Virtual Surgical Planning and Three-Dimensional Models for Precision Sinonasal and Skull Base Surgery
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Thematic Case Series
3.1.1. Case 1: Application of a 3D Model in Sinonasal and Skull Base Tumor Excision/Ablation
3.1.2. Case 2: Employing a 3D Model to Enhance Patient Communication
3.1.3. Case 3: Use of Virtual Surgical Planning and a 3D Model in Resident and Fellow Education
3.1.4. Case 4: The Role of Virtual Surgical Planning and a 3D Model in Complex Sinonasal Reconstruction
3.1.5. Case 5: The Role of Virtual Surgical Planning and a 3D Model in Multidisciplinary Teamwork
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, J.H.; Reh, D.D. Incidence and survival in patients with sinonasal cancer: A historical analysis of population-based data. Head Neck 2012, 34, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Dodhia, S.; Fitzgerald, C.W.R.; McLean, A.T.; Yuan, A.; Mayor, C.V.; Adilbay, D.; Mimica, X.; Gupta, P.; Cracchiolo, J.R.; Patel, S.; et al. Predictors of surgical complications in patients with sinonasal malignancy. J. Surg. Oncol. 2021, 124, 731–739. [Google Scholar] [CrossRef]
- Abu-Ghanem, S.; Shilo, S.; Yehuda, M.; Abergel, A.; Safadi, A.; Fliss, D.M. Anterior Skull Base Surgery in the 21st Century: The Role of Open Approaches. Adv. Otorhinolaryngol. 2020, 84, 56–67. [Google Scholar]
- Chim, H.; Wetjen, N.; Mardini, S. Virtual surgical planning in craniofacial surgery. Semin. Plast. Surg. 2014, 28, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.; Perrault, D.; Stevanovic, M.; Ghiassi, A. Surgical applications of three-dimensional printing: A review of the current literature & how to get started. Ann. Transl. Med. 2016, 4, 456. [Google Scholar] [PubMed]
- Doescher, J.; Veit, J.A.; Hoffmann, T.K. The 8th edition of the AJCC Cancer Staging Manual: Updates in otorhinolaryngology, head and neck surgery. HNO 2017, 65, 956–961. [Google Scholar] [CrossRef]
- Feichtinger, M.; Pau, M.; Zemann, W.; Aigner, R.M.; Karcher, H. Intraoperative control of resection margins in advanced head and neck cancer using a 3D-navigation system based on PET/CT image fusion. J. Craniomaxillofac. Surg. 2010, 38, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Gillaspie, E.A.; Matsumoto, J.S.; Morris, N.E.; Downey, R.J.; Shen, K.R.; Allen, M.S.; Blackmon, S.H. From 3-Dimensional Printing to 5-Dimensional Printing: Enhancing Thoracic Surgical Planning and Resection of Complex Tumors. Ann. Thorac. Surg. 2016, 101, 1958–1962. [Google Scholar] [CrossRef]
- Matsumoto, J.S.; Morris, J.M.; Rose, P.S. 3-Dimensional Printed Anatomic Models as Planning Aids in Complex Oncology Surgery. JAMA Oncol. 2016, 2, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Haerle, S.K.; Daly, M.J.; Chan, H.H.; Vescan, A.; Kucharczyk, W.; Irish, J.C. Virtual surgical planning in endoscopic skull base surgery. Laryngoscope 2013, 123, 2935–2939. [Google Scholar] [CrossRef]
- Tack, P.; Victor, J.; Gemmel, P.; Annemans, L. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online 2016, 15, 115. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-F.; Choi, W.S.; Wong, M.C.-M.; Powcharoen, W.; Zhu, W.-Y.; Tsoi, J.K.-H.; Chow, M.; Kwok, K.-W.; Su, Y.-X. Three-Dimensionally Printed Patient-Specific Surgical Plates Increase Accuracy of Oncologic Head and Neck Reconstruction Versus Conventional Surgical Plates: A Comparative Study. Ann. Surg. Oncol. 2021, 28, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Patel, P.K.; Cohen, M. Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery. Arch. Plast. Surg. 2012, 39, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Rodby, K.A.; Turin, S.; Jacobs, R.J.; Cruz, J.F.; Hassid, V.J.; Kolokythas, A.; Antony, A.K. Advances in oncologic head and neck reconstruction: Systematic review and future considerations of virtual surgical planning and computer aided design/computer aided modeling. J. Plast. Reconstr. Aesthet. Surg. 2014, 67, 1171–1185. [Google Scholar] [CrossRef]
