Clonal Myeloid Dysplasia Following CAR T-Cell Therapy: Chicken or the Egg?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. BCMA-CAR (HBI0101) Clinical Trial
2.2. Patient Clinical Data Assessment
3. Results
3.1. Characteristics of the MM Patient Treated with HBI0101 Developing Myeloid Disorders
3.2. Toxicity and Efficacy of the CART Therapy
3.3. Clonal Myeloid Neoplasm Characteristics and Outcomes
3.4. Retrospective Analysis of Pre-MDS Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdallah, N.H.; Binder, M.; Rajkumar, S.V.; Greipp, P.T.; Kapoor, P.; Dispenzieri, A.; Gertz, M.A.; Baughn, L.B.; Lacy, M.Q.; Hayman, S.R.; et al. A Simple Additive Staging System for Newly Diagnosed Multiple Myeloma. Blood Cancer J. 2022, 12, 21. [Google Scholar] [CrossRef]
- Minakata, D.; Fujiwara, S.I.; Yokoyama, D.; Noguchi, A.; Aoe, S.; Oyama, T.; Koyama, S.; Murahashi, R.; Nakashima, H.; Hyodo, K.; et al. Relapsed and Refractory Multiple Myeloma: A Systematic Review and Network Meta-Analysis of the Efficacy of Novel Therapies. Br. J. Haematol. 2023, 200, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Areethamsirikul, N.; Reece, D.E. The Risk of Secondary Primary Malignancies after Therapy for Multiple Myeloma. Leuk. Lymphoma 2015, 56, 3012–3021. [Google Scholar] [CrossRef] [PubMed]
- Jonsdottir, G.; Björkholm, M.; Turesson, I.; Hultcrantz, M.; Diamond, B.; Porwit, A.; Landgren, O.; Kristinsson, S.Y. Cumulative Exposure to Melphalan Chemotherapy and Subsequent Risk of Developing Acute Myeloid Leukemia and Myelodysplastic Syndromes in Patients with Multiple Myeloma. Eur. J. Haematol. 2021, 107, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Landgren, O.; Mailankody, S. Update on Second Primary Malignancies in Multiple Myeloma: A Focused Review. Leukemia 2014, 28, 1423–1426. [Google Scholar] [CrossRef] [PubMed]
- Landgren, O.; Thomas, A.; Mailankody, S. Myeloma and Second Primary Cancers. N. Engl. J. Med. 2011, 365, 2241–2242. [Google Scholar] [CrossRef] [PubMed]
- Mailankody, S.; Pfeiffer, R.M.; Kristinsson, S.Y.; Korde, N.; Bjorkholm, M.; Goldin, L.R.; Turesson, I.; Landgren, O. Landgren. Risk of Acute Myeloid Leukemia and Myelodysplastic Syndromes after Multiple Myeloma and Its Precursor Disease (Mgus). Blood 2011, 118, 4086–4092. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; Mailankody, S.; Korde, N.; Kristinsson, S.Y.; Turesson, I.; Landgren, O. Second Malignancies after Multiple Myeloma: From 1960s to 2010s. Blood 2012, 119, 2731–2737. [Google Scholar] [CrossRef] [Green Version]
- Mouhieddine, T.H.; Sperling, A.S.; Redd, R.; Park, J.; Leventhal, M.; Gibson, C.J.; Manier, S.; Nassar, A.H.; Capelletti, M.; Huynh, D.; et al. Clonal Hematopoiesis Is Associated with Adverse Outcomes in Multiple Myeloma Patients Undergoing Transplant. Nat. Commun. 2020, 11, 2996. [Google Scholar] [CrossRef]
- Testa, S.; Kumar, J.; Goodell, A.J.; Zehnder, J.L.; Alexander, K.M.; Sidana, S.; Arai, S.; Witteles, R.M.; Liedtke, M. Prevalence, Mutational Spectrum and Clinical Implications of Clonal Hematopoiesis of Indeterminate Potential in Plasma Cell Dyscrasias. Semin. Oncol. 2022, 49, 465–475. [Google Scholar] [CrossRef]
- Sperling, A.S.; Guerra, V.A.; Kennedy, J.A.; Yan, Y.; Hsu, J.I.; Wang, F.; Nguyen, A.T.; Miller, P.G.; McConkey, M.E.; Quevedo Barrios, V.A.; et al. Lenalidomide Promotes the Development of Tp53-Mutated Therapy-Related Myeloid Neoplasms. Blood 2022, 140, 1753–1763. [Google Scholar] [CrossRef]
