Evaluating Physiological MRI Parameters in Patients with Brain Metastases Undergoing Stereotactic Radiosurgery—A Preliminary Analysis and Case Report
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Set-Up and Population
2.2. Data Acquisition
2.2.1. Imaging Protocol
2.2.2. Clinical CT and MRI Acquisition
2.2.3. Breathing Protocol
2.2.4. Neurocognitive Assessment
2.3. Pre-Processing
2.4. Data Analysis
2.4.1. MRI Analysis
2.4.2. Statistical Analysis
3. Results
3.1. Participants
3.2. Baseline Tissue Comparison
3.3. Edema Regional Comparisons
3.3.1. Edema Volume Pre-Radiotherapy
3.3.2. Post-Radiotherapy Changes
3.4. Healthy-Appearing Brain Tissue
3.4.1. Global Post-Radiotherapy Changes
3.4.2. Dose-Related Changes
3.5. Case Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A. In- and Exclusion Criteria
- Age ≥ 18 years;
- Either radiographic and/or histologic proof of metastatic brain disease eligible for brain radiation therapy;
- Eligible for brain irradiation for prophylaxis or treatment;
- Expected survival ≥ 5 months, as determined by graded prognostic assessment (GPA) score;
- Sufficient knowledge of the Dutch language to allow reliable use of the standardized tests and understand the study information;
- Participation in the COIMBRA cohort, with given consent for filling in quality of life questionnaires.
- Standard contraindications for 3T MRI scanning;
- Standard contraindications for using the RespirAct RA-MRTM MRI UNIT (see D2 IMDD 2.5 contraindications);
- Medical contraindications to limited hypercapnia (known metabolic acidosis or alkalosis);
- Unwilling or unable to cooperate with breathing maneuvers or keeping still;
- Noncompliance with prescribed anti-seizure medication;
- Severe current neurological or psychiatric diseases not related to the primary malignancy or cerebral metastases;
- History of cerebrovascular disease (ischemic stroke or intracranial hemorrhage);
- Non-prophylactic use of >4 mg dexamethasone on the day of participation;
- Cardiovascular disease: congestive heart failure (New York Heart Association Class III to IV), symptomatic ischemia, conduction abnormalities uncontrolled by conventional intervention or myocardial infarction within past 6 months;
- Pulmonary disease: oxygen dependency at rest or with exercise, restrictive lung disease with resting respiratory rate over 15 breaths/min;
- Concurrent severe or uncontrolled medical disease (e.g., active systemic infection);
- History of bleomycin treatment;
- Body weight < 30 kg or >100 kg;
- Pregnancy.
Appendix B. Neuropsychological Tests
Attention |
Wechsler Adult Intelligence Scale (WAIS-IV), Digit Span Forward Score |
Trail Making Test (TMT), switching ratio B/A |
Stroop/Delis Kaplan Executive Function System (DKEFS), switching ratio IV vs. III |
Executive functioning |
WAIS-IV, Digit Span Backward Score |
Letter fluency (3 letters) |
Stroop D’KEFS, inhibition ratio III vs. I |
Memory |
Hopkins Verbal Learning Test—Revised (HVLT-R), immediate, delayed and recognition |
Rey–Osterieth Complex Figure Test (ROCFT), delayed copy |
Visual Association Test (VAT), long form, immediate and delayed |
