Apparent Diffusion Coefficient Metrics to Differentiate between Treatment-Related Abnormalities and Tumor Progression in Post-Treatment Glioblastoma Patients: A Retrospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. MRI Acquisition Protocol
2.2. Obtaining and Analyzing the ADC Values
2.3. Radiological Reading of Multiparametric MRI Data
2.4. Testing the Literature Derived Cut-Off Value of the ADC Value to Distinguish TP from TRA
2.5. Statistical Assessment
3. Results
3.1. Included Patients
3.2. Comparison of ADC Values in TP and TRA
3.3. Methylation Status of the MGMT Promoter
3.4. Comparison of ADC Values in Lesions with Hypermethylation of the MGMT Promoter vs. Lesions without the Hypermethylation of the MGMT Promoter
3.5. Diagnostic Accuracy
3.6. External Validation on Literature Derived Cut-Off
3.7. Radiological Reading of Multiparametric MRI Data
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strauss, S.B.; Meng, A.; Ebani, E.J.; Chiang, G.C. Imaging Glioblastoma Posttreatment Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Neuroimag. Clin. N. Am. 2021, 31, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Vellayappan, B.; Tan, C.L.; Yong, C.; Khor, L.K.; Koh, W.Y.; Yeo, T.T.; Detsky, J.; Lo, S.; Sahgal, A. Diagnosis and Management of Radiation Necrosis in Patients With Brain Metastases. Front. Oncol. 2018, 8, 395. [Google Scholar] [CrossRef]
- Merkel, A.; Soeldner, D.; Wendl, C.; Urkan, D.; Kuramatsu, J.B.; Seliger, C.; Proescholdt, M.; Eyupoglu, I.Y.; Hau, P.; Uhl, M. Early postoperative tumor progression predicts clinical outcome in glioblastoma-implication for clinical trials. J. Neuro Oncol. 2017, 132, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, A.; Schlossman, J.; Shabani, S.; Raymond, C.; Tatekawa, H.; Abrey, L.E.; Garcia, J.; Chinot, O.; Saran, F.; Nishikawa, R.; et al. Incidence, molecular characteristics, and imaging features of “clinically-defined pseudoprogression” in newly diagnosed glioblastoma treated with chemoradiation. J. Neuro Oncol. 2022, 159, 509–518. [Google Scholar] [CrossRef]
- Zhang, J.; Stevens, M.F.; Bradshaw, T.D. Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 2012, 5, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of brain tumors. J. Magn. Reson. Imaging JMRI 2018, 48, 571–589. [Google Scholar] [CrossRef]
- Radbruch, A.; Fladt, J.; Kickingereder, P.; Wiestler, B.; Nowosielski, M.; Baumer, P.; Schlemmer, H.P.; Wick, A.; Heiland, S.; Wick, W.; et al. Pseudoprogression in patients with glioblastoma: Clinical relevance despite low incidence. Neuro Oncol. 2015, 17, 151–159. [Google Scholar] [CrossRef]
- de Wit, M.C.; de Bruin, H.G.; Eijkenboom, W.; Sillevis Smitt, P.A.; van den Bent, M.J. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 2004, 63, 535–537. [Google Scholar] [CrossRef]
- Nishimura, R.; Takahashi, M.; Morishita, S.; Sumi, M.; Uozumi, H.; Sakamoto, Y. MR Gd-DTPA enhancement of radiation brain injury. Radiat. Med. 1992, 10, 109–116. [Google Scholar]
- Sugahara, T.; Korogi, Y.; Tomiguchi, S.; Shigematsu, Y.; Ikushima, I.; Kira, T.; Liang, L.; Ushio, Y.; Takahashi, M. Posttherapeutic intraaxial brain tumor: The value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am. J. Neuroradiol. 2000, 21, 901–909. [Google Scholar]
- Kazda, T.; Bulik, M.; Pospisil, P.; Lakomy, R.; Smrcka, M.; Slampa, P.; Jancalek, R. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging. NeuroImage Clin. 2016, 11, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Ahn, S.S.; Kim, E.H.; Kang, S.G.; Chang, J.H.; Kim, S.H.; Zhou, J.; Lee, S.K. Differentiation of recurrent diffuse glioma from treatment-induced change using amide proton transfer imaging: Incremental value to diffusion and perfusion parameters. Neuroradiology 2021, 63, 363–372. [Google Scholar] [CrossRef]
- Zakhari, N.; Taccone, M.S.; Torres, C.; Chakraborty, S.; Sinclair, J.; Woulfe, J.; Jansen, G.H.; Nguyen, T.B. Diagnostic Accuracy of Centrally Restricted Diffusion in the Differentiation of Treatment-Related Necrosis from Tumor Recurrence in High-Grade Gliomas. AJNR Am. J. Neuroradiol. 2018, 39, 260–264. [Google Scholar] [CrossRef]
- Sugahara, T.; Korogi, Y.; Kochi, M.; Ikushima, I.; Shigematu, Y.; Hirai, T.; Okuda, T.; Liang, L.; Ge, Y.; Komohara, Y.; et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging JMRI 1999, 9, 53–60. [Google Scholar] [CrossRef]
- van den Elshout, R.; Scheenen, T.W.J.; Driessen, C.M.L.; Smeenk, R.J.; Meijer, F.J.A.; Henssen, D. Diffusion imaging could aid to differentiate between glioma progression and treatment-related abnormalities: A meta-analysis. Insights Imaging 2022, 13, 158. [Google Scholar] [CrossRef]
- Leao, D.J.; Craig, P.G.; Godoy, L.F.; Leite, C.C.; Policeni, B. Response Assessment in Neuro-Oncology Criteria for Gliomas: Practical Approach Using Conventional and Advanced Techniques. AJNR Am. J. Neuroradiol. 2020, 41, 10–20. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- (LWNO), L., April 15). Richtlijnendatabase Gliomen. 2023. Available online: https://richtlijnendatabase.nl/richtlijn/gliomen/gliomen_-_startpagina.html (accessed on 15 January 2023).