- Mikkilineni, L.; Kochenderfer, J.N. Car T Cell Therapies for Patients with Multiple Myeloma. Nat. Rev. Clin. Oncol. 2021, 18, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Sidana, S.; Shah, N. Car T-Cell Therapy: Is It Prime Time in Myeloma? Blood Adv. 2019, 3, 3473–3480. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Shi, V.; Maric, I.; Wang, M.; Stroncek, D.F.; Rose, J.J.; Brudno, J.N.; Stetler-Stevenson, M.; Feldman, S.A.; Hansen, B.G.; et al. T Cells Expressing an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor Cause Remissions of Multiple Myeloma. Blood 2016, 128, 1688–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brudno, J.N.; Maric, I.; Hartman, S.D.; Rose, J.J.; Wang, M.; Lam, N.; Stetler-Stevenson, M.; Salem, D.; Yuan, C.; Pavletic, S.; et al. T Cells Genetically Modified to Express an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor Cause Remissions of Poor-Prognosis Relapsed Multiple Myeloma. J. Clin. Oncol. 2018, 36, 2267–2280. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group Consensus Criteria for Response and Minimal Residual Disease Assessment in Multiple Myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (Cartitude-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M. Late Events after Treatment with Cd19-Targeted Chimeric Antigen Receptor Modified T Cells. Biol. Blood Marrow Transpl. 2020, 26, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Krejci, M.; Adam, Z.; Krejci, M.; Pour, L.; Sandecka, V.; Stork, M. Stork. Car-T Cells for the Treatment of Relapsed/Refractory Multiple Myeloma in 2022: Efficacy and Toxicity. Neoplasma 2022, 69, 1008–1018. [Google Scholar] [CrossRef]
- Asherie, N.; Kfir-Erenfeld, S.; Avni, B.; Assayag, M.; Dubnikov, T.; Zalcman, N.; Lebel, E.; Zimran, E.; Shaulov, A.; Pick, M.; et al. Development and Manufacturing of Novel Locally Produced Anti-Bcma Cart Cells for the Treatment of Relapsed/Refractory Multiple Myeloma: Phase I Clinical Results. Haematologica 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Kfir-Erenfeld, S.; Asherie, N.; Grisariu, S.; Avni, B.; Zimran, E.; Assayag, M.; Sharon, T.D.; Pick, M.; Lebel, E.; Shaulov, A.; et al. Feasibility of a Novel Academic Bcma-Cart (Hbi0101) for the Treatment of Relapsed and Refractory Al Amyloidosis. Clin Cancer Res. 2022, 28, 5156–5166. [Google Scholar] [CrossRef]
- Nachmias, B.; Krichevsky, S.; Filon, D.; Even-Or, E.; Gatt, M.E.; Saban, R.; Avni, B.; Grisariu, S.; Aumann, S.; Vainstein, V. Vainstein. Monitoring Minimal Residual Disease in Runx1-Mutated Acute Myeloid Leukemia. Acta Haematol. 2022, 145, 642–649. [Google Scholar] [CrossRef]
- Voso, M.T.; Fenu, S.; Latagliata, R.; Buccisano, F.; Piciocchi, A.; Aloe-Spiriti, M.A.; Breccia, M.; Criscuolo, M.; Andriani, A.; Mancini, S.; et al. Revised International Prognostic Scoring System (Ipss) Predicts Survival and Leukemic Evolution of Myelodysplastic Syndromes Significantly Better Than Ipss and Who Prognostic Scoring System: Validation by the Gruppo Romano Mielodisplasie Italian Regional Database. J. Clin. Oncol. 2013, 31, 2671–2677. [Google Scholar]