Semantic fluency |
Processing speed |
TMT A |
Stroop/DKEFS, naming [I] and reading [II] |
Psychomotor speed |
Lafayette Grooved Pegboard, dominant and non-dominant hand |
Visuospatial functioning |
ROCFT, direct copy |
Hooper Visual Organization Test (HVOT), fragmented |
Social cognition |
Facial Expressions of Emotion—Stimuli and Tests (FEEST), total score |
Language |
HVOT, non-fragmented [clinical interpretation] |
Appendix C. Numerical Baseline Physiological Values
MRI Metric | GM | WM | Edema | Brain Metastases |
---|---|---|---|---|
OEF (percentage) | 16.9 (1.1) | 23.4 (1.5) | 15.5 (6.1) | 16.0 (4.3) |
CBF (mL/100 mL/min) | 41.0 (9.1) | 29.6 (7.0) | 22.8 (5.2) | 46.8 (25.5) |
CMRO2 (µmol/100 g/min) | 60.1 (10.7) | 53.7 (12.3) | 27.9 (13.4) | 63.6 (38.1) |
CVR (∆BOLD/∆PetCO2) | 0.17 (0.06) | 0.11 (0.04) | 0.05 (0.05) | 0.10 (0.09) |
Appendix D. Breathing Trace
Appendix E. Patient Inclusion
Appendix F. Additional Baseline Physiological Comparison
Appendix G. Voxel-Wise Dose Correlations
Appendix H. Case Analysis
References
- Rodgers, Z.B.; Detre, J.A.; Wehrli, F.W. MRI-Based Methods for Quantification of the Cerebral Metabolic Rate of Oxygen. J. Cereb. Blood Flow Metab. 2016, 36, 1165–1185. [Google Scholar] [CrossRef]
- Fantini, S.; Sassaroli, A.; Tgavalekos, K.T.; Kornbluth, J. Cerebral Blood Flow and Autoregulation: Current Measurement Techniques and Prospects for Noninvasive Optical Methods. Neurophotonics 2016, 3, 031411. [Google Scholar] [CrossRef]
- Murkin, J.M. Cerebral Autoregulation: The Role of CO2 in Metabolic Homeostasis. Semin. Cardiothorac. Vasc. Anesth. 2007, 11, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Gerstenecker, A.; Nabors, L.B.; Meneses, K.; Fiveash, J.B.; Marson, D.C.; Cutter, G.; Martin, R.C.; Meyers, C.A.; Triebel, K.L. Cognition in Patients with Newly Diagnosed Brain Metastasis: Profiles and Implications. J. Neurooncol. 2014, 120, 179–185. [Google Scholar] [CrossRef]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain Metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef]
- Kienast, Y.; Von Baumgarten, L.; Fuhrmann, M.; Klinkert, W.E.F.; Goldbrunner, R.; Herms, J.; Winkler, F. Real-Time Imaging Reveals the Single Steps of Brain Metastasis Formation. Nat. Med. 2010, 16, 116–122. [Google Scholar] [CrossRef]
- Fidler, I.J.; Yano, S.; Zhang, R.D.; Fujimaki, T.; Bucana, C.D. The Seed and Soil Hypothesis: Vascularisation and Brain Metastases. Lancet Oncol. 2002, 3, 53–57. [Google Scholar] [CrossRef]
- Langley, R.R.; Fidler, I.J. The Biology of Brain Metastasis. Clin. Chem. 2013, 59, 180–189. [Google Scholar] [CrossRef]
- García-Gómez, P.; Valiente, M. Vascular Co-Option in Brain Metastasis. Angiogenesis 2020, 23, 3–8. [Google Scholar] [CrossRef]
- Eichler, A.F.; Chung, E.; Kodack, D.P.; Loeffler, J.S.; Fukumura, D.; Jain, R.K. The Biology of Brain Metastases—Translation to New Therapies. Nat. Rev. Clin. Oncol. 2011, 8, 344–356. [Google Scholar] [CrossRef]
- El Kamar, F.G.; Posner, J.B. Brain Metastases. Semin. Neurol. 2004, 24, 347–362. [Google Scholar] [CrossRef]
