Prognostic Value of CD8+ Lymphocytes in Hepatocellular Carcinoma and Perineoplastic Parenchyma Assessed by Interface Density Profiles in Liver Resection Samples
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Immunohistochemistry
2.3. Digital Image Analysis and Indicator Extraction
2.4. Statistical Analysis and Modeling
3. Results
3.1. Univariate Predictors of Overall Survival and Recurrence-Free Survival
3.2. Independent Predictors of Overall Survival and Recurrence-Free Survival
3.3. Combined OS Prognostic Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Paradis, V. Histopathology of hepatocellular carcinoma. World J. Gastroenterol. 2012, 20, 15955–15964. [Google Scholar] [CrossRef]
- Kim, E.; Viatour, P. Hepatocellular carcinoma: Old friends and new tricks. Exp. Mol. Med. 2020, 52, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, R.; Pandey, A.K. Hepatocellular Carcinoma: Causes, Mechanism of Progression and Biomarkers. Curr. Chem. Genom. Transl. Med. 2018, 12, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020, 9, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nault, J.C.; Galle, P.R.; Marquardt, J.U. The role of molecular enrichment on future therapies in hepatocellular carcinoma. J. Hepatol. 2018, 69, 237–247. [Google Scholar] [CrossRef]
- Zheng, X.; Jin, W.; Wang, S.; Ding, H. Progression on the Roles and Mechanisms of Tumor-Infiltrating T Lymphocytes in Patients With Hepatocellular Carcinoma. Front. Immunol. 2021, 12, 729705. [Google Scholar] [CrossRef]
- Sun, C.; Xu, J.; Song, J.; Liu, C.Q.; Wang, J.; Weng, C.; Sun, H.; Wei, H.; Xiao, W.; Sun, R.; et al. The predictive value of centre tumour CD8+ T cells in patients with hepatocellular carcinoma: Comparison with Immunoscore. Oncotarget 2015, 6, 35602–35615. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Hoffmann, K.; Schemmer, P. Treatment of Hepatocellular Carcinoma: A Systematic Review. Liver Cancer 2012, 1, 144–158. [Google Scholar] [CrossRef]
- Sposito, C.; Di Sandro, S.; Brunero, F.; Buscemi, V.; Battiston, C.; Lauterio, A.; Bongini, M.; De Carlis, L.; Mazzaferro, V. Development of a prognostic scoring system for resectable hepatocellular carcinoma. World J. Gastroenterol. 2016, 22, 8194–8202. [Google Scholar] [CrossRef]
- Renne, S.L.; Sarcognato, S.; Sacchi, D.; Guido, M.; Roncalli, M.; Terracciano, L.; Di Tommaso, L. Hepatocellular carcinoma: A clinical and pathological overview. Pathologica 2021, 113, 203. [Google Scholar] [CrossRef]
- Johnston, M.P.; Khakoo, S.I. Immunotherapy for hepatocellular carcinoma: Current and future. World J. Gastroenterol. 2019, 25, 2977–2989. [Google Scholar] [CrossRef]
- Johnson, P.J. HCC in Focus. Clin. Adv. Hematol. Oncol. 2017, 15, 452–454. [Google Scholar] [PubMed]
- Villa, B.E.; Colantoni, A.; Camma, C.; Grottola, A.; Buttafoco, P.; Gelmini, R.; Ferretti, I. Estrogen Receptor Classification for Hepatocellular Carcinoma: Comparison With Clinical Staging Systems. J. Clin. Oncol. 2003, 21, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Kumada, T.; Osaki, Y.; Oka, H.; Urano, F.; Kudo, M.; Matsunaga, T. Staging Hepatocellular Carcinoma by a Novel Scoring System (BALAD Score) Based on Serum Markers. Clin. Gastroenterol. Hepatol. 2006, 4, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- Wongjarupong, N.; Negron-Ocasio, G.M.; Mara, K.C.; Prasai, K.; Abdallah, M.A.; Ahn, K.S.; Yang, J.D.; Addissie, B.D.; Giama, N.H.; Harmsen, W.S.; et al. BALAD and BALAD-2 predict survival of hepatocellular carcinoma patients: A North American cohort study. HPB Off. J. Int. Hepato Pancreato Biliary Assoc. 2021, 23, 762–769. [Google Scholar] [CrossRef]