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Woolrich, M.W.; Jbabdi, S.; Patenaude, B.; Chappell, M.; Makni, S.; Behrens, T.; Beckmann, C.; Jenkinson, M.; Smith, S.M. Bayesian analysis of neuroimaging data in FSL. NeuroImage 2009, 45, S173–S186. [Google Scholar] [CrossRef]
- Brandes, A.A.; Franceschi, E.; Tosoni, A.; Blatt, V.; Pession, A.; Tallini, G.; Bertorelle, R.; Bartolini, S.; Calbucci, F.; Andreoli, A.; et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 2192–2197. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, Y.; Sun, M.; Jiang, W.; Yuan, T.; Tong, D. Meta-analysis of the diagnostic performance of diffusion magnetic resonance imaging with apparent diffusion coefficient measurements for differentiating glioma recurrence from pseudoprogression. Medicine 2020, 99, e20270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, L.; Shu, C.; Wang, Y.B.; Dong, L.Q. Diagnostic accuracy of diffusion MRI with quantitative ADC measurements in differentiating glioma recurrence from radiation necrosis. J. Neurol. Sci. 2015, 351, 65–71. [Google Scholar] [CrossRef]
- Graber, J.J.; Young, R.J.; Gupta, A.; Shah, A.D.; Chan, T.A.; Zhang, Z.; Shi, W.; Beal, K.; Omuro, A.M.P. Magnetic resonance (MR) perfusion imaging to differentiate early progression from pseudoprogression following chemoradiotherapy for glioblastoma (GBM). J. Clin. Oncol. 2011, 29, 2009. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Wang, Y.; Xiao, H.; Chen, X.; Lei, Y.; Feng, Z.; Ma, X.; Ma, L. Perfusion magnetic resonance imaging in the differentiation between glioma recurrence and pseudoprogression: A systematic review, meta-analysis and meta-regression. Quant. Imaging Med. Surg. 2022, 12, 4805–4822. [Google Scholar] [CrossRef] [PubMed]
- El-Abtah, M.E.; Talati, P.; Fu, M.; Chun, B.; Clark, P.; Peters, A.; Ranasinghe, A.; He, J.; Rapalino, O.; Batchelor, T.T.; et al. Magnetic resonance spectroscopy outperforms perfusion in distinguishing between pseudoprogression and disease progression in patients with glioblastoma. Neuro Oncol. Adv. 2022, 4, vdac128. [Google Scholar] [CrossRef] [PubMed]
- Smits, M. MRI biomarkers in neuro-oncology. Nat. Rev. Neurol. 2021, 17, 486–500. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Esteller, M.; Garcia-Foncillas, J.; Andion, E.; Goodman, S.N.; Hidalgo, O.F.; Vanaclocha, V.; Baylin, S.B.; Herman, J.G. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 2000, 343, 1350–1354. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Weller, M.; Stupp, R.; Reifenberger, G.; Brandes, A.A.; van den Bent, M.J.; Wick, W.; Hegi, M.E. MGMT promoter methylation in malignant gliomas: Ready for personalized medicine? Nat. Rev. Neurol. 2010, 6, 39–51. [Google Scholar] [CrossRef]
- Park, Y.W.; Vollmuth, P.; Foltyn-Dumitru, M.; Sahm, F.; Ahn, S.S.; Chang, J.H.; Kim, S.H. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 1-Key Points of the Fifth Edition and Summary of Imaging Findings on Adult-Type Diffuse Gliomas. J. Magn. Reson. Imaging JMRI 2023, 58, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Jakovlevs, A.; Vanags, A.; Gardovskis, J.; Strumfa, I. Molecular classification of diffuse gliomas. Pol. J. Pathol. Off. J. Pol. Soc. Pathol. 2019, 70, 246–258. [Google Scholar] [CrossRef]
- Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Sezer, S.; van Amerongen, M.J.; Delye, H.H.K.; Ter Laan, M. Accuracy of the neurosurgeons estimation of extent of resection in glioblastoma. Acta Neurochir. 2020, 162, 373–378. [Google Scholar] [CrossRef]
