CrossRef]
- Simó, M.; Argyriou, A.A.; Macià, M.; Plans, G.; Majós, C.; Vidal, N.; Gil, M.; Bruna, J. Recurrent high-grade meningioma: A phase II trial with somatostatin analogue therapy. Cancer Chemother. Pharmacol. 2014, 73, 919–923. [Google Scholar] [CrossRef]
- Kaley, T.J.; Wen, P.; Schiff, D.; Ligon, K.; Haidar, S.; Karimi, S.; Lassman, A.B.; Nolan, C.P.; DeAngelis, L.M.; Gavrilovic, I.; et al. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro-Oncology 2015, 17, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Shih, K.C.; Chowdhary, S.; Rosenblatt, P.; Weir, A.B.; Shepard, G.C.; Williams, J.T.; Shastry, M.; Burris, H.A., III; Hainsworth, J.D. A phase II trial of bevacizumab and everolimus as treatment for patients with refractory, progressive intracranial meningioma. J. Neuro-Oncol. 2016, 129, 281–288. [Google Scholar] [CrossRef]
- Lou, E.; Sumrall, A.L.; Turner, S.; Peters, K.B.; Desjardins, A.; Vredenburgh, J.J.; McLendon, R.E.; Herndon, J.E., 2nd; McSherry, F.; Norfleet, J.; et al. Bevacizumab therapy for adults with recurrent/progressive meningioma: A retrospective series. J. Neuro-Oncol. 2012, 109, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Nayak, L.; Iwamoto, F.M.; Rudnick, J.D.; Norden, A.D.; Lee, E.Q.; Drappatz, J.; Omuro, A.; Kaley, T.J. Atypical and anaplastic meningiomas treated with bevacizumab. J. Neuro-Oncol. 2012, 109, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Norden, A.D.; Raizer, J.J.; Abrey, L.E.; Lamborn, K.R.; Lassman, A.B.; Chang, S.M.; Yung, W.K.A.; Gilbert, M.R.; Fine, H.A.; Mehta, M.; et al. Phase II trials of erlotinib or gefitinib in patients with recurrent meningioma. J. Neuro-Oncol. 2009, 96, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, P.Y.; Yung, W.K.; Lamborn, K.R.; Norden, A.D.; Cloughesy, T.F.; Abrey, L.E.; Fine, H.A.; Chang, S.M.; Robins, H.I.; Fink, K.; et al. Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor Consortium study 01–08). Neuro-Oncology 2009, 11, 853–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Rankin, C.; Grunberg, S.; Sherrod, A.E.; Ahmadi, J.; Townsend, J.J.; Feun, L.G.; Fredericks, R.K.; Russell, C.A.; Kabbinavar, F.F.; et al. Double-Blind Phase III Randomized Trial of the Antiprogestin Agent Mifepristone in the Treatment of Unresectable Meningioma: SWOG S9005. J. Clin. Oncol. 2015, 33, 4093–4098. [Google Scholar] [CrossRef]
- Graillon, T.; Sanson, M.; Campello, C.; Idbaih, A.; Peyre, M.; Peyrière, H.; Basset, N.; Autran, D.; Roche, C.; Kalamarides, M.; et al. Everolimus and Octreotide for Patients with Recurrent Meningioma: Results from the Phase II CEVOREM Trial. Clin. Cancer Res. 2020, 26, 552–557. [Google Scholar] [CrossRef]
- Franke, A.J.; Skelton, W.P., IV; Woody, L.E.; Bregy, A.; Shah, A.H.; Vakharia, K.; Komotar, R.J. Role of bevacizumab for treatment-refractory meningiomas: A systematic analysis and literature review. Surg. Neurol. Int. 2018, 9, 133. [Google Scholar] [CrossRef]
- Furtner, J.; Schöpf, V.; Seystahl, K.; Le Rhun, E.; Rudà, R.; Roelcke, U.; Koeppen, S.; Berghoff, A.S.; Marosi, C.; Clement, P.; et al. Kinetics of tumor size and peritumoral brain edema before, during, and after systemic therapy in recurrent WHO grade II or III meningioma. Neuro-Oncology 2015, 18, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Brastianos, P.K.; Twohy, E.; Gerstner, E.R.; Kaufmann, T.J.; Iafrate, A.J.; Jeyapalan, S.A.; Piccioni, D.E.; Lassman, A.B.; Fadul, C.E.; Schiff, D.; et al. Alliance A071401: Phase II trial of FAK inhibition in meningiomas with somatic NF2 mutations. J. Clin. Oncol. 2020, 38, 2502. [Google Scholar] [CrossRef]