- Chew, V.; Lai, L.; Pan, L.; Lim, C.J.; Li, J.; Ong, R.; Chua, C.; Leong, J.Y.; Lim, K.H.; Toh, H.C.; et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc. Natl. Acad. Sci. USA 2017, 114, E5900–E5909. [Google Scholar] [CrossRef] [Green Version]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef]
- Ikeguchi, M.; Oi, K.; Hirooka, Y.; Kaibara, N. CD8+ lymphocyte infiltration and apoptosis in hepatocellular carcinoma. Eur. J. Surg. Oncol. 2004, 30, 53–57. [Google Scholar] [CrossRef]
- Ramzan, M.; Sturm, N.; Decaens, T.; Bioulac-Sage, P.; Bancel, B.; Merle, P.; Tran Van Nhieu, J.; Slama, R.; Letoublon, C.; Zarski, J.P.; et al. Liver-infiltrating CD8+ lymphocytes as prognostic factor for tumour recurrence in hepatitis C virus-related hepatocellular carcinoma. Liver Int. 2016, 36, 434–444. [Google Scholar] [CrossRef]
- Hala, S.; Asmaa, G.A.; Mervat, S.S.; Nanis, S.H.; Shymaa, H. Role of CD8 Cytotoxic T Lymphocytes in Hepatocellular Carcinoma: An Immunohistochemical Study. Med. J. Cairo Univ. 2019, 87, 4061–4069. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Qian, Y.; Xue, W.; Wang, Y.; Du, J.; Jin, L.; Ding, W. Clinicopathologic and prognostic significance of tumor-infiltrating CD8+ T cells in patients with hepatocellular carcinoma: A meta-analysis. Medicine 2019, 98, e13923. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Xu, X.; Qian, Y.; Xue, W.; Wang, Y.; Du, J.; Jin, L.; Tan, Y. Prognostic value of tumor-infiltrating lymphocytes in hepatocellular carcinoma: A meta-analysis. Medicine 2018, 97, e13301. [Google Scholar] [CrossRef]
- An, J.L.; Ji, Q.H.; An, J.J.; Masuda, S.; Tsuneyama, K. Clinicopathological analysis of CD8-positive lymphocytes in the tumor parenchyma and stroma of hepatocellular carcinoma. Oncol. Lett. 2014, 8, 2284–2290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portland, F.; Toronto, G.; Madrid, C.; Nijmegen, U.K.; Medicine, T. Cancer classification using the Immunoscore: A worldwide task force Cancer classification using the Immunoscore: A worldwide task force. J. Transl. Med. 2012, 10, 205. [Google Scholar] [CrossRef]
- Galon, J.; Lanzi, A. Immunoscore and its introduction in clinical practice. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 152–161. [Google Scholar] [CrossRef]
- Angell, H.K.; Bruni, D.; Barrett, J.C.; Herbst, R. The Immunoscore: Colon Cancer and Beyond. Clin. Cancer Res. 2020, 26, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Gabrielson, A.; Wu, Y.; Wang, H.; Jiang, J.; Kallakury, B.; Gatalica, Z.; Reddy, S.; Kleiner, D.; Fishbein, T.; Johnson, L.; et al. Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free Survival in HCC. Cancer Immunol. Res. 2016, 4, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-R.; Tian, M.-X.; Tang, Z.; Fang, Y.; Zhou, Y.-F.; Song, S.-S.; Jiang, X.-F.; Wang, H.; Tao, C.-Y.; Zhou, P.-Y.; et al. Nine-factor-based immunohistochemistry classifier predicts recurrence for early-stage hepatocellular carcinoma after curative resection. Br. J. Cancer 2020, 123, 92–100. [Google Scholar] [CrossRef]
- Steele, K.E.; Tan, T.H.; Korn, R.; Dacosta, K.; Brown, C.; Kuziora, M.; Zimmermann, J.; Laffin, B.; Widmaier, M.; Rognoni, L.; et al. Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J. Immunother. Cancer 2018, 6, 1–14. [Google Scholar] [CrossRef]