- Lammertsma, A.A.; Wise, R.J.S.; Cox, T.C.S.; Thomas, D.G.; Jones, T. Measurement of Blood Flow, Oxygen Utilisation, Oxygen Extraction Ratio, and Fractional Blood Volume in Human Brain Tumours and Surrounding Oedematous Tissue. Br. J. Radiol. 1985, 58, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Fierstra, J.; van Niftrik, C.; Piccirelli, M.; Bozinov, O.; Pangalu, A.; Krayenbühl, N.; Valavanis, A.; Weller, M.; Regli, L. Diffuse Gliomas Exhibit Whole Brain Impaired Cerebrovascular Reactivity. Magn. Reson. Imaging. 2018, 45, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Van Grinsven, E.E.; Guichelaar, J.; Philippens, M.E.P.; Siero, J.C.W.; Bhogal, A.A. Hemodynamic Imaging Parameters in Brain Metastases Patients—Agreement between Multi-Delay ASL and Hypercapnic BOLD. J. Cereb. Blood Flow Metab. 2023. [Google Scholar] [CrossRef]
- Eichler, A.F.; Loeffler, J.S. Multidisciplinary Management of Brain Metastases. Oncologist 2007, 12, 884–898. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.R.; Blair, R.M.; Moody, D.M.; Thore, C.R.; Ahmed, S.; Robbins, M.E.; Wheeler, K.T. Capillary Loss Precedes the Cognitive Impairment Induced by Fractionated Whole-Brain Irradiation: A Potential Rat Model of Vascular Dementia. J. Neurol. Sci. 2007, 257, 67–71. [Google Scholar] [CrossRef]
- Park, H.J.; Griffin, R.J.; Hui, S.; Levitt, S.H.; Song, C.W. Radiation-Induced Vascular Damage in Tumors: Implications of Vascular Damage in Ablative Hypofractionated Radiotherapy (SBRT and SRS). Radiat. Res. 2012, 177, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Gong, G.; Wang, L.; Su, Y.; Lu, J.; Yin, Y. The Study of Cerebral Blood Flow Variations during Brain Metastases Radiotherapy. Oncol. Res. Treat. 2022, 45, 130–137. [Google Scholar] [CrossRef]
- Makale, M.T.; McDonald, C.R.; Hattangadi-Gluth, J.A.; Kesari, S. Mechanisms of Radiotherapy-Associated Cognitive Disability in Patients with Brain Tumours. Nat. Rev. Neurol. 2017, 13, 52–64. [Google Scholar] [CrossRef]
- Van Grinsven, E.E.; Nagtegaal, S.H.J.; Verhoeff, J.J.C.; Van Zandvoort, M.J.E. The Impact of Stereotactic or Whole Brain Radiotherapy on Neurocognitive Functioning in Adult Patients with Brain Metastases: A Systematic Review and Meta-Analysis. Oncol. Res. Treat. 2021, 44, 622–636. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Wefel, J.S.; Vardy, J.; Ahles, T.; Schagen, S.B. International Cognition and Cancer Task Force Recommendations to Harmonise Studies of Cognitive Function in Patients with Cancer. Lancet Oncol. 2011, 12, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, N.S.; Roberts, L.J.; Berns, S.B.; McGlinchey, J.B. Methods for Defining and Determining the Clinical Significance of Treatment Effects: Description, Application, and Alternatives. J. Consult. Clin. Psychol. 1999, 67, 300–307. [Google Scholar] [CrossRef]
- Jacobson, N.S.; Truax, P. Clinical Significance: A Statistical Approach to Denning Meaningful Change in Psychotherapy Research. J. Consult. Clin. Psychol. 1991, 59, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. FSL. Neuroimage 2012, 62, 782–790. [Google Scholar] [CrossRef]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S.M. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. Neuroimage 2002, 17, 825–841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Brady, M.; Smith, S. Segmentation of Brain MR Images through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57. [Google Scholar] [CrossRef]