- Zawy Alsofy, S.; Nakamura, M.; Suleiman, A.; Sakellaropoulou, I.; Welzel Saravia, H.; Shalamberidze, D.; Salma, A.; Stroop, R. Cerebral Anatomy Detection and Surgical Planning in Patients with Anterior Skull Base Meningiomas Using a Virtual Reality Technique. J. Clin. Med. 2021, 10, 681. [Google Scholar] [CrossRef] [PubMed]
- Kayastha, D.; Wiznia, D.; Manes, R.P.; Omay, S.B.; Khoury, T.; Rimmer, R. 3D printing for virtual surgical planning of nasoseptal flap skull-base reconstruction: A proof-of-concept study. Int. Forum Allergy Rhinol. 2023. ahead of print. [Google Scholar] [CrossRef]
- Swendseid, B.P.; Roden, D.F.; Vimawala, S.; Richa, T.; Sweeny, L.; Goldman, R.A.; Luginbuhl, A.; Heffelfinger, R.N.; Khanna, S.; Curry, J.M. Virtual Surgical Planning in Subscapular System Free Flap Reconstruction of Midface Defects. Oral Oncol. 2020, 101, 104508. [Google Scholar] [CrossRef] [PubMed]
- Knitschke, M.; Baumgart, A.K.; Backer, C.; Adelung, C.; Roller, F.; Schmermund, D.; Bottger, S.; Streckbein, P.; Howaldt, H.-P.; Attia, S. Impact of Periosteal Branches and Septo-Cutaneous Perforators on Free Fibula Flap Outcome: A Retrospective Analysis of Computed Tomography Angiography Scans in Virtual Surgical Planning. Front. Oncol. 2021, 11, 821851. [Google Scholar] [CrossRef]
- Chen, Z.; Mo, S.; Fan, X.; You, Y.; Ye, G.; Zhou, N. A Meta-analysis and Systematic Review Comparing the Effectiveness of Traditional and Virtual Surgical Planning for Orthognathic Surgery: Based on Randomized Clinical Trials. J. Oral Maxillofac. Surg. 2021, 79, 471.e1–471.e19. [Google Scholar] [CrossRef]
- Modabber, A.; Legros, C.; Rana, M.; Gerressen, M.; Riediger, D.; Ghassemi, A. Evaluation of computer-assisted jaw reconstruction with free vascularized fibular flap compared to conventional surgery: A clinical pilot study. Int. J. Med. Robot. 2012, 8, 215–220. [Google Scholar] [CrossRef]
- He, Y.; Zhu, H.G.; Zhang, Z.Y.; He, J.; Sader, R. Three-dimensional model simulation and reconstruction of composite total maxillectomy defects with fibula osteomyocutaneous flap flow-through from radial forearm flap. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2009, 108, e6–e12. [Google Scholar] [CrossRef]
- Antony, A.K.; Chen, W.F.; Kolokythas, A.; Weimer, K.A.; Cohen, M.N. Use of virtual surgery and stereolithography-guided osteotomy for mandibular reconstruction with the free fibula. Plast. Reconstr. Surg. 2011, 128, 1080–1084. [Google Scholar] [CrossRef]
- Yang, L.; Shang, X.-W.; Fan, J.-N.; He, Z.-X.; Wang, J.-J.; Liu, M.; Zhuang, Y.; Ye, C. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication. BioMed Res. Int. 2016, 2016, 2482086. [Google Scholar] [CrossRef]
- Lim, K.H.; Loo, Z.Y.; Goldie, S.J.; Adams, J.W.; McMenamin, P.G. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat. Sci. Educ. 2016, 9, 213–221. [Google Scholar] [CrossRef]
- Frithioff, A.; Frendo, M.; Pedersen, D.B.; Sorensen, M.S.; Wuyts Andersen, S.A. 3D-Printed Models for Temporal Bone Surgical Training: A Systematic Review. Otolaryngol. Head Neck Surg. 2021, 165, 617–625. [Google Scholar] [CrossRef]