- Al-Agha, M.; Abushab, K.; Quffa, K.; Al-Agha, S.; Alajerami, Y.; Tabash, M. Efficiency of High and Standard b Value Diffusion-Weighted Magnetic Resonance Imaging in Grading of Gliomas. J. Oncol. 2020, 2020, 6942406. [Google Scholar] [CrossRef] [PubMed]
- Cha, S. Update on brain tumor imaging: From anatomy to physiology. AJNR Am. J. Neuroradioly 2006, 27, 475–487. [Google Scholar] [CrossRef]
Patient Info | TP (n = 50) | TRA (n = 26) |
---|---|---|
Gender | M = 26 F = 24 | M = 17 F = 9 |
Mean age (years) | 57 (SD 12) | 64 (SD 11) |
MGMT promotor methylation status | 20 hypermethylated 22 non-hypermethylated | 20 hypermethylated 3 non-hypermethylated |
IDH status | 44 wildtype 5 mutant | 25 wildtype |
Parameter | T1-MPRAGE | T1-SPACE | T2 | T2-FLAIR | DWI-Resolve | DSC-Perfusion |
---|---|---|---|---|---|---|
Repetition time (TR) (ms) | 2100 | 600 | 5310 | 9000 | 4210 | 1350 |
Echo time (TE) (ms) | 2.42 | 7.1 | 85 | 87 | 75 | 40 |
Inversion time (TI) (ms) | N/A | N/A | N/A | 2500 | N/A | N/A |
B values | N/A | N/A | N/A | N/A | 0, 1000 | N/A |
Slice thickness (mm) | 1 | 1 | 5 | 5 | 5 | 5 |
Matrix size (Pixels) | 256 × 256 | 256 × 256 | 256 × 256 | 256 × 256 | 192 × 192 | 128 × 128 |
Resolution (mm × mm) | 1 × 1 | 1 × 1 | 1 × 1 | 1 × 1 | 1.33 × 1.33 | 2 × 2 |
Acquisition plane | sagittal | sagittal | transversal | transversal | transversal | Transversal |
Acquisition time (min) | 5:00 | 3:26 | 2:30 | 3:30 | 2:00 | 2:00 |
Total = 76 Patients | Observed TP | Observed TRA | Total |
---|---|---|---|
Predicted TP | 45 | 17 | 62 |
Predicted TRA | 5 | 9 | 14 |
Total | 50 | 26 | 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Elshout, R.; Herings, S.D.A.; Mannil, M.; Gijtenbeek, A.M.M.; ter Laan, M.; Smeenk, R.J.; Meijer, F.J.A.; Scheenen, T.W.J.; Henssen, D.J.H.A. Apparent Diffusion Coefficient Metrics to Differentiate between Treatment-Related Abnormalities and Tumor Progression in Post-Treatment Glioblastoma Patients: A Retrospective Study. Cancers 2023, 15, 4990. https://doi.org/10.3390/cancers15204990
van den Elshout R, Herings SDA, Mannil M, Gijtenbeek AMM, ter Laan M, Smeenk RJ, Meijer FJA, Scheenen TWJ, Henssen DJHA. Apparent Diffusion Coefficient Metrics to Differentiate between Treatment-Related Abnormalities and Tumor Progression in Post-Treatment Glioblastoma Patients: A Retrospective Study. Cancers. 2023; 15(20):4990. https://doi.org/10.3390/cancers15204990
Chicago/Turabian Stylevan den Elshout, Rik, Siem D. A. Herings, Manoj Mannil, Anja M. M. Gijtenbeek, Mark ter Laan, Robert J. Smeenk, Frederick J. A. Meijer, Tom W. J. Scheenen, and Dylan J. H. A. Henssen. 2023. "Apparent Diffusion Coefficient Metrics to Differentiate between Treatment-Related Abnormalities and Tumor Progression in Post-Treatment Glioblastoma Patients: A Retrospective Study" Cancers 15, no. 20: 4990. https://doi.org/10.3390/cancers15204990
APA Stylevan den Elshout, R., Herings, S. D. A., Mannil, M., Gijtenbeek, A. M. M., ter Laan, M., Smeenk, R. J., Meijer, F. J. A., Scheenen, T. W. J., & Henssen, D. J. H. A. (2023). Apparent Diffusion Coefficient Metrics to Differentiate between Treatment-Related Abnormalities and Tumor Progression in Post-Treatment Glioblastoma Patients: A Retrospective Study. Cancers, 15(20), 4990. https://doi.org/10.3390/cancers15204990