- Schmidt, P.; Gaser, C.; Arsic, M.; Buck, D.; Förschler, A.; Berthele, A.; Hoshi, M.; Ilg, R.; Schmid, V.J.; Zimmer, C.; et al. An Automated Tool for Detection of FLAIR-Hyperintense White-Matter Lesions in Multiple Sclerosis. Neuroimage 2012, 59, 3774–3783. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.L.R.; Skare, S.; Ashburner, J. How to Correct Susceptibility Distortions in Spin-Echo Echo-Planar Images: Application to Diffusion Tensor Imaging. Neuroimage 2003, 20, 870–888. [Google Scholar] [CrossRef]
- Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.J.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; Drobnjak, I.; Flitney, D.E.; et al. Advances in Functional and Structural MR Image Analysis and Implementation as FSL. Neuroimage 2004, 23, S208–S219. [Google Scholar] [CrossRef]
- Jenkinson, M.; Smith, S.M. A Global Optimisation Method for Robust Affine Registration of Brain Images. Med. Image Anal. 2001, 5, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.S.; Marques, J.P. SEPIA—Susceptibility Mapping Pipeline Tool for Phase Images. Neuroimage 2021, 227, 117611. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Khalidov, I.; de Rochefort, L.; Spincemaille, P.; Liu, J.; Tsiouris, A.J.; Wang, Y. A Novel Background Field Removal Method for MRI Using Projection onto Dipole Fields (PDF). NMR Biomed. 2011, 24, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, T.; De Rochefort, L.; Ledoux, J.; Khalidov, I.; Chen, W.; Tsiouris, A.J.; Wisnieff, C.; Spincemaille, P.; Prince, M.R.; et al. Morphology Enabled Dipole Inversion for Quantitative Susceptibility Mapping Using Structural Consistency between the Magnitude Image and the Susceptibility Map. Neuroimage 2012, 59, 2560–2568. [Google Scholar] [CrossRef]
- Bhogal, A.A. Abhogal-Lab/SeeVR: V2.01 2021, (V2.01). Available online: https://github.com/abhogal-lab/seeVR (accessed on 26 April 2022).
- Champagne, A.A.; Bhogal, A.A. Insights Into Cerebral Tissue-Specific Response to Respiratory Challenges at 7T: Evidence for Combined Blood Flow and CO2-Mediated Effects. Front. Physiol. 2021, 12, 18. [Google Scholar] [CrossRef]
- Siero, J. ClinicalASL Toolbox. 2023. Available online: https://Github.Com/JSIERO/ClinicalASL (accessed on 29 June 2023).
- Chappell, M.A.; Groves, A.R.; Whitcher, B.; Woolrich, M.W. Variational Bayesian Inference for a Nonlinear Forward Model. IEEE Trans. Signal Process. 2009, 57, 223–236. [Google Scholar] [CrossRef]
- Dolui, S.; Wang, Z.; Shinohara, R.T.; Wolk, D.A.; Detre, J.A. Structural Correlation-Based Outlier Rejection (SCORE) Algorithm for Arterial Spin Labeling Time Series. J. Magn. Reson. Imaging 2017, 45, 1786–1797. [Google Scholar] [CrossRef]
- Cho, J.; Lee, J.; An, H.; Goyal, M.S.; Su, Y.; Wang, Y. Cerebral Oxygen Extraction Fraction (OEF): Comparison of Challenge-Free Gradient Echo QSM+qBOLD (QQ) with 15O PET in Healthy Adults. J. Cereb. Blood Flow Metab. 2021, 41, 1658–1668. [Google Scholar] [CrossRef]