- Bi, W.L.; Greenwald, N.F.; Abedalthagafi, M.; Wala, J.; Gibson, W.J.; Agarwalla, P.K.; Horowitz, P.; Schumacher, S.E.; Esaulova, E.; Mei, Y.; et al. Genomic landscape of high-grade meningiomas. npj Genom. Med. 2017, 2, 15. [Google Scholar] [CrossRef]
- Dunn, I.F.; Du, Z.; Touat, M.; Sisti, M.B.; Wen, P.Y.; Umeton, R.; Dubuc, A.M.; Ducar, M.; Canoll, P.D.; Severson, E.; et al. Mismatch Repair Deficiency in High-Grade Meningioma: A Rare but Recurrent Event Associated With Dramatic Immune Activation and Clinical Response to PD-1 Blockade. JCO Precis. Oncol. 2018, 2, PO.18.00190. [Google Scholar] [CrossRef]
- Nebot-Bral, L.; Brandao, D.; Verlingue, L.; Rouleau, E.; Caron, O.; Despras, E.; El-Dakdouki, Y.; Champiat, S.; Aoufouchi, S.; Leary, A.; et al. Hypermutated tumours in the era of immunotherapy: The paradigm of personalised medicine. Eur. J. Cancer 2017, 84, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Brastianos, P.K.; Kim, A.E.; Giobbie-Hurder, A.; Lee, E.Q.; Wang, N.; Eichler, A.F.; Chukwueke, U.; Forst, D.A.; Arrillaga-Romany, I.C.; Dietrich, J.; et al. Phase 2 study of pembrolizumab in patients with recurrent and residual high-grade meningiomas. Nat. Commun. 2022, 13, 1325. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Nayak, L.; Meredith, D.M.; Driver, J.; Du, Z.; Hoffman, S.; Li, Y.; Lee, E.Q.; Beroukhim, R.; Rinne, M.; et al. Activity of PD-1 blockade with nivolumab among patients with recurrent atypical/anaplastic meningioma: Phase II trial results. Neuro-Oncology 2021, 24, 101–113. [Google Scholar] [CrossRef] [PubMed]
WHO Grading | Histology | Methylation Classes | Molecular Alterations | Location | Prognosis |
---|---|---|---|---|---|
Grade 1 | Fibroblastic Psammomatous | MC ben-1 | NF2 | Convexity Parasagittal areas Hemispheric meninges Intraventricular Space | Good (≥95%) |
Meningothelial Secretory | MC ben-2 | TRAF7, KLF4, AKT1, SMO1, PIK3CA, POLR2A | Skull base Basal location Tuberculum sellae for POLR2A mutation | Good (≥95%) | |
Angiomatous Transitional Rare entities (metaplastic, microcystic, rhabdoid) | MC ben-3 | Not known | Convexity Parasagittal areas Hemispheric Meninges | Good (≥95%) | |
Grade 2 | Clear cell Chordoid Atypical | MC int-A (atypical, clear cell) | NF2, SMARCE1, SMARCB1, SMARCA4 | Convexity Parasagittal areas Hemispheric meninges Intraventricular space Cranial and spinal location for SMARCE1 mutation | Intermediate (~88–90%) |
MC int-B (atypical, chordoid) | NF2, TERT mutations, CDKN2A deletion | Intermediate (~45–47%) | |||
Grade 3 | Anaplastic Rhabdoid | MC int-B | NF2, TERT mutations, CDKN2A deletion | Convexity Parasagittal areas Hemispheric meninges Intraventricular space | Intermediate (~45–47%) |
MC mal | NF2, TERT mutations, CDKN2A deletion BAP1 (Rhabdoid) | Poor (~18–20%) |
Treatment | Type of Study | n | Results |
---|---|---|---|
Hydroxyurea [65] | Retrospective | 60 | 6-month PFS: 10% |
Hydroxyurea [66] | Retrospective | 35 | 6-month PFS: 3% Median OS: 8 months |
Hydroxyurea plus imatinib [67] | Phase 2 | 15 | Early interrupted for slow accrual No significant activity |
Temozolomide [68] | Phase 2 | 16 | 6-month PFS: 0% Median OS: 7.5 months |
Irinotecan [69] | Phase 2 | 16 | 6-month PFS: 6% Median OS: 7 months |
Trabectedin [71] | Randomized phase 2 (EORTC-1320-BTG) | 90 | No improvement of median PFS or median OS |
Interferon-α [73] | Phase 2 | 35 | 6-month PFS: 54% Median OS: 8 months |
Interferon-α [74] | Retrospective series | 35 | 6-month PFS: 17% Median OS: 8 months |
Pasireotide [75] | Phase 2 | 34 | Grade 1: 6-month PFS: 50%: median OS: 104 weeks Grade 2–3: 6-month-PFS: 17%; median OS: 26 weeks |