- Koelzer, V.H.; Sirinukunwattana, K.; Rittscher, J.; Mertz, K.D. Precision immunoprofiling by image analysis and artificial intelligence. Virchows Arch. 2019, 474, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurinavicius, A.; Rasmusson, A.; Plancoulaine, B.; Shribak, M.; Levenson, R. Machine-Learning–Based Evaluation of Intratumoral Heterogeneity and Tumor-Stroma Interface for Clinical Guidance. Am. J. Pathol. 2021, 191, 1724–1731. [Google Scholar] [CrossRef] [PubMed]
- Radziuviene, G.; Rasmusson, A.; Augulis, R.; Grineviciute, R.B.; Zilenaite, D.; Laurinaviciene, A.; Ostapenko, V.; Laurinavicius, A. Intratumoral Heterogeneity and Immune Response Indicators to Predict Overall Survival in a Retrospective Study of HER2-Borderline (IHC 2+) Breast Cancer Patients. Front. Oncol. 2021, 11, 774088. [Google Scholar] [CrossRef] [PubMed]
- Zilenaite, D.; Rasmusson, A.; Augulis, R.; Besusparis, J.; Laurinaviciene, A.; Plancoulaine, B.; Ostapenko, V.; Laurinavicius, A. Independent Prognostic Value of Intratumoral Heterogeneity and Immune Response Features by Automated Digital Immunohistochemistry Analysis in Early Hormone Receptor-Positive Breast Carcinoma. Front. Oncol. 2020, 10, 950. [Google Scholar] [CrossRef] [PubMed]
- Nestarenkaite, A.; Fadhil, W.; Rasmusson, A.; Susanti, S.; Hadjimichael, E.; Laurinaviciene, A.; Ilyas, M.; Laurinavicius, A. Immuno-interface score to predict outcome in colorectal cancer independent of microsatellite instability status. Cancers 2020, 12, 2902. [Google Scholar] [CrossRef]
- Cheng, N.; Ren, Y.; Zhou, J.; Zhang, Y.; Wang, D.; Zhang, X.; Chen, B.; Liu, F.; Lv, J.; Cao, Q.; et al. Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images. Gastroenterology 2022, 162, 1948–1961. [Google Scholar] [CrossRef]
- Naoumov, N.V.; Brees, D.; Loeffler, J.; Chng, E.; Ren, Y.; Lopez, P.; Tai, D.; Lamle, S.; Sanyal, A.J. Digital pathology with artificial intelligence analyses provides greater insights into treatment-induced fibrosis regression in NASH. J. Hepatol. 2022, 77, 1399–1409. [Google Scholar] [CrossRef]
- Taylor-Weiner, A.; Pokkalla, H.; Han, L.; Jia, C.; Huss, R.; Chung, C.; Elliott, H.; Glass, B.; Pethia, K.; Carrasco-Zevallos, O.; et al. A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH. Hepatology 2021, 74, 133–147. [Google Scholar] [CrossRef]
- Liao, H.; Xiong, T.; Peng, J.; Xu, L.; Liao, M. Classification and Prognosis Prediction from Histopathological Images of Hepatocellular Carcinoma by a Fully Automated Pipeline Based on Machine Learning. Ann. Surg. Oncol. 2020, 27, 2359–2369. [Google Scholar] [CrossRef]
- Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep. 2022, 4, 100443. [Google Scholar] [CrossRef]
- Rasmusson, A.; Zilenaite, D.; Nestarenkaite, A.; Augulis, R.; Laurinaviciene, A.; Ostapenko, V.; Poskus, T.; Laurinavicius, A. Immunogradient Indicators for Antitumor Response Assessment by Automated Tumor-Stroma Interface Zone Detection. Am. J. Pathol. 2020, 190, 1309–1322. [Google Scholar] [CrossRef] [PubMed]
- WHO C for IO of MS (CIOMS) in Collaboration with the WH. International Ethical Guidelines for Health-Related Research Involving Humans [Internet]. Biomedical Research. 2016, pp. 1921–1931. Available online: http://www.sciencedirect.com/science/article/B6VC6-45F5X02-9C/2/e44bc37a6e392634b1cf436105978f01 (accessed on 2 September 2022).