- Bernard, E.; Heinz, T.; Greenberg, P.L.; Hasserjian, R.P.; Ossa, J.E.A.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L.; et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Cazzola, M. Risk Stratifying MDS in the Time of Precision Medicine. Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA Car T-Cell Therapy Bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: Cartitude-1 2-Year Follow-Up. J. Clin. Oncol. 2023, 41, 1265–1274. [Google Scholar] [CrossRef]
- Miller, P.G.; Sperling, A.S.; Brea, E.J.; Leick, M.B.; Fell, G.G.; Jan, M.; Gohil, S.H.; Tai, Y.T.; Munshi, N.C.; Wu, C.J.; et al. Clonal Hematopoiesis in Patients Receiving Chimeric Antigen Receptor T-Cell Therapy. Blood Adv. 2021, 5, 2982–2986. [Google Scholar] [CrossRef]
- Saini, N.Y.; Swoboda, D.M.; Greenbaum, U.; Ma, J.; Patel, R.D.; Devashish, K.; Das, K.; Tanner, M.R.; Strati, P.; Nair, R.; et al. Clonal Hematopoiesis Is Associated with Increased Risk of Severe Neurotoxicity in Axicabtagene Ciloleucel Therapy of Large B-Cell Lymphoma. Blood Cancer Discov. 2022, 3, 385–393. [Google Scholar] [CrossRef]
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | |
---|---|---|---|---|---|
Age | 64 | 52 | 72 | 70 | 63 |
Gender | m | m | m | m | m |
MDS prior to CART | No | No | No | No | Yes |
MM ISS | 1 | 1 | 2 | 2 | 1 |
Plasma cells in BM (%) | 3 | 20–30 | 50 | 50 | 15 |
MM-related FISH | Normal | Trisomy 11, T (14:16) | 1q amplification | Hyperdiploid | T (11:14) |
Leukopenia Anemia Thrombocytopenia | No No No | No Yes Yes | No Yes Yes | Yes Yes Yes | Yes Yes Yes |
LDH (u/L, ULN = 246) | 220 | 190 | 180 | 240 | 275 |
MCV | 95 | 94 | 92 | 84 | 107 |
BM cellularity | Normal | Low | Low | Low | High |
Morphologic dysplasia in BM | None | None | None | None | Yes |
Blasts % in BM | <1 | <1 | <1 | <1 | 3 |
Prior lines of anti-myeloma therapy | 8 | 7 | 4 | 6 | 10 * |
Best response/ which line | VGPR/3rd | VGPR/1st–2nd | CR/1st | VGPR/1st | CR/1st and 4th |
Previous ASCT ** (# years before CART) | Yes (10) | Twice (8, 11) | Yes (3) | Twice (0.7, 10) | Yes (3.5) |
Use of chemotherapy in MM therapy prior to CART (not including lymphodepletion) | Cyclophosphamide Melphalan | Cyclophosphamide Melphalan Cisplatin Adriamycin etoposide | Cyclophosphamide | Cyclophosphamide | Cylophosphamide |
Previous IMiD | Thalidomide Lenalidomide Pomalidomide | Thalidomide Lenalidomide | Lenalidomide Pomalidomide | Thalidomide Lenalidomide Pomalidomide | Lenalidomide Pomalidomide |
Total Duration of therapy with IMiDs (years) | 9.5 | 4.5 | 3 | 7 | 2.5 |
Years since MM diagnosis | 10.5 | 11.5 | 3.5 | 9 | 4.5 |
Triple refractory | Yes | Yes | Yes | Yes | Yes |
Penta refractory | Yes | Yes | No | No | Yes |
Other agents exposed | Venetoclax | Belantamab Selinexor | Belantamab | Belantamab Venetoclax Selinexor |
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | |
---|---|---|---|---|---|
CAR+ cells infused (×106) | 150 | 450 | 800 | 800 | 450 |
Adverse events of interest | |||||
CRS grade | None | 2 | 1 | 2 | 3 |
CRS duration (days) | 0 | 2 | 0 | 1 | 2 |
Hematologic adverse events | |||||
Neutropenia (grade) | Yes (1) | Yes (4) | Yes (4) | Yes (3) | Yes (4) * |
Anemia (grade) | No | Yes (2) | Yes (2) | Yes (3) | Yes (3) |
Thrombocytopenia (grade) | No | Yes (4) | Yes (3) | Yes (4) | Yes (4) * |
Duration of Hematologic toxicity ** (days) | 4 | 90 | 144 | 125 | NA |
Febrile Neutropenia | No | Yes | Yes | No | Yes |
Efficacy | |||||