Octreotide [76] | Phase 2 | 16 | 6-month PFS: 44% Median OS: 7.5 months |
Octreotide [77] | Phase 2 | 9 | 6-month PFS: 44% Median OS: 18.7 months |
Bevacizumab [80] | Retrospective series | 14 | 6-month PFS: 86% Median OS: not reached |
Bevacizumab [81] | Retrospective series | 15 | 6-month PFS: 44% Median OS: 15 months |
Bevacizumab plus everolimus [79] | Phase 2 | 17 | Stable disease: 88% 6-month PFS: 69% Median OS: 23.8 months |
Everolimus plus octreotide [85] | Phase 2 (CEVOREM trial) | 20 | 6-month PFS: 55% 6-month OS: 90% 12-month OS: 75% Partial response in 78% of patients |
Erlotinib or gefitinib [82] | Phase 2 | 25 | Grade 1: 6-month PFS: 25%; 12-month OS: 50% Grade 2–3: 6-month PFS: 29%; 12-month OS: 65% |
Imatinib [83] | Phase 2 | 23 | Grade 1: 6-month PFS: 45% Grade 2–3: 6-month PFS: 0% |
Sunitinib [78] | Phase 2 | 36 | 6-month PFS: 42% Median PFS: 5.2 months Median OS: 24.6 months |
Mifepristone [84] | Randomized phase 3 (SWOG-S9005) | 164 | No statistical difference between mifepristone and placebo in terms of PFS and OS |
Trial ID | Type of Study | Arm of Treatment | n | Endpoints |
---|---|---|---|---|
NCT02648997 | Phase 2 | Nivolumab alone (Cohort 1) or in combination with ipilimumab (Cohort 2) | 50 | Primary: 6-month PFS Secondary: median PFS, median OS, ORR, safety |
NCT03631953 | Phase 1 | Alpelisib in combination with trametinib | 25 | Primary: DLT |
NCT04728568 | Prospective | Sintilimab | 15 | Primary: PFS Secondary: OS |
NCT04501705 | Prospective | Apatinib | 29 | Primary: 6-month PFS Secondary: ORR, OS |
NCT03604978 | Phase 1–2 | Nivolumab alone or plus ipilimumab in combination with fractionated SRS | 15 | Primary: DLT, safety, ORR Secondary: median PFS, median OS, changes in peripheral T-cells |
NCT02933736 | Early phase 1 | Ribociclib | 48 | Primary: plasma exposure, CSF penetration, brain accumulation of ribociclib |
NCT02523014 | Phase 2 | Vismodegib or FAK inhibitor, or GSK2256098 or capivasertib, or abemaciclib based on molecular screening | 124 | Primary: 6-month PFS, ORR Secondary: median PFS, median OS, safety |
NCT04659811 | Phase 2 | Pembrolizumab plus SRS | 90 | Primary: 12-month PFS Secondary: median PFS, median OS |
NCT04374305 | Phase 2 | Brigatinib | 80 | Primary: radiological response rate Secondary: safety |
NCT03095248 | Phase 2 | Selumetinib | 34 | Primary: change in hearing response, response rate of other NF2-related tumors (including meningiomas) |
NCT04541082 | Phase 1 | ONC206 | 102 | Primary: MTD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellerino, A.; Bruno, F.; Palmiero, R.; Pronello, E.; Bertero, L.; Soffietti, R.; Rudà, R. Clinical Significance of Molecular Alterations and Systemic Therapy for Meningiomas: Where Do We Stand? Cancers 2022, 14, 2256. https://doi.org/10.3390/cancers14092256
Pellerino A, Bruno F, Palmiero R, Pronello E, Bertero L, Soffietti R, Rudà R. Clinical Significance of Molecular Alterations and Systemic Therapy for Meningiomas: Where Do We Stand? Cancers. 2022; 14(9):2256. https://doi.org/10.3390/cancers14092256
Chicago/Turabian StylePellerino, Alessia, Francesco Bruno, Rosa Palmiero, Edoardo Pronello, Luca Bertero, Riccardo Soffietti, and Roberta Rudà. 2022. "Clinical Significance of Molecular Alterations and Systemic Therapy for Meningiomas: Where Do We Stand?" Cancers 14, no. 9: 2256. https://doi.org/10.3390/cancers14092256
APA StylePellerino, A., Bruno, F., Palmiero, R., Pronello, E., Bertero, L., Soffietti, R., & Rudà, R. (2022). Clinical Significance of Molecular Alterations and Systemic Therapy for Meningiomas: Where Do We Stand? Cancers, 14(9), 2256. https://doi.org/10.3390/cancers14092256