- Budczies, J.; Klauschen, F.; Sinn, B.V.; Gyorffy, B.; Schmitt, W.D.; Darb-Esfahani, S.; Denkert, C. Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization. PLoS ONE 2012, 7, e51862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushing, C.; Bulusu, A.; Hurwitz, H.I.; Nixon, A.B.; Pang, H. A leave-one-out cross-validation SAS macro for the identi fi cation of markers associated with survival. Comput. Biol. Med. 2015, 57, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krijgsman, D.; Van Leeuwen, M.B.; Van Der Ven, J.; Almeida, V.; Vlutters, R.; Halter, D.; Kuppen, P.J.K.; Van De Velde, C.J.H.; Wimberger-Friedl, R. Quantitative Whole Slide Assessment of Tumor-Infiltrating CD8-Positive Lymphocytes in ER-Positive Breast Cancer in Relation to Clinical Outcome. IEEE J. Biomed. Health Inform. 2021, 25, 381–392. [Google Scholar] [CrossRef]
- Li, J.; Nie, Y.; Jia, W.; Wu, W.; Song, W.; Li, Y. Effect of Tertiary Lymphoid Structures on Prognosis of Patients with Hepatocellular Carcinoma and Preliminary Exploration of Its Formation Mechanism. Cancers 2022, 14, 5157. [Google Scholar] [CrossRef]
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res. 2021, 149, 1–61. [Google Scholar] [CrossRef]
- Heindl, A.; Nawaz, S.; Yuan, Y. Mapping spatial heterogeneity in the tumor microenvironment: A new era for digital pathology. Lab. Investig. 2015, 95, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Khanam, A.; Chua, J.V.; Kottilil, S. Immunopathology of Chronic Hepatitis B Infection: Role of Innate and Adaptive Immune Response in Disease Progression. Int. J. Mol. Sci. 2021, 22, 5497. [Google Scholar] [CrossRef]
- Lee, E.C.; Kim, S.H.; Park, H.; Lee, S.D.; Lee, S.; Park, S. Survival analysis after liver resection for hepatocellular carcinoma: A consecutive cohort of 1002 patients. J. Gastroenterol. Hepatol. 2016, 32, 1055–1063. [Google Scholar] [CrossRef]
- Egeland, C.; Rostved, A.A.; Schultz, N.A.; Pommergaard, H.C.; Daugaard, T.R.; Thøfner, L.B.; Rasmussen, A.; Hillingsø, J.G. Morbidity and mortality after liver surgery for colorectal liver metastases: A cohort study in a high - volume fast - track programme. BMC Surg. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- He, Y.; Liang, T.; Mo, S.; Chen, Z.; Zhao, S.; Zhou, X.; Yan, L.; Wang, X.; Su, H. Effect of timing of surgical resection of primary hepatocellular carcinoma on survival outcomes in elderly patients and prediction of clinical models. BMC Gastroenterol. 2021, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hanazaki, K.; Kajikawa, S.; Koide, N.; Adachi, W.; Amano, J. Prognostic factors after hepatic resection for hepatocellular carcinoma with hepatitis C viral infection: Univariate and multivariate analysis. Am. J. Gastroenterol. 