- Cho, J.; Spincemaille, P.; Nguyen, T.D.; Gupta, A.; Wang, Y. Temporal Clustering, Tissue Composition, and Total Variation for Mapping Oxygen Extraction Fraction Using QSM and Quantitative BOLD. Magn. Reson. Med. 2021, 86, 2635–2646. [Google Scholar] [CrossRef]
- Cho, J.; Kee, Y.; Spincemaille, P.; Nguyen, T.D.; Zhang, J.; Gupta, A.; Zhang, S.; Wang, Y. Cerebral Metabolic Rate of Oxygen (CMRO2) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (QBOLD). Magn. Reson. Med. 2018, 80, 1595–1604. [Google Scholar] [CrossRef]
- Cho, J.; Zhang, J.; Spincemaille, P.; Zhang, H.; Hubertus, S.; Wen, Y.; Jafari, R.; Zhang, S.; Nguyen, T.D.; Dimov, A.V.; et al. QQ-NET—Using Deep Learning to Solve Quantitative Susceptibility Mapping and Quantitative Blood Oxygen Level Dependent Magnitude (QSM+qBOLD or QQ) Based Oxygen Extraction Fraction (OEF) Mapping. Magn. Reson. Med. 2022, 87, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Hubertus, S.; Thomas, S.; Cho, J.; Zhang, S.; Wang, Y.; Schad, L.R. Comparison of Gradient Echo and Gradient Echo Sampling of Spin Echo Sequence for the Quantification of the Oxygen Extraction Fraction from a Combined Quantitative Susceptibility Mapping and Quantitative BOLD (QSM+qBOLD) Approach. Magn. Reson. Med. 2019, 82, 1491–1503. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Zhang, S.; Kee, Y.; Spincemaille, P.; Nguyen, T.D.; Hubertus, S.; Gupta, A.; Wang, Y. Cluster Analysis of Time Evolution (CAT) for Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygen Level-Dependent Magnitude (QBOLD)-Based Oxygen Extraction Fraction (OEF) and Cerebral Metabolic Rate of Oxygen (CMRO2) Mapping. Magn. Reson. Med. 2020, 83, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cho, J.; Nguyen, T.D.; Spincemaille, P.; Gupta, A.; Zhu, W.; Wang, Y. Initial Experience of Challenge-Free MRI-Based Oxygen Extraction Fraction Mapping of Ischemic Stroke at Various Stages: Comparison with Perfusion and Diffusion Mapping. Front. Neurosci. 2020, 14, 535441. [Google Scholar] [CrossRef] [PubMed]
- Bakdash, J.Z.; Marusich, L.R. Repeated Measures Correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef]
- R Studio Team. Integrated Development for R; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Van Osch, M.J.P.; Teeuwisse, W.M.; Van Walderveen, M.A.A.; Hendrikse, J.; Kies, D.A.; Van Buchem, M.A. Can Arterial Spin Labeling Detect White Matter Perfusion Signal? Magn. Reson. Med. 2009, 62, 165–173. [Google Scholar] [CrossRef]
- Paech, D.; Nagel, A.M.; Schultheiss, M.N.; Umathum, R.; Regnery, S.; Scherer, M.; Wick, A.; Platt, T.; Wick, W.; Bendszus, M.; et al. Quantitative Dynamic Oxygen 17 MRI at 7.0 T for the Cerebral Oxygen Metabolism in Glioma. Radiology 2020, 295, 181–189. [Google Scholar] [CrossRef]
- Hyder, F.; Herman, P.; Bailey, C.J.; Møller, A.; Globinsky, R.; Fulbright, R.K.; Rothman, D.L.; Gjedde, A. Uniform Distributions of Glucose Oxidation and Oxygen Extraction in Gray Matter of Normal Human Brain: No Evidence of Regional Differences of Aerobic Glycolysis. J. Cereb. Blood Flow Metab. 2015, 36, 903–916. [Google Scholar] [CrossRef]