Best hematologic response | CR | CR | CR | CR | CR |
MRD negativity Day 30 Day 180 | Yes Yes | Yes No | Yes Yes | Yes Yes | Yes No |
Time to best confirmed response (days) | 30 | 30 | 60 | 30 | 30 |
DOR (months) | 10 | 6 | 17 | 17 Ongoing | 4 |
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | |
---|---|---|---|---|---|
Time from CART to MDS diagnosis (months) | 9 | 6 | 5 | 13 | NA |
Progression to AML | No | Yes | No | No | No |
R-IPSS | Very High (7) | Very high (7) | Intermediate (3.5) | Very low (1.5) | Very High (6.5) |
IPSS-M * | Very high (2.54) | Very high (2.75) | High (1.39) | Very low (−1.17) | Very high (1.86) |
Cytopenias: WBC Hemoglobin MCV Platelets | 2.5 8 79 43,000 | 2.5 9.1 108 33,000 | 2.9 8.9 105 53,000 | 3.7 12.8 100 76,000 | 2 8.8 110 14,000 |
Blasts (%) | 5 | 15 | 0.7 | 0 | 2 |
Cytogenetic abnormalities | 44, XY, −3, der (5), −7 [1]/46, XY, −3, der (5), +mar1 [1]/43, idem, −21 [3]/44–45, idem, +mar1, +mar2, +mar3 [5] | 46, XY, +1, der (1;7) (q10;p10) [10] | 46, XY, −5, +mar [7]/46, XY, del (5) (q13q34) [2]/46, XY [11] | 46, XY [20] | 45, XY, −7 [4/30] |
Mutated genes | TP53 | RUNX1, DNMT3A, PHF6, PPM1D, RUNX1 | TP53 (2 different mutations) | RAD21, TET2 | RUNX1, DNMT3A, TET2 |
Survival since MDS diagnosis (months) | 1 | 2 | 12 | 4 Ongoing | 7 |
Survival (months) from CART/Cause of death | 10 COVID-19 infection | 8 MM | 17 Infection | 17 Alive | 7 MM |
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | |
---|---|---|---|---|---|
Dysplastic morphologic abnormalities prior to CART | No | No | No | No | Yes |
Presence of Cytogenetic abnormalities before CART | Yes (1/200 45XY − 7) | Unknown | Unknown | None | Yes (26/200 45XY − 7) |
Presence of Molecular Changes before CART | Yes | Yes | Yes | Yes | Yes |
Change in VAF (% before and after CART) | |||||
TP53 | 15% to 89% | 2% to 10% | |||
RUNX1 | 20% to 44.8% | 3.9% to 1.4% * | |||
DNMT3A | 8% to 0.5% | ||||
PHF6 | 41% to 86% | ||||
CUX1 | 26% to 82% | ||||
RAD21 | 1.5% to 10.5% | ||||
TET2 | 3.5% to 6.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vainstein, V.; Avni, B.; Grisariu, S.; Kfir-Erenfeld, S.; Asherie, N.; Nachmias, B.; Auman, S.; Saban, R.; Zimran, E.; Assayag, M.; et al. Clonal Myeloid Dysplasia Following CAR T-Cell Therapy: Chicken or the Egg? Cancers 2023, 15, 3471. https://doi.org/10.3390/cancers15133471
Vainstein V, Avni B, Grisariu S, Kfir-Erenfeld S, Asherie N, Nachmias B, Auman S, Saban R, Zimran E, Assayag M, et al. Clonal Myeloid Dysplasia Following CAR T-Cell Therapy: Chicken or the Egg? Cancers. 2023; 15(13):3471. https://doi.org/10.3390/cancers15133471
Chicago/Turabian StyleVainstein, Vladimir, Batia Avni, Sigal Grisariu, Shlomit Kfir-Erenfeld, Nathalie Asherie, Boaz Nachmias, Shlomtzion Auman, Revital Saban, Eran Zimran, Miri Assayag, and et al. 2023. "Clonal Myeloid Dysplasia Following CAR T-Cell Therapy: Chicken or the Egg?" Cancers 15, no. 13: 3471. https://doi.org/10.3390/cancers15133471
APA StyleVainstein, V., Avni, B., Grisariu, S., Kfir-Erenfeld, S., Asherie, N., Nachmias, B., Auman, S., Saban, R., Zimran, E., Assayag, M., Filanovsky, K., Horowitz, N. A., Lebel, E., Shaulov, A., Gur, M., Rosenbluh, C., Krichevsky, S., Stepensky, P., & Gatt, M. E. (2023). Clonal Myeloid Dysplasia Following CAR T-Cell Therapy: Chicken or the Egg? Cancers, 15(13), 3471. https://doi.org/10.3390/cancers15133471