2001, 96, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.C.; Shia, J.; Liau, K.H.; Gonen, M.; Ruo, L.; Jarnagin, W.R.; Fong, Y.; D’Angelica, M.I.; Blumgart, L.H.; Dematteo, R.P. Operative blood loss independently predicts recurrence and survival after resection of hepatocellular carcinoma. Ann. Surg. 2009, 249, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhang, L.; Yu, H.; Yu, X. Laparoscopic hepatectomy for hepatocellular carcinoma: Short- And long-term outcomes with blood loss. Transl. Cancer Res. 2021, 10, 4303–4315. [Google Scholar] [CrossRef] [PubMed]
- Elshaarawy, O.; Aman, A.; Zakaria, H.M.; Zakareya, T.; Gomaa, A.; Elshimi, E.; Abdelsameea, E. Outcomes of curative liver resection for hepatocellular carcinoma in patients with cirrhosis. World J. Gastrointest. Oncol. 2021, 13, 424–439. [Google Scholar] [CrossRef]
- Sempokuya, T.; Wong, L.L. Ten-year survival and recurrence of hepatocellular cancer. Hepatoma Res. 2019, 5, 38. [Google Scholar] [CrossRef]
- Wu, C.; Qiu, Y.; Zhang, R.; Li, X.; Liang, H.; Wang, M.; Li, F. Association of peripheral basophils with tumor M2 macrophage infiltration and outcomes of the anti - PD - 1 inhibitor plus chemotherapy combination in advanced gastric cancer. J. Transl. Med. 2022, 20, 1–15. [Google Scholar] [CrossRef]
- Chauhan, J.; Stavraka, C.; Grandits, M.; Palhares, L.C.G.F.; Josephs, D.H.; Lacy, K.E.; Spicer, J.; Bax, H.J.; Karagiannis, S.N. Clinical and Translational Significance of Basophils in Patients with Cancer. Cells 2022, 11, 438. [Google Scholar] [CrossRef]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Wu, T.; Wu, Z. Surgical resection improves long-term survival of patients with hepatocellular carcinoma across diff. Cancer Manag. Res. 2018, 10, 361–369. [Google Scholar] [CrossRef]
- Chan, S.L.; Johnson, P.J.; Mo, F.; Berhane, S.; Teng, M.; Chan, A.W.H.; Poon, M.C.; Lai, P.B.S.; Yu, S.; Chan, A.T.C.; et al. International validation of the Chinese university prognostic index for staging of hepatocellular carcinoma: A joint United Kingdom and Hong Kong study. Chin. J. Cancer 2014, 33, 481–491. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value |
---|---|
Patients | 106 (100%) |
Age, years | |
Mean (range) | 65 (13–82) |
Median | 64 |
Gender | |
Male | 82 (77.4%) |
Female | 24 (22.6%) |
OS time, months | |
Mean (range) | 46 (1–152) |
Median | 39 |
Deceased | 63 (59.4%) |
RFS time, months | |
Mean (range) | 41 (1–174) |
Median | 25 |
Recurrences | 56 (52.8%) |
HCC grade | |
G1 | 8 (7.5%) |
G2 | 79 (74.5%) |
G3 | 19 (18.0%) |
pT stage | |
T1 | 38 (35.9%) |
T2 | 60 (56.6%) |
T3 | 7 (6.6%) |
T4 | 1 (0.9%) |
Resection margin | |
R0 | 86 (81.1%) |
R1 | 20 (18.9%) |