- Hatazawa, J.; Fujita, H.; Kanno, I.; Satoh, T.; Iida, H.; Miura, S.; Murakami, M.; Okudera, T.; Inugami, A.; Ogawa, T.; et al. Regional Cerebral Blood Flow, Blood Volume, Oxygen Extraction Fraction, and Oxygen Utilization Rate in Normal Volunteers Measured by the Autoradiographic Technique and the Single Breath Inhalation Method. Ann. Nucl. Med. 1995, 9, 15–21. [Google Scholar] [CrossRef]
- Sebök, M.; van Niftrik, C.H.B.; Muscas, G.; Pangalu, A.; Seystahl, K.; Weller, M.; Regli, L.; Fierstra, J. Hypermetabolism and Impaired Cerebrovascular Reactivity beyond the Standard MRI-Identified Tumor Border Indicate Diffuse Glioma Extended Tissue Infiltration. Neurooncol. Adv. 2021, 3, vdab048. [Google Scholar] [CrossRef]
- Quattrocchi, C.C.; Errante, Y.; Mallio, C.A.; Santini, D.; Tonini, G.; Zobel, B.B. Brain Metastatic Volume and White Matter Lesions in Advanced Cancer Patients. J. Neurooncol. 2013, 113, 451–458. [Google Scholar] [CrossRef]
- Berk, B.A.; Nagel, S.; Hering, K.; Paschke, S.; Hoffmann, K.T.; Kortmann, R.D.; Gaudino, C.; Seidel, C. White Matter Lesions Reduce Number of Brain Metastases in Different Cancers: A High-Resolution MRI Study. J. Neurooncol. 2016, 130, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Zadeh, G. Metabolic Reprogramming in Glioblastoma: The Influence of Cancer Metabolism on Epigenetics and Unanswered Questions. Neuro-Oncology 2016, 18, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.L.Y.; Méndez Romero, A.; Jaspers, J.P.M.; Warnert, E.A.H. The Potential of Advanced MR Techniques for Precision Radiotherapy of Glioblastoma. Magn. Reson. Mater. Phys. Biol. Med. 2022, 35, 127–143. [Google Scholar] [CrossRef]
- Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J.; Marino, M.; Martinez-Chantar, M.L.; Nawroth, R.; Sanchez-Garcia, I.; et al. Sustained Proliferation in Cancer: Therapeutic Targets. Semin. Cancer Biol. 2016, 35, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Mehnati, P.; Baradaran, B.; Vahidian, F.; Nadiriazam, S. Functional Response Difference between Diabetic/Normal Cancerous Patients to Inflammatory Cytokines and Oxidative Stresses after Radiotherapy. Rep. Pract. Oncol. Radiother. 2020, 25, 730–737. [Google Scholar] [CrossRef]
- Siva, S.; MacManus, M.P.; Martin, R.F.; Martin, O.A. Abscopal Effects of Radiation Therapy: A Clinical Review for the Radiobiologist. Cancer Lett. 2015, 356, 82–90. [Google Scholar] [CrossRef]
- Fan, A.P.; Evans, K.C.; Stout, J.N.; Rosen, B.R.; Adalsteinsson, E. Regional Quantification of Cerebral Venous Oxygenation from MRI Susceptibility during Hypercapnia. Neuroimage 2015, 104, 146–155. [Google Scholar] [CrossRef]
- Alsop, D.C.; Detre, J.A.; Golay, X.; Günther, M.; Hendrikse, J.; Hernandez-Garcia, L.; Lu, H.; MacIntosh, B.J.; Parkes, L.M.; Smits, M.; et al. Recommended Implementation of Arterial Spin Labeled Perfusion MRI for Clinical Applications: A Consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia. Magn. Reson. Med. 2015, 73, 102–116. [Google Scholar] [CrossRef]