- Suzuki, M.; Miyaji, K.; Watanabe, R.; Suzuki, T.; Matoba, K.; Nakazono, A.; Nakamaru, Y.; Konno, A.; Psaltis, A.J.; Abe, T.; et al. Repetitive simulation training with novel 3D-printed sinus models for functional endoscopic sinus surgeries. Laryngoscope Investig. Otolaryngol. 2022, 7, 943–954. [Google Scholar] [CrossRef]
- Pujol, S.; Baldwin, M.; Nassiri, J.; Kikinis, R.; Shaffer, K. Using 3D Modeling Techniques to Enhance Teaching of Difficult Anatomical Concepts. Acad. Radiol. 2016, 23, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Liu, L.; Li, Z.; Liu, J. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth. J. Biol. Eng. 2021, 15, 4. [Google Scholar] [CrossRef]
- Sahovaler, A.; Chan, H.H.L.; Gualtieri, T.; Daly, M.; Ferrari, M.; Vannelli, C.; Eu, D.; Manojlovic-Kolarski, M.; Orzell, S.; Taboni, S.; et al. Augmented Reality and Intraoperative Navigation in Sinonasal Malignancies: A Preclinical Study. Front. Oncol. 2021, 11, 723509. [Google Scholar] [CrossRef]
- Dixon, B.J.; Daly, M.J.; Chan, H.; Vescan, A.; Witterick, I.J.; Irish, J.C. Augmented image guidance improves skull base navigation and reduces task workload in trainees: A preclinical trial. Laryngoscope 2011, 121, 2060–2064. [Google Scholar] [CrossRef]
- Resnick, C.M.; Inverso, G.; Wrzosek, M.; Padwa, B.L.; Kaban, L.B.; Peacock, Z.S. Is There a Difference in Cost Between Standard and Virtual Surgical Planning for Orthognathic Surgery? J. Oral Maxillofac. Surg. 2016, 74, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Ritschl, L.M.; Kilbertus, P.; Grill, F.D.; Schwarz, M.; Weitz, J.; Nieberler, M.; Wolff, K.-D.; Fichter, A.M. In-House, Open-Source 3D-Software-Based, CAD/CAM-Planned Mandibular Reconstructions in 20 Consecutive Free Fibula Flap Cases: An Explorative Cross-Sectional Study With Three-Dimensional Performance Analysis. Front. Oncol. 2021, 11, 731336. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, F.; Smithers, F.; Cheng, K.; Mukherjee, P.; Hubert Low, T.H.; Ch’ng, S.; Palme, C.E.; Clark, J.R. Time and cost-analysis of virtual surgical planning for head and neck reconstruction: A matched pair analysis. Oral Oncol. 2020, 100, 104491. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitzgerald, C.W.; Hararah, M.; Mclean, T.; Woods, R.; Dogan, S.; Tabar, V.; Ganly, I.; Matros, E.; Cohen, M.A. Virtual Surgical Planning and Three-Dimensional Models for Precision Sinonasal and Skull Base Surgery. Cancers 2023, 15, 4989. https://doi.org/10.3390/cancers15204989
Fitzgerald CW, Hararah M, Mclean T, Woods R, Dogan S, Tabar V, Ganly I, Matros E, Cohen MA. Virtual Surgical Planning and Three-Dimensional Models for Precision Sinonasal and Skull Base Surgery. Cancers. 2023; 15(20):4989. https://doi.org/10.3390/cancers15204989
Chicago/Turabian StyleFitzgerald, Conall W., Mohammad Hararah, Tim Mclean, Robbie Woods, Snjezana Dogan, Viviane Tabar, Ian Ganly, Evan Matros, and Marc A. Cohen. 2023. "Virtual Surgical Planning and Three-Dimensional Models for Precision Sinonasal and Skull Base Surgery" Cancers 15, no. 20: 4989. https://doi.org/10.3390/cancers15204989
APA StyleFitzgerald, C. W., Hararah, M., Mclean, T., Woods, R., Dogan, S., Tabar, V., Ganly, I., Matros, E., & Cohen, M. A. (2023). Virtual Surgical Planning and Three-Dimensional Models for Precision Sinonasal and Skull Base Surgery. Cancers, 15(20), 4989. https://doi.org/10.3390/cancers15204989