Largest tumor dimension, mm | |
Mean (range) | 48 (8–190) |
Median | 40 |
Surgical margin in R0 resections, mm | |
Mean (range) | 3.1 (0.1–25.0) |
Median | 3.1 |
History of viral infection | |
HBV | 9 (8.5%) |
HCV | 53 (50.0%) |
None or unknown | 44 (41.5%) |
Hospitalization time, days | |
Mean (range) | 16 (4–70) |
Median | 13 |
Duration of surgery, min | |
Mean (range) | 170 (70–350) |
Median | 160 |
Variable | Mean | Median | Min | Max | N | No Data |
---|---|---|---|---|---|---|
LEU, ×109/L | 6.00 | 5.65 | 1.99 | 15.35 | 91 | 15 |
LYM, ×109/L | 2.94 | 1.62 | 0.22 | 106.00 | 90 | 16 |
MON, ×109/L | 0.56 | 0.50 | 0.12 | 1.38 | 90 | 16 |
EOS, ×109/L | 0.17 | 0.10 | 0.00 | 1.47 | 90 | 16 |
BAS, ×109/L | 0.03 | 0.02 | 0.00 | 0.20 | 90 | 16 |
RBC, ×1012/L | 4.43 | 4.32 | 3.15 | 6.42 | 90 | 16 |
Albumin, g/L | 40.25 | 40.30 | 24.80 | 51.10 | 64 | 42 |
Creatinine, µmol/L | 74.05 | 71.00 | 42.00 | 144.00 | 82 | 24 |
Total bilirubin, µmol/L | 17.75 | 14.45 | 5.10 | 52.80 | 82 | 24 |
Alanine transaminase (ALT), U/L | 69.07 | 53.00 | 11.00 | 249.00 | 89 | 17 |
Aspartate transaminase (AST), U/L | 69.35 | 56.00 | 19.00 | 209.00 | 86 | 20 |
Alkaline phosphatase (ALP), U/L | 117.29 | 100.00 | 34.00 | 690.00 | 75 | 31 |
Gamma-glutamyl transferase (GGT), U/L | 135.40 | 80.00 | 16.00 | 817.00 | 80 | 26 |
Alpha-fetoprotein (AFP), kU/L | 669.54 | 10.65 | 0.50 | 30,000.00 | 94 | 12 |
Variable | HR | OS 95% CI | p-Value | HR | RFS 95% CI | p-Value |
---|---|---|---|---|---|---|
Conventional clinicopathological parameters | ||||||
Stage pT1 | 0.42 | 0.24–0.73 | 0.0023 | 0.54 | 0.30–0.98 | 0.0425 |
Age | 3.14 | 1.33–7.42 | 0.0061 | 2.09 | 0.95–3.02 | 0.0697 |
Intravascular invasion present | 2.13 | 1.28–3.54 | 0.0034 | 1.40 | 0.82–2.37 | 0.2137 |
Max tumor size | 1.54 | 0.88–2.70 | 0.1300 | 0.45 | 0.24–0.86 | 0.0124 |
Ishak’s HAI score > 5 | 2.88 | 1.11–7.45 | 0.0292 | 1.96 | 0.86–4.45 | 0.1085 |
R1 resection | 1.18 | 0.63–2.22 | 0.6073 | 3.52 | 1.95–6.38 | <0.0001 |
Tumor-free margin width | 0.79 | 0.43–1.46 | 0.4500 | 0.28 | 0.16–0.50 | <0.0001 |
Blood loss during surgery | 2.02 | 1.20–3.43 | 0.0074 | 0.45 | 0.14–1.43 | 0.1627 |
Duration of surgery | 2.03 | 1.16–3.54 | 0.0112 | 1.87 | 1.07–3.29 | 0.0276 |
Duration of hospital stay | 5.08 | 2.50–10.30 | <0.0001 | 1.66 | 0.96–2.84 | 0.0647 |
Blood laboratory data | ||||||
Alanine transaminase (ALT) | 4.29 | 1.33–7.74 | <0.0001 | 2.92 | 1.05–8.10 | 0.0313 |
Aspartate transaminase (AST) | 4.81 | 2.40–9.64 | <0.0001 | 2.10 | 1.08–4.09 | 0.0263 |
Gamma-glutamyl transferase (GGT) | 3.06 | 1.51–6.22 | 0.0012 | 1.69 | 0.79–3.62 | 0.1751 |
Alkaline phosphatase (ALP) | 1.81 | 0.95–3.42 | 0.0660 | 3.69 | 1.14–11.94 | 0.0196 |