- Fan, A.P.; Guo, J.; Khalighi, M.M.; Gulaka, P.K.; Shen, B.; Park, J.H.; Gandhi, H.; Holley, D.; Rutledge, O.; Singh, P.; et al. Long-Delay Arterial Spin Labeling Provides More Accurate Cerebral Blood Flow Measurements in Moyamoya Patients: A Simultaneous Positron Emission Tomography/MRI Study. Stroke 2017, 48, 2441–2449. [Google Scholar] [CrossRef]
- Detre, J.A.; Rao, H.; Wang, D.J.J.; Chen, Y.F.; Wang, Z. Applications of Arterial Spin Labeled MRI in the Brain. J. Magn. Reson. Imaging 2012, 35, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Ma, Y.; Spincemaille, P.; Pike, G.B.; Wang, Y. Cerebral Oxygen Extraction Fraction (OEF): Comparison of Dual- Gas Challenge Calibrated BOLD with CBF and Challenge-Free Gradient Echo QSM+qBOLD. Magn. Reson. Med. 2021, 85, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Nguyen, T.D.; Huang, W.; Sweeney, E.M.; Luo, X.; Kovanlikaya, I.; Zhang, S.; Gillen, K.M.; Spincemaille, P.; Gupta, A.; et al. Brain Oxygen Extraction Fraction Mapping in Patients with Multiple Sclerosis. J. Cereb. Blood Flow Metab. 2022, 42, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhou, Y.; Cho, J.; Shen, N.; Li, S.; Qin, Y.; Zhang, G.; Yan, S.; Xie, Y.; Zhang, S.; et al. The Spatiotemporal Evolution of MRI-Derived Oxygen Extraction Fraction and Perfusion in Ischemic Stroke. Front. Neurosci. 2021, 15, 716031. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Zhang, S.; Cho, J.; Li, S.; Zhang, J.; Xie, Y.; Wang, Y.; Zhu, W. Application of Cluster Analysis of Time Evolution for Magnetic Resonance Imaging -Derived Oxygen Extraction Fraction Mapping: A Promising Strategy for the Genetic Profile Prediction and Grading of Glioma. Front. Neurosci. 2021, 15, 736891. [Google Scholar] [CrossRef] [PubMed]
- Chiang, G.C.; Cho, J.; Dyke, J.; Zhang, H.; Zhang, Q.; Tokov, M.; Nguyen, T.; Kovanlikaya, I.; Amoashiy, M.; de Leon, M.; et al. Brain Oxygen Extraction and Neural Tissue Susceptibility Are Associated with Cognitive Impairment in Older Individuals. J. Neuroimaging 2022, 32, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cho, J.; Chen, T.; Gillen, K.M.; Li, J.; Zhang, Q.; Guo, L.; Wang, Y. Oxygen Extraction Fraction (OEF) Assesses Cerebral Oxygen Metabolism of Deep Gray Matter in Patients with Pre-Eclampsia. Eur. Radiol. 2022, 32, 6058–6069. [Google Scholar] [CrossRef]
- Zhuang, H.; Cho, J.; Chiang, G.C.Y.; Kovanlikaya, I.; Heier, L.A.; Dyke, J.P.; Wang, Y. Cerebral Oxygen Extraction Fraction Declines with Ventricular Enlargement in Patients with Normal Pressure Hydrocephalus. Clin. Imaging 2023, 97, 22–27. [Google Scholar] [CrossRef]
- Hattingen, E.; Jurcoane, A.; Daneshvar, K.; Pilatus, U.; Mittelbronn, M.; Steinbach, J.P.; Bähr, O. Quantitative T2 Mapping of Recurrent Glioblastoma under Bevacizumab Improves Monitoring for Non-Enhancing Tumor Progression and Predicts Overall Survival. Neuro–Oncology 2013, 15, 1395–1404. [Google Scholar] [CrossRef]
- Hoge, R.D.; Atkinson, J.; Gill, B.; Crelier, G.R.; Marrett, S.; Pike, G.B. Investigation of BOLD Signal Dependence on CBF and CMRO2: The Deoxyhemoglobin Dilution Model. Neuroimage 1999, 9, 849–863. [Google Scholar]