Total bilirubin | 2.73 | 1.43–5.22 | 0.0015 | 1.65 | 0.93–2.91 | 0.0813 |
LEU count | 2.50 | 1.11–5.63 | 0.0218 | 1.81 | 1.03–3.20 | 0.0376 |
NEU count | 1.89 | 1.12–3.18 | 0.0145 | 2.27 | 1.29–4.01 | 0.0035 |
BAS count | 3.67 | 1.86–7.23 | 0.0001 | 2.02 | 1.10–3.72 | 0.0206 |
Interface zone immunogradient indicators | ||||||
Malignant (HCC–stroma) interface * | ||||||
HCC_CM_m | 0.49 | 0.26–0.95 | 0.0307 | 0.42 | 0.19–0.94 | 0.0291 |
HCC_m_T | 0.34 | 0.18–0.64 | 0.0005 | 0.40 | 0.22–0.73 | 0.0021 |
HCC_m_TE | 0.53 | 0.29–0.98 | 0.0397 | 0.55 | 0.32–0.93 | 0.0230 |
HCC_sd_T | 0.60 | 0.37–1.00 | 0.0464 | 0.56 | 0.32–0.96 | 0.0328 |
HCC_sd_TE | 0.39 | 0.24–0.65 | 0.0002 | 0.51 | 0.30–0.87 | 0.0113 |
Benign (liver–stroma) interface * | ||||||
Liver_CM_m | 3.06 | 0.96–9.78 | 0.0475 | 1.73 | 0.62–4.78 | 0.2869 |
Liver_CM_sd | 2.26 | 1.35–3.78 | 0.0016 | 0.38 | 0.12–1.21 | 0.0886 |
Liver_ID | 0.57 | 0.34–0.96 | 0.0338 | 1.55 | 0.73–3.29 | 0.2486 |
Liver_m_T | 3.65 | 1.54–8.67 | 0.0019 | 0.63 | 0.33–1.17 | 0.1374 |
Liver_sd_T | 2.04 | 1.17–3.55 | 0.0104 | 0.71 | 0.42–1.22 | 0.2159 |
Variable | HR | 95% CI | p-Value | χ2 |
---|---|---|---|---|
OS Model 1: demographic and pathology data. LR: 22.30, p < 0.0001, N = 106 | ||||
Age > 54.5 years | 3.93 | 1.59–9.69 | 0.0030 | 8.8142 |
Stage pT1 (versus T2–T4) | 0.35 | 0.20–0.64 | 0.0007 | 11.6134 |
OS Model 2: demographic, pathology, and surgery data. LR: 29.60, p < 0.0001, N = 101 | ||||
Age > 54.5 years | 4.46 | 1.76–11.33 | 0.0017 | 9.9012 |
Stage pT1 (versus T2–T4) | 0.37 | 0.20–0.68 | 0.0013 | 10.2742 |
Blood loss during surgery > 450 mL | 2.05 | 1.20–3.50 | 0.0090 | 6.8239 |
OS Model 3: demographic, pathology, surgery, and laboratory data. LR: 46.18, p < 0.0001, N = 81 | ||||
Age > 54.5 years | 4.20 | 1.52–11.57 | 0.0055 | 7.7057 |
Duration of surgery > 137.5 min | 2.61 | 1.42–4.81 | 0.0021 | 9.4252 |
Intravascular invasion present | 3.10 | 1.71–5.61 | 0.0002 | 14.0066 |
Aspartate transaminase (AST) > 135 U/L | 4.59 | 2.20–9.57 | <0.0001 | 16.5728 |
Blood basophil (BAS) count > 0.055 × 109/L | 6.03 | 2.62–13.91 | <0.0001 | 17.7860 |
OS Model 4: demographic, pathology, surgery, laboratory, and HCC (malignant) interface zone data. LR: 61.47, p < 0.0001, N = 81 | ||||
Age > 54.5 years | 3.35 | 1.23–9.10 | 0.0177 | 5.6270 |
Duration of surgery > 137.5 min | 2.07 | 1.09–3.92 | 0.0261 | 4.9488 |
Intravascular invasion present | 3.00 | 1.65–5.43 | 0.0003 | 13.1234 |
Aspartate transaminase (AST) > 135 U/L | 5.33 | 2.51–11.30 | <0.0001 | 18.9716 |
Blood basophil (BAS) count > 0.055 × 109/L | 6.91 | 2.99–15.99 | <0.0001 | 20.3752 |
HCC_sd_TE * > 5.744 | 0.41 | 0.23–0.73 | 0.0026 | 9.0769 |
OS Model 5: demographic, pathology, surgery, laboratory parameters, and data from both interface zones. LR: 54.61, p < 0.0001, N = 76 | ||||