- Petersen, E.T.; Zimine, I.; Ho, Y.C.L.; Golay, X. Non-Invasive Measurement of Perfusion: A Critical Review of Arterial Spin Labelling Techniques. Br. J. Radiol. 2006, 79, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Greene-Schloesser, D.; Robbins, M.E.; Peiffer, A.M.; Shaw, E.G.; Wheeler, K.T.; Chan, M.D. Radiation-Induced Brain Injury: A Review. Front. Oncol. 2012, 2, 73. [Google Scholar] [CrossRef] [PubMed]
- Katsura, M.; Sato, J.; Akahane, M.; Furuta, T.; Mori, H.; Abe, O. Recognizing Radiation-Induced Changes in the Central Nervous System: Where to Look and What to Look For. Radiographics 2021, 41, 224–248. [Google Scholar] [CrossRef] [PubMed]
# | Age (Years) | Sex | Primary Tumor | #BMs | Total BMs vol (cc) | Prescribed SRS Dose (Gy/1 fr) | Previous RT | In between RT | Post-RT Systemic Therapy | Edema vol T0 (cc) | Edema vol T1 (cc) | Dexamethasone Dose Pre-RT (mg/Day) | Dexamethasone Dose Post-RT (mg/Day) | RT Response a |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 57 | F | Lung | 7 | 4.3 | 21 | N | N | N | 54.3 | 21.4 | 0.0 | 1.5 | Decrease |
5 | 66 | M | Melanoma | 18 | 0.9 | 21 | Y | N | Y | 12.5 | 98.8 | 0.0 | 0.0 | Stable |
6 | 81 | M | Melanoma | 2 | 7.1 | 21 | N | N | Y | 17.1 | 155.3 | 0.0 | 0.5 | Growth |
7 | 62 | F | Lung | 11 | 11.2 | 21 | N | N | Y | 19.5 | 1.4 | 0.0 | 0.0 | Decrease |
8 | 72 | M | Kidney | 1 | 17.6 | 18 | N | N | Y | 80.1 | 5.7 | 4.0 | 0.0 | Decrease |
11 b | 52 | F | Lung | 8 | 50.6 | 15 | N | N | Y | 29.4 | 4.7 | 4.0 | 0.0 | Decrease |
18 | 72 | M | Lung | 2 | 1.8 | 21 | N | N | N | 13.2 | 0.4 | 2.0 | 0.0 | Decrease |
23 b | 74 | F | Lung | 1 | 3.5 | 18 | N | Y | N | 16.3 | 56.4 | 0.5 | 2.5 | Growth |
24 b | 62 | M | Melanoma | 10 | 1.6 | 24 | N | N | Y | 3.1 | 4.5 | 0.0 | 0.0 | Mixed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Grinsven, E.E.; de Leeuw, J.; Siero, J.C.W.; Verhoeff, J.J.C.; van Zandvoort, M.J.E.; Cho, J.; Philippens, M.E.P.; Bhogal, A.A. Evaluating Physiological MRI Parameters in Patients with Brain Metastases Undergoing Stereotactic Radiosurgery—A Preliminary Analysis and Case Report. Cancers 2023, 15, 4298. https://doi.org/10.3390/cancers15174298
van Grinsven EE, de Leeuw J, Siero JCW, Verhoeff JJC, van Zandvoort MJE, Cho J, Philippens MEP, Bhogal AA. Evaluating Physiological MRI Parameters in Patients with Brain Metastases Undergoing Stereotactic Radiosurgery—A Preliminary Analysis and Case Report. Cancers. 2023; 15(17):4298. https://doi.org/10.3390/cancers15174298
Chicago/Turabian Stylevan Grinsven, Eva E., Jordi de Leeuw, Jeroen C. W. Siero, Joost J. C. Verhoeff, Martine J. E. van Zandvoort, Junghun Cho, Marielle E. P. Philippens, and Alex A. Bhogal. 2023. "Evaluating Physiological MRI Parameters in Patients with Brain Metastases Undergoing Stereotactic Radiosurgery—A Preliminary Analysis and Case Report" Cancers 15, no. 17: 4298. https://doi.org/10.3390/cancers15174298
APA Stylevan Grinsven, E. E., de Leeuw, J., Siero, J. C. W., Verhoeff, J. J. C., van Zandvoort, M. J. E., Cho, J., Philippens, M. E. P., & Bhogal, A. A. (2023). Evaluating Physiological MRI Parameters in Patients with Brain Metastases Undergoing Stereotactic Radiosurgery—A Preliminary Analysis and Case Report. Cancers, 15(17), 4298. https://doi.org/10.3390/cancers15174298