Duration of surgery > 137.5 min | 2.64 | 1.41–4.95 | 0.0023 | 9.2615 |
Aspartate transaminase (AST) > 135 U/L | 4.50 | 2.01–10.11 | 0.0003 | 25.0296 |
Blood basophil (BAS) count > 0.055 × 109/L | 8.67 | 3.72–20.21 | <0.0001 | 13.2883 |
HCC_sd_TE * > 5.744 | 0.33 | 0.18–0.59 | 0.0002 | 13.5590 |
Liver_m_T * > 4.651 | 4.81 | 1.73–13.28 | 0.0024 | 9.1963 |
RFS Model 6: demographic, pathology, and surgery data LR: 32.61, p < 0.0001, N = 104 | ||||
Stage pT1 (versus T2–T4) | 0.40 | 0.20–0.82 | 0.0119 | 6.3248 |
Duration of surgery > 147.5 min | 1.99 | 1.10–3.58 | 0.0224 | 5.2120 |
Max tumor size > 1.9 cm | 0.20 | 0.09–0.44 | <0.0001 | 15.6909 |
Tumor-free margin width > 0.25 mm | 0.33 | 0.18–0.60 | 0.0003 | 12.8879 |
RFS Model 7: from demographic, pathology, surgery, and HCC (malignant) interface zone. LR: 40.50, p < 0.0001, N = 104 | ||||
Stage pT1 (versus T2–T4) | 0.41 | 0.21–0.82 | 0.0108 | 6.4998 |
Duration of surgery > 147.5 min | 2.07 | 1.13–3.80 | 0.0184 | 5.5614 |
Max tumor size > 1.9 cm | 0.21 | 0.10–0.47 | 0.0001 | 14.7466 |
Tumor-free margin width > 0.25 mm | 0.31 | 0.17–0.58 | 0.0002 | 13.5868 |
HCC_m_T * > 3.703 | 0.38 | 0.20–0.71 | 0.0024 | 9.2482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stulpinas, R.; Zilenaite-Petrulaitiene, D.; Rasmusson, A.; Gulla, A.; Grigonyte, A.; Strupas, K.; Laurinavicius, A. Prognostic Value of CD8+ Lymphocytes in Hepatocellular Carcinoma and Perineoplastic Parenchyma Assessed by Interface Density Profiles in Liver Resection Samples. Cancers 2023, 15, 366. https://doi.org/10.3390/cancers15020366
Stulpinas R, Zilenaite-Petrulaitiene D, Rasmusson A, Gulla A, Grigonyte A, Strupas K, Laurinavicius A. Prognostic Value of CD8+ Lymphocytes in Hepatocellular Carcinoma and Perineoplastic Parenchyma Assessed by Interface Density Profiles in Liver Resection Samples. Cancers. 2023; 15(2):366. https://doi.org/10.3390/cancers15020366
Chicago/Turabian StyleStulpinas, Rokas, Dovile Zilenaite-Petrulaitiene, Allan Rasmusson, Aiste Gulla, Agne Grigonyte, Kestutis Strupas, and Arvydas Laurinavicius. 2023. "Prognostic Value of CD8+ Lymphocytes in Hepatocellular Carcinoma and Perineoplastic Parenchyma Assessed by Interface Density Profiles in Liver Resection Samples" Cancers 15, no. 2: 366. https://doi.org/10.3390/cancers15020366
APA StyleStulpinas, R., Zilenaite-Petrulaitiene, D., Rasmusson, A., Gulla, A., Grigonyte, A., Strupas, K., & Laurinavicius, A. (2023). Prognostic Value of CD8+ Lymphocytes in Hepatocellular Carcinoma and Perineoplastic Parenchyma Assessed by Interface Density Profiles in Liver Resection Samples. Cancers, 15(2), 366. https://doi.org/10.3390/